Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions
Abstract
:1. Introduction
2. Results
2.1. Fibrosis Alters the Biogenesis of Lipid Droplets and Fragments the Endoplasmic Reticulum in 3T3-L1 Adipocytes
2.2. Fibrosis Altered ER and LD Dynamics and Hindered Rab18’s Access to Lipid Droplets
2.3. Inflammatory Conditions Increased ER–LD Association
2.4. TNFα Treatment Increased the Rab18 Localization to the ER
2.5. Rab18 Reaches the LD Coat Mainly through the ER in Human Adipocytes
3. Discussion
4. Materials and Methods
4.1. 3T3-L1 Cell Cultures and Experimental Treatments
4.1.1. Two-Dimensional Cell Culture of 3T3-L1 Cells and Inflammation Model
4.1.2. Three-Dimensional Cell Culture of 3T3-L1 Cells and Fibrosis Model
4.2. Human Adipocytes Cell Culture
4.3. Immunocytochemistry and Confocal Microscopy
4.3.1. Morphometric Analysis of Endoplasmic Reticulum and Lipid Droplets
4.3.2. Colocalization Studies and Analysis of ER–LD Contact Sites
4.4. Immunoblotting
4.5. Statistical Analysis
5. Conclusions
- Obesity-associated fibrotic conditions may cause ER fragmentation in adipocytes.
- Both fibrosis and inflammation increased the number of ER–LD contact sites, but only the former hindered LD biogenesis and growth.
- The fibrotic environment may affect Rab18 trafficking to the LD.
- TNFα promotes Rab18 accumulation at the ER in adipocytes, which may contribute to the maintenance of ER structure.
- Studies of Rab18 in human (pre)adipocytes support the route followed by this GTPase from the ER to LDs in 3T3-L1 adipocytes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the Adipocyte: A Model for Integration of Cytokine Signaling in the Regulation of Energy Metabolism. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E691–E714. [Google Scholar] [CrossRef]
- Corvera, S. Cellular Heterogeneity in Adipose Tissues. Annu. Rev. Physiol. 2021, 83, 257–278. [Google Scholar] [CrossRef] [PubMed]
- Stenkula, K.G.; Erlanson-Albertsson, C. Adipose Cell Size: Importance in Health and Disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R284–R295. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, J.A.; Carvalho, P. Dynamics and Functions of Lipid Droplets. Nat. Rev. Mol. Cell Biol. 2018, 20, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, A.R.; Sztalryd, C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu. Rev. Nutr. 2016, 36, 471–509. [Google Scholar] [CrossRef] [PubMed]
- Kory, N.; Farese, R.V.; Walther, T.C. Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol. 2016, 26, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Sztalryd, C.; Brasaemle, D.L. The Perilipin Family of Lipid Droplet Proteins: Gatekeepers of Intracellular Lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Walther, T.C.; Farese, R.V. Lipid Droplets and Cellular Lipid Metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. [Google Scholar] [CrossRef]
- Guzmán-Ruiz, R.; Tercero-Alcázar, C.; Rabanal-Ruiz, Y.; Díaz-Ruiz, A.; El Bekay, R.; Rangel-Zuñiga, O.A.; Navarro-Ruiz, M.C.; Molero, L.; Membrives, A.; Ruiz-Rabelo, J.F.; et al. Adipose Tissue Depot-Specific Intracellular and Extracellular Cues Contributing to Insulin Resistance in Obese Individuals. FASEB J. 2020, 34, 7520–7539. [Google Scholar] [CrossRef]
