Mechanism of Cs Immobilization within a Sodalite Framework: The Role of Alkaline Cations and the Si/Al Ratio
Abstract
:1. Introduction
2. Results and Discussion
2.1. Local Structure of Cs+, Na+, and K+
2.2. Charge Transfer
2.3. Density of Electronic States
2.4. Electron Density Difference
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.H.; Han, A.; Yoon, J.Y.; Park, H.-S.; Cho, Y.-Z. A New Route to the Stable Capture and Final Immobilization of Radioactive Cesium. J. Hazard. Mater. 2017, 339, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Radioactive Waste Management. Nuclear Waste Disposal-World Nuclear Association. Available online: https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/radioactive-waste-management.aspx (accessed on 28 August 2023).
- Konings, R.J.M.; Wiss, T.; Beneš, O. Predicting Material Release during a Nuclear Reactor Accident. Nat. Mater. 2015, 14, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Zheng, J.; Liu, X.; Long, K.; Hu, S.; Uchida, S. Mass Spectrometry for the Determination of Fission Products 135Cs, 137Cs and 90Sr: A Review of Methodology and Applications. Spectrochim. Acta Part B At. Spectrosc. 2016, 119, 65–75. [Google Scholar] [CrossRef]
- Jokiniemi, J. The Growth of Hygroscopic Particles During Severe Core Melt Accidents. Nucl. Technol. 1988, 83, 16–23. [Google Scholar] [CrossRef]
- Bar-Nes, G.; Katz, A.; Peled, Y.; Zeiri, Y. The Mechanism of Cesium Immobilization in Densified Silica-Fume Blended Cement Pastes. Cem. Concr. Res. 2008, 38, 667–674. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.; Missana, T.; Mingarro, M.; Morejón, J.; Cormenzana, J.L. Cesium Diffusion in Mortars from Different Cements Used in Radioactive Waste Repositories. Appl. Geochem. 2018, 98, 10–16. [Google Scholar] [CrossRef]
- Eskander, S.B.; Abdel Aziz, S.M.; El-Didamony, H.; Sayed, M.I. Immobilization of Low and Intermediate Level of Organic Radioactive Wastes in Cement Matrices. J. Hazard. Mater. 2011, 190, 969–979. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. Immobilisation of Heavy Metal in Cement-Based Solidification/Stabilisation: A Review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef]
- Malviya, R.; Chaudhary, R. Factors Affecting Hazardous Waste Solidification/Stabilization: A Review. J. Hazard. Mater. 2006, 137, 267–276. [Google Scholar] [CrossRef]
- Rossetti, V.A.; Medici, F. Inertization of Toxic Metals in Cement Matrices: Effects on Hydration, Setting and Hardening. Cem. Concr. Res. 1995, 25, 1147–1152. [Google Scholar] [CrossRef]
- Paria, S.; Yuet, P.K. Solidification–Stabilization of Organic and Inorganic Contaminants Using Portland Cement: A Literature Review. Environ. Rev. 2006, 14, 217–255. [Google Scholar] [CrossRef]
- Zhou, Q.; Milestone, N.B.; Hayes, M. An Alternative to Portland Cement for Waste Encapsulation—The Calcium Sulfoaluminate Cement System. J. Hazard. Mater. 2006, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Bart, F.; Cau-di-Coumes, C.; Frizon, F.; Lorente, S. (Eds.) Cement-Based Materials for Nuclear Waste Storage; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-3444-3. [Google Scholar]
- El-Kamash, A.M.; El-Naggar, M.R.; El-Dessouky, M.I. Immobilization of Cesium and Strontium Radionuclides in Zeolite-Cement Blends. J. Hazard. Mater. 2006, 136, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Papadokostaki, K.G.; Savidou, A. Study of Leaching Mechanisms of Caesium Ions Incorporated in Ordinary Portland Cement. J. Hazard. Mater. 2009, 171, 1024–1031. [Google Scholar] [CrossRef]
- Kozai, N.; Sato, J.; Osugi, T.; Shimoyama, I.; Sekine, Y.; Sakamoto, F.; Ohnuki, T. Sewage Sludge Ash Contaminated with Radiocesium: Solidification with Alkaline-Reacted Metakaolinite (Geopolymer) and Portland Cement. J. Hazard. Mater. 2021, 416, 125965. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J.; Kang, J.; Um, W. Development of Geopolymer Waste Form for Immobilization of Radioactive Borate Waste. J. Hazard. Mater. 2021, 419, 126402. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Shi, C.; Qu, B.; Provis, J.L. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, Z.; Deng, Y.; Shi, C.; Zhang, Z. Advances in Immobilization of Radionuclide Wastes by Alkali Activated Cement and Related Materials. Cem. Concr. Compos. 2022, 126, 104377. [Google Scholar] [CrossRef]
- Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E.J.C.; Nikolski, A.; Mogiliansky, D.; Katz, A. Formation of Zeolites in Metakaolin-Based Geopolymers and Their Potential Application for Cs Immobilization. J. Nucl. Mater. 2017, 493, 168–179. [Google Scholar] [CrossRef]
- Provis, J.L.; Walls, P.A.; van Deventer, J.S.J. Geopolymerisation Kinetics. 3. Effects of Cs and Sr Salts. Chem. Eng. Sci. 2008, 63, 4480–4489. [Google Scholar] [CrossRef]
- Ofer-Rozovsky, E.; Haddad, M.A.; Bar-Nes, G.; Borojovich, E.J.C.; Binyamini, A.; Nikolski, A.; Katz, A. Cesium Immobilization in Nitrate-Bearing Metakaolin-Based Geopolymers. J. Nucl. Mater. 2019, 514, 247–254. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Huang, C. Performance Study of Ion Exchange Resins Solidification Using Metakaolin-Based Geopolymer Binder. Prog. Nucl. Energy 2020, 129, 103508. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Masry, E.H.; El-Sadek, A.A. Assessment of Individual and Mixed Alkali Activated Binders for Solidification of a Nuclear Grade Organic Resin Loaded with 134Cs, 60Co and 152+154Eu Radionuclides. J. Hazard. Mater. 2019, 375, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Cheng, T.-W.; Ding, Y.-C.; Lin, K.-L.; Tsao, S.-W.; Huang, C.-P. Geopolymer Technology for the Solidification of Simulated Ion Exchange Resins with Radionuclides. J. Environ. Manag. 2019, 235, 19–27. [Google Scholar] [CrossRef]
- Bell, J.L.; Sarin, P.; Driemeyer, P.E.; Haggerty, R.P.; Chupas, P.J.; Kriven, W.M. X-Ray pair distribution function analysis of a metakaolin-based, KAlSi2O6•5.5H2O inorganic polymer (geopolymer). J. Mater. Chem. 2008, 18, 5974–5981. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Li, Y.; Yang, C. Solidification/Stabilization of Gold Ore Tailings Powder Using Sustainable Waste-Based Composite Geopolymer. Eng. Geol. 2022, 309, 106793. [Google Scholar] [CrossRef]
- Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The Geopolymerisation of Alumino-Silicate Minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Diaz, E.I.; Allouche, E.N.; Eklund, S. Factors Affecting the Suitability of Fly Ash as Source Material for Geopolymers. Fuel 2010, 89, 992–996. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator. Cem. Concr. Res. 2005, 35, 1984–1992. [Google Scholar] [CrossRef]
- Singh, P.S.; Bastow, T.; Trigg, M. Structural Studies of Geopolymers by 29Si and 27Al MAS-NMR. J. Mater. Sci. 2005, 40, 3951–3961. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Liew, Y.-M.; Heah, C.-Y.; Mohd Mustafa, A.B.; Kamarudin, H. Structure and Properties of Clay-Based Geopolymer Cements: A Review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 2010, 22, 5199–5208. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. The effect of silica availability on the mechanism of geopolymerisation. Cem. Concr. Res. 2011, 41, 210–216. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; Kealley, C.S.; van Riessen, A. Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model. J. Am. Ceram. Soc. 2015, 98, 929–939. [Google Scholar] [CrossRef]
- Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers. Constr. Build. Mater. 2016, 110, 355–368. [Google Scholar] [CrossRef]
- Silva, P.D.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of Geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Ofer-Rozovsky, E.; Arbel Haddad, M.; Bar Nes, G.; Katz, A. The Formation of Crystalline Phases in Metakaolin-Based Geopolymers in the Presence of Sodium Nitrate. J. Mater. Sci. 2016, 51, 4795–4814. [Google Scholar] [CrossRef]