- Li, C.; Yu, S.S.B. Rab Proteins as Regulators of Lipid Droplet Formation and Lipolysis. Cell Biol. Int. 2016, 40, 1026–1032. [Google Scholar] [CrossRef]
- Barbosa, A.D.; Siniossoglou, S. Function of Lipid Droplet-Organelle Interactions in Lipid Homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Wilfling, F.; Thiam, A.R.; Olarte, M.J.; Wang, J.; Beck, R.; Gould, T.J.; Allgeyer, E.S.; Pincet, F.; Bewersdorf, J.; Farese, R.V.; et al. Arf1/COPI Machinery Acts Directly on Lipid Droplets and Enables Their Connection to the ER for Protein Targeting. Elife 2014, 3, e01607. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Tan, Y.; Wu, J.; Ren, Z. Lipid Droplets: A Cellular Organelle Vital in Cancer Cells. Cell Death Discov. 2023, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Zadoorian, A.; Du, X.; Yang, H. Lipid Droplet Biogenesis and Functions in Health and Disease. Nat. Rev. Endocrinol. 2023, 19, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Stenmark, H. Cellular Functions of Rab GTPases at a Glance. J. Cell Sci. 2015, 128, 3171–3176. [Google Scholar] [CrossRef] [PubMed]
- Sönnichsen, B.; De Renzis, S.; Nielsen, E.; Rietdorf, J.; Zerial, M. Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 2000, 149, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Mima, J. Reconstitution of Membrane Tethering Mediated by Rab-Family Small GTPases. Biophys. Rev. 2018, 10, 543–549. [Google Scholar] [CrossRef]
- Beilstein, F.; Bouchoux, J.; Rousset, M.; Demignot, S. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion. PLoS ONE 2013, 8, e53017. [Google Scholar] [CrossRef]
- Vanni, S. Intracellular Lipid Droplets: From Structure to Function. Lipid Insights 2017, 10, 117863531774551. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2019, 19, e1700223. [Google Scholar] [CrossRef]
- Kiss, R.S.; Nilsson, T. Rab Proteins Implicated in Lipid Storage and Mobilization. J. Biomed. Res. 2014, 28, 169–177. [Google Scholar] [CrossRef]
- Song, J.; Mizrak, A.; Lee, C.-W.; Cicconet, M.; Lai, Z.W.; Tang, W.-C.; Lu, C.-H.; Mohr, S.E.; Farese, R.V.; Walther, T.C. Identification of Two Pathways Mediating Protein Targeting from ER to Lipid Droplets. Nat. Cell Biol. 2022, 24, 1364–1377. [Google Scholar] [CrossRef]
- Bersuker, K.; Olzmann, J.A. Establishing the Lipid Droplet Proteome: Mechanisms of Lipid Droplet Protein Targeting and Degradation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, Y.; Wu, L.; Li, Y.; Zhao, D.; Yu, J.; Huang, T.; Ferguson, C.; Parton, R.G.; Yang, H.; et al. Rab18 Promotes Lipid Droplet (LD) Growth by Tethering the ER to LDs through SNARE and NRZ Interactions. J. Cell Biol. 2018, 217, 975–995. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Wan, Y.; Chen, D. Depletion of Rab32 Decreases Intracellular Lipid Accumulation and Induces Lipolysis through Enhancing ATGL Expression in Hepatocytes. Biochem. Biophys. Res. Commun. 2016, 471, 492–496. [Google Scholar] [CrossRef]
- Tan, R.; Wang, W.; Wang, S.; Wang, Z.; Sun, L.; He, W.; Fan, R.; Zhou, Y.; Xu, X.; Hong, W.; et al. Small GTPase Rab40c Associates with Lipid Droplets and Modulates the Biogenesis of Lipid Droplets. PLoS ONE 2013, 8, 63213. [Google Scholar] [CrossRef] [PubMed]