- Zhang, B.; MacKenzie, K.J.D.; Brown, I.W.M. Crystalline Phase Formation in Metakaolinite Geopolymers Activated with NaOH and Sodium Silicate. J. Mater. Sci. 2009, 44, 4668–4676. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Zhang, S. Mineral Phases and Properties of Alkali-Activated Metakaolin-Slag Hydroceramics for a Disposal of Simulated Highly-Alkaline Wastes. J. Nucl. Mater. 2010, 402, 173–178. [Google Scholar] [CrossRef]
- Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J. Adsorbent Materials Based on a Geopolymer Paste for Dye Removal from Aqueous Solutions. Arab. J. Chem. 2020, 13, 3017–3025. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Zhang, X.; Chen, H. Diverse Zeolites Derived from a Circulating Fluidized Bed Fly Ash Based Geopolymer for the Adsorption of Lead Ions from Wastewater. J. Clean. Prod. 2021, 312, 127769. [Google Scholar] [CrossRef]
- Xu, H.; Gong, W.; Syltebo, L.; Lutze, W.; Pegg, I.L. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution. J. Hazard. Mater. 2014, 133, 332–340. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manag. 2018, 224, 327–339. [Google Scholar] [CrossRef]
- Lόpez, F.J.; Sugita, S.; Tagaya, M.; Kobayashi, T. Metakaolin-based geopolymers for targeted adsorbents to heavy metal ion separation. J. Mater. Sci. Chem. Eng. 2014, 2, 16–27. [Google Scholar] [CrossRef]
- El-Eswed, B.I.; Aldagag, O.M.; Khalili, F.I. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 2017, 140, 148–156. [Google Scholar] [CrossRef]
- Walkley, B.; Ke, X.; Hussein, O.H.; Bernal, S.A.; Provis, J.L. Incorporation of strontium and calcium in geopolymer gels. J. Hazard. Mater. 2020, 382, 121015. [Google Scholar] [CrossRef]
- Kuenzel, C.; Cisneros, J.F.; Neville, T.P.; Vandeperre, L.J.; Simons, S.J.R.; Bensted, J.; Cheeseman, C.R. Encapsulation of Cs/Sr Contaminated Clinoptilolite in Geopolymers Produced from Metakaolin. J. Nucl. Mater. 2015, 466, 94–99. [Google Scholar] [CrossRef]
- Vandevenne, N.; Iacobescu, R.I.; Pontikes, Y.; Carleer, R.; Thijssen, E.; Gijbels, K.; Schreurs, S.; Schroeyers, W. Incorporating Cs and Sr into Blast Furnace Slag Inorganic Polymers and Their Effect on Matrix Properties. J. Nucl. Mater. 2018, 503, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Luo, W.; Cao, H.; Weng, L.; Feng, G.; Fu, X.-Z.; Luo, J.-L. Understanding the Immobilization Mechanisms of Hazardous Heavy Metal Ions in the Cage of Sodalite at Molecular Level: A DFT Study. Microporous Mesoporous Mater. 2020, 306, 110409. [Google Scholar] [CrossRef]
- Luo, W.; Yang, X.; Cao, H.; Weng, L.; Feng, G.; Fu, X.-Z.; Luo, J.-L.; Liu, J. Unravelling the Origin of Long-Term Stability for Cs + and Sr 2+ Solidification inside Sodalite. Phys. Chem. Chem. Phys. 2022, 24, 18083–18093. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, H.S.; Jeong, H.-K.; Park, M.; Chung, D.-Y.; Lee, K.-Y.; Lee, E.-H.; Lim, W.T. Selective Removal of Radioactive Cesium from Nuclear Waste by Zeolites: On the Origin of Cesium Selectivity Revaealed by Systematic Crystallographic Studies. J. Phys. Chem. C 2017, 121, 10594–10608. [Google Scholar] [CrossRef]
- Dejsupa, C.; Heo, N.H.; Seff, K. Crystal structure of cesium zeolite A prepared by complete aqueous exchange. Zeolites 1989, 9, 146–151. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, C.; Han, E.; Lee, H.; Cho, H.S.; Choi, M. Relationship between zeolite structure and capture capability for radioactive cesium and strontium. J. Hazard. Mater. 2020, 408, 124419. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave functions. IV. bonding and antibonding in LCAO and Valence-bond theories. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. Physical Evolution of Na-Geopolymer Derived from Metakaolin up to 1000 °C. J. Mater. Sci. 2007, 42, 3044–3054. [Google Scholar] [CrossRef]
- Kuenzel, C.; Vandeperre, L.J.; Donatello, S.; Boccaccini, A.R.; Cheeseman, C. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012, 95, 3270–3277. [Google Scholar] [CrossRef]
- Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 28 August 2023).
- Duxson, P.; Lukey, G.C.; Van Deventer, J.S.J. Evolution of Gel Structure during Thermal Processing of Na-Geopolymer Gels. Langmuir 2006, 22, 8750–8757. [Google Scholar] [CrossRef] [PubMed]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-Zeolite Composites: A Review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolinbased geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Zibouche, F.; Kerdjoudj, H.; de Lacaillerie, J.B.D.E.; Van Damme, H. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl. Clay Sci. 2009, 43, 453–458. [Google Scholar] [CrossRef]
- Oh, J.E.; Jun, Y.; Jeong, Y. Characterization of geopolymers from compositionally and physically different Class F fly ashes. Cem. Concr. Compos. 2014, 50, 16–26. [Google Scholar] [CrossRef]
- Buchwald, A.; Zellmann, H.D.; Kaps, C. Condensation of aluminosilicate gels-model system for geopolymer binders. J. Non-Cryst. Solids 2011, 357, 1376–1382. [Google Scholar] [CrossRef]
- Larin, A.V. The Loewenstein rule: The increase in electron kinetic energy as the reason for instability of Al–O–Al linkage in aluminosilicate zeolites. Phys. Chem. Miner. 2013, 40, 771–780. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A. Grand Canonical Monte Carlo Simulation Study on the Effect of Crystallinity and Structural Disorder on Water Sorption in Geopolymers. Ceram. Int. 2022, 48, 37464–37469. [Google Scholar] [CrossRef]
- Dubbeldam, D.; Calero, S.; Ellis, D.E.; Snurr, R.Q. RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials. Mol. Simul. 2016, 42, 81–101. [Google Scholar] [CrossRef]
- Cygan, R.T.; Greathouse, J.A.; Kalinichev, A.G. Advances in Clayff Molecular Simulation of Layered and Nanoporous Materials and Their Aqueous Interfaces. J. Phys. Chem. C 2021, 125, 17573–17589. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 1983, 52, 24–34. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Für Krist.-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Makov, G.; Payne, M.C. Periodic Boundary Conditions in Ab Initio Calculations. Phys. Rev. B 1995, 51, 4014–4022. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, A.; Vasilchenko, A.; Kasprzhitskii, A.; Lazorenko, G. Atomic-Level Understanding of Interface Interactions in a Halloysite Nanotubes–PLA Nanocomposite. RSC Adv. 2019, 9, 39505–39514. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Garrity, K.F.; Bennett, J.W.; Rabe, K.M.; Vanderbilt, D. Pseudopotentials for High-Throughput DFT Calculations. Mater. Sci. 2014, 81, 446–452. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Fan, K.-N.; Deng, J. Structural and Electronic Properties of Silver Surfaces: Ab Initio Pseudopotential Density Functional Study. Surf. Sci. 2001, 490, 125–132. [Google Scholar] [CrossRef]
- Kasprzhitskii, A.S.; Lazorenko, G.I.; Sulavko, S.N.; Yavna, V.A.; Kochur, A.G. A Study of the Structural and Spectral Characteristics of Free and Bound Water in Kaolinite. Opt. Spectrosc. 2016, 121, 357–363. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization. ACM Trans. Math. Softw. 1997, 23, 550–560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzhitskii, A.; Ermolov, Y.; Mischinenko, V.; Vasilchenko, A.; Yatsenko, E.A.; Smoliy, V.A. Mechanism of Cs Immobilization within a Sodalite Framework: The Role of Alkaline Cations and the Si/Al Ratio. Int. J. Mol. Sci. 2023, 24, 17023. https://doi.org/10.3390/ijms242317023
Kasprzhitskii A, Ermolov Y, Mischinenko V, Vasilchenko A, Yatsenko EA, Smoliy VA. Mechanism of Cs Immobilization within a Sodalite Framework: The Role of Alkaline Cations and the Si/Al Ratio. International Journal of Molecular Sciences. 2023; 24(23):17023. https://doi.org/10.3390/ijms242317023
Chicago/Turabian StyleKasprzhitskii, Anton, Yakov Ermolov, Vasilii Mischinenko, Andrey Vasilchenko, Elena A. Yatsenko, and Victoria A. Smoliy. 2023. "Mechanism of Cs Immobilization within a Sodalite Framework: The Role of Alkaline Cations and the Si/Al Ratio" International Journal of Molecular Sciences 24, no. 23: 17023. https://doi.org/10.3390/ijms242317023