- Zehmer, J.K.; Huang, Y.; Peng, G.; Pu, J.; Anderson, R.G.W.; Liu, P. A Role for Lipid Droplets in Inter-Membrane Lipid Traffic. Proteomics 2009, 9, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Driessen, K.; Nixon, S.J.; Zerial, M.; Parton, R.G. Regulated Localization of Rab18 to Lipid Droplets: Effects of Lipolytic Stimulation and Inhibition of Lipid Droplet Catabolism. J. Biol. Chem. 2005, 280, 42325–42335. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, S.; Cheng, J.; Tauchi-Sato, K.; Hatano, N.; Taniguchi, H.; Fujimoto, T. Rab18 Localizes to Lipid Droplets and Induces Their Close Apposition to the Endoplasmic Reticulum-Derived Membrane. J. Cell Sci. 2005, 118, 2601–2611. [Google Scholar] [CrossRef] [PubMed]
- Pulido, M.R.; Rabanal-Ruiz, Y.; Almabouada, F.; Díaz-Ruiz, A.; Burrell, M.A.; Vázquez, M.J.; Castaño, J.P.; Kineman, R.D.; Luque, R.M.; Diéguez, C.; et al. Nutritional, Hormonal, and Depot-Dependent Regulation of the Expression of the Small GTPase Rab18 in Rodent Adipose Tissue. J. Mol. Endocrinol. 2012, 50, 19–29. [Google Scholar] [CrossRef]
- Pulido, M.R.; Diaz-Ruiz, A.; Jiménez-Gómez, Y.; Garcia-Navarro, S.; Gracia-Navarro, F.; Tinahones, F.; López-Miranda, J.; Frühbeck, G.; Vázquez-Martínez, R.; Malagón, M.M. Rab18 Dynamics in Adipocytes in Relation to Lipogenesis, Lipolysis and Obesity. PLoS ONE 2011, 6, e22931. [Google Scholar] [CrossRef] [PubMed]
- Marcelin, G.; Gautier, E.L.; Clement, K. Adipose Tissue Fibrosis in Obesity: Etiology and Challenges. Annu. Rev. Physiol. 2022, 84, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Melo, E.P.; Konno, T.; Farace, I.; Awadelkareem, M.A.; Skov, L.R.; Teodoro, F.; Sancho, T.P.; Paton, A.W.; Paton, J.C.; Fares, M.; et al. Stress-Induced Protein Disaggregation in the Endoplasmic Reticulum Catalysed by BiP. Nat. Commun. 2022, 13, 2501. [Google Scholar] [CrossRef] [PubMed]
- Olarte, M.J.; Swanson, J.M.J.; Walther, T.C.; Farese, R.V. The CYTOLD and ERTOLD Pathways for Lipid Droplet-Protein Targeting. Trends Biochem. Sci. 2022, 47, 39–51. [Google Scholar] [CrossRef]
- Ka, F.L.; Baron, R.; Ali, B.R.; Magee, A.I.; Seabra, M.C. Rab GTPases Containing a CAAX Motif Are Processed Post-Geranylgeranylation by Proteolysis and Methylation. J. Biol. Chem. 2007, 282, 1487–1497. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.G.; Li, D.; Zhao, H.; Huang, J.; Miao, G.; Feng, D.; Liu, P.; Li, D.; Zhang, H. The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation. Cell Rep. 2019, 27, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Ruiz, A.; Guzmán-Ruiz, R.; Moreno, N.R.; García-Rios, A.; Delgado-Casado, N.; Membrives, A.; Túnez, I.; El Bekay, R.; Fernández-Real, J.M.; Tovar, S.; et al. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxid. Redox Signal. 2015, 23, 597–612. [Google Scholar] [CrossRef]
- Soni, K.G.; Mardones, G.A.; Sougrat, R.; Smirnova, E.; Jackson, C.L.; Bonifacino, J.S. Coatomer-Dependent Protein Delivery to Lipid Droplets. J. Cell Sci. 2009, 122, 1834–1841. [Google Scholar] [CrossRef]
- Jayson, C.B.K.; Arlt, H.; Fischer, A.W.; Weng Lai, Z.; Farese, R.V.; Walther, T.C. Rab18 Is Not Necessary for Lipid Droplet Biogenesis or Turnover in Human Mammary Carcinoma Cells. Mol. Biol. Cell 2018, 29, 2045–2054. [Google Scholar] [CrossRef]
- Fernandes-da-Silva, A.; Miranda, C.S.; Santana-Oliveira, D.A.; Oliveira-Cordeiro, B.; Rangel-Azevedo, C.; Silva-Veiga, F.M.; Martins, F.F.; Souza-Mello, V. Endoplasmic Reticulum Stress as the Basis of Obesity and Metabolic Diseases: Focus on Adipose Tissue, Liver, and Pancreas. Eur. J. Nutr. 2021, 60, 2949–2960. [Google Scholar] [CrossRef]
- Kawasaki, N.; Asada, R.; Saito, A.; Kanemoto, S.; Imaizumi, K. Obesity-Induced Endoplasmic Reticulum Stress Causes Chronic Inflammation in Adipose Tissue. Sci. Rep. 2012, 2, 799. [Google Scholar] [CrossRef]
- Tripathi, Y.B.; Pandey, V. Obesity and Endoplasmic Reticulum (ER) Stresses. Front. Immunol. 2012, 3, 240. [Google Scholar] [CrossRef] [PubMed]
- Gerondopoulos, A.; Bastos, R.N.; Yoshimura, S.I.; Anderson, R.; Carpanini, S.; Aligianis, I.; Handley, M.T.; Barr, F.A. Rab18 and a Rab18 GEF Complex Are Required for Normal ER Structure. J. Cell Biol. 2014, 205, 707–720. [Google Scholar] [CrossRef]
- Howarth, D.L.; Vacaru, A.M.; Tsedensodnom, O.; Mormone, E.; Nieto, N.; Costantini, L.M.; Snapp, E.L.; Sadler, K.C. Alcohol Disrupts Endoplasmic Reticulum Function and Protein Secretion in Hepatocytes. Alcohol. Clin. Exp. Res. 2012, 36, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Klymenko, O.; Huehn, M.; Wilhelm, J.; Wasnick, R.; Shalashova, I.; Ruppert, C.; Henneke, I.; Hezel, S.; Guenther, K.; Mahavadi, P.; et al. Regulation and Role of the ER Stress Transcription Factor CHOP in Alveolar Epithelial Type-II Cells. J. Mol. Med. 2019, 97, 973–990. [Google Scholar] [CrossRef] [PubMed]
- Porteiro, B.; Fondevila, M.F.; Delgado, T.C.; Iglesias, C.; Imbernon, M.; Iruzubieta, P.; Crespo, J.; Zabala-Letona, A.; Fernø, J.; González-Terán, B.; et al. Hepatic P63 Regulates Steatosis via IKKβ/ER Stress. Nat. Commun. 2017, 8, 15111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, P.; Ma, X.; Qiao, F.; Ma, Y.; Qing, S.; Zhang, Y.; Wang, Y.; Cui, W. Tauroursodeoxycholic Acid (TUDCA) Alleviates Endoplasmic Reticulum Stress of Nuclear Donor Cells under Serum Starvation. PLoS ONE 2018, 13, e0196785. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ceinos, J.; Guzmán-Ruiz, R.; Rangel-Zúñiga, O.A.; López-Alcalá, J.; Moreno-Caño, E.; Del Río-Moreno, M.; Romero-Cabrera, J.L.; Pérez-Martínez, P.; Maymo-Masip, E.; Vendrell, J.; et al. Impaired MRNA Splicing and Proteostasis in Preadipocytes in Obesity-Related Metabolic Disease. Elife 2021, 10, e65996. [Google Scholar] [CrossRef] [PubMed]
- Wilfling, F.; Haas, J.T.; Walther, T.C.; Farase, R.V., Jr. Lipid Droplet Biogenesis. Curr. Opin. Cell Biol. 2014, 29, 39–45. [Google Scholar] [CrossRef]
- Heid, H.; Rickelt, S.; Zimbelmann, R.; Winter, S.; Schumacher, H.; Dörflinger, Y.; Kuhn, C.; Franke, W.W. On the Formation of Lipid Droplets in Human Adipocytes: The Organization of the Perilipin-Vimentin Cortex. PLoS ONE 2014, 9, e90386. [Google Scholar] [CrossRef]
- Dejgaard, S.Y.; Presley, J.F. Rab18: New Insights into the Function of an Essential Protein. Cell. Mol. Life Sci. 2019, 76, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Salo, V.T.; Li, S.; Vihinen, H.; Hölttä-Vuori, M.; Szkalisity, A.; Horvath, P.; Belevich, I.; Peränen, J.; Thiele, C.; Somerharju, P.; et al. Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Dev. Cell 2019, 50, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Gronemeyer, T.; Wiese, S.; Grinhagens, S.; Schollenberger, L.; Satyagraha, A.; Huber, L.A.; Meyer, H.E.; Warscheid, B.; Just, W.W. Localization of Rab Proteins to Peroxisomes: A Proteomics and Immunofluorescence Study. FEBS Lett. 2013, 587, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Just, W.W.; Peränen, J. Small GTPases in Peroxisome Dynamics. Biochim. Biophys. Acta 2016, 1863, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castellanos, N.; Rodríguez, A.; Rabanal-Ruiz, Y.; Fernández-Vega, A.; López-Miranda, J.; Vázquez-Martínez, R.; Frühbeck, G.; Malagón, M.M. The Cytoskeletal Protein Septin 11 Is Associated with Human Obesity and Is Involved in Adipocyte Lipid Storage and Metabolism. Diabetologia 2017, 60, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Ruiz, M.d.C.; López-Alcalá, J.; Díaz-Ruiz, A.; Moral, S.D.D.; Tercero-Alcázar, C.; Nieto-Calonge, A.; López-Miranda, J.; Tinahones, F.J.; Malagón, M.M.; Guzmán-Ruiz, R. Understanding the Adipose Tissue Acetylome in Obesity and Insulin Resistance. Transl. Res. 2022, 246, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, J.; Yang, X.; Liu, B.; Zhang, W.; Huang, L.; Deng, F.; Ma, J.; Bai, Y.; Lu, R.; et al. Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming. PLoS ONE 2012, 7, e28203. [Google Scholar] [CrossRef]
- Khammanit, R.; Chantakru, S.; Kitiyanant, Y.; Saikhun, J. Effect of Serum Starvation and Chemical Inhibitors on Cell Cycle Synchronization of Canine Dermal Fibroblasts. Theriogenology 2008, 70, 27–34. [Google Scholar] [CrossRef]
- Gilles, J.F.; Dos Santos, M.; Boudier, T.; Bolte, S.; Heck, N. DiAna, an ImageJ Tool for Object-Based 3D Co-Localization and Distance Analysis. Methods 2017, 115, 55–64. [Google Scholar] [CrossRef]
- Trávez, A.; Rabanal-Ruiz, Y.; López-Alcalá, J.; Molero-Murillo, L.; Díaz-Ruiz, A.; Guzmán-Ruiz, R.; Catalán, V.; Rodríguez, A.; Frühbeck, G.; Tinahones, F.J.; et al. The Caveolae-Associated Coiled-Coil Protein, NECC2, Regulates Insulin Signalling in Adipocytes. J. Cell. Mol. Med. 2018, 22, 5648–5661. [Google Scholar] [CrossRef]
- Sánchez-Ceinos, J.; Rangel-Zuñiga, O.A.; Clemente-Postigo, M.; Podadera-Herreros, A.; Camargo, A.; Alcalá-Diaz, J.F.; Guzmán-Ruiz, R.; López-Miranda, J.; Malagón, M.M. MiR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset. Mol. Ther. Nucleic Acids 2021, 23, 1035–1052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Alcalá, J.; Soler-Vázquez, M.C.; Tercero-Alcázar, C.; Sánchez-Ceinos, J.; Guzmán-Ruiz, R.; Malagón, M.M.; Gordon, A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. Int. J. Mol. Sci. 2023, 24, 17177. https://doi.org/10.3390/ijms242417177
López-Alcalá J, Soler-Vázquez MC, Tercero-Alcázar C, Sánchez-Ceinos J, Guzmán-Ruiz R, Malagón MM, Gordon A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. International Journal of Molecular Sciences. 2023; 24(24):17177. https://doi.org/10.3390/ijms242417177
Chicago/Turabian StyleLópez-Alcalá, Jaime, M. Carmen Soler-Vázquez, Carmen Tercero-Alcázar, Julia Sánchez-Ceinos, Rocío Guzmán-Ruiz, María M. Malagón, and Ana Gordon. 2023. "Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions" International Journal of Molecular Sciences 24, no. 24: 17177. https://doi.org/10.3390/ijms242417177
APA StyleLópez-Alcalá, J., Soler-Vázquez, M. C., Tercero-Alcázar, C., Sánchez-Ceinos, J., Guzmán-Ruiz, R., Malagón, M. M., & Gordon, A. (2023). Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. International Journal of Molecular Sciences, 24(24), 17177. https://doi.org/10.3390/ijms242417177