An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors
Abstract
1. Introduction
2. Results
3. Discussion
3.1. Fibroblast Growth Factor
3.2. Vascular Endothelial Growth Factor
3.3. VEGF Receptors
3.4. Side Effects in Anti-Angiogenic Therapy
3.5. Categories of Angiogenesis Inhibitors
3.5.1. Anti-VEGF Monoclonal Antibodies
3.5.2. VEGF Decoy Receptor
3.5.3. Small-Molecule Inhibitors
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tu, J.; Liang, H.; Li, C.; Huang, Y.; Wang, Z.; Chen, X.; Yuan, X. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front. Immunol. 2023, 14, 1198972. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Lattanzio, R.; La Sorda, R.; Facciolo, F.; Sioletic, S.; Lauriola, L.; Martucci, R.; Gallo, E.; Palmieri, G.; Evoli, A.; Alessandrini, G.; et al. Thymic epithelial tumors express vascular endothelial growth factors and their receptors as potential targets of antiangiogenic therapy: A tissue micro array-based multicenter study. Lung Cancer 2014, 85, 191–196. [Google Scholar] [CrossRef]
- Moshe, D.L.; Baghaie, L.; Leroy, F.; Skapinker, E.; Szewczuk, M.R. Metamorphic Effect of Angiogenic Switch in Tumor Development: Conundrum of Tumor Angiogenesis toward Progression and Metastatic Potential. Biomedicines 2023, 11, 2142. [Google Scholar] [CrossRef]
- Saaristo, A.; Karpanen, T.; Alitalo, K. Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene 2000, 19, 6122–6129. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, D.; Han, Y.-S.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 2015, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015, 20, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Fox, S.B.; Gasparini, G.; Harris, A.L. Angiogenesis: Pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol. 2001, 2, 278–289. [Google Scholar] [CrossRef]
- Hanahan, D.; Christofori, G.; Naik, P.; Arbeit, J. Transgenic mouse models of tumour angiogenesis: The angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 1996, 32, 2386–2393. [Google Scholar] [CrossRef] [PubMed]
- Skobe, M.; Rockwell, P.; Goldstein, N.; Vosseler, S.; Fusenig, N.E. Halting angiogenesis suppresses carcinoma cell invasion. Nat. Med. 1997, 3, 1222–1227. [Google Scholar] [CrossRef]
- Brem, S.S.; Jensen, H.M.; Gullino, P.M. Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer 1978, 41, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Okada, F.; Rak, J.W.; Croix, B.S.; Lieubeau, B.; Kaya, M.; Roncari, L.; Shirasawa, S.; Sasazuki, T.; Kerbel, R.S. Impact of oncogenes in tumor angiogenesis: Mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA 1998, 95, 3609–3614. [Google Scholar] [CrossRef] [PubMed]
- Mazure, N.M.; Chen, E.Y.; Yeh, P.; Laderoute, K.R.; Giaccia, A.J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 1996, 56, 3436–3440. [Google Scholar]
- Van Meir, E.G.; Polverini, P.J.; Chazin, V.R.; Huang, H.-J.S.; de Tribolet, N.; Cavenee, W.K. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat. Genet. 1994, 8, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.D. Management of thymomas. Crit. Rev. Oncol. Hematol. 2008, 65, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Bedano, P.M.; Perkins, S.; Burns, M.; Kessler, K.; Nelson, R.; Schneider, B.P.; Risley, L.; Dropcho, S.; Loehrer, P.J. A phase II trial of erlotinib plus bevacizumab in patients with recurrent thymoma or thymic carcinoma. J. Clin. Oncol. 2008, 26, 19087. [Google Scholar] [CrossRef]
- Bisagni, G.; Rossi, G.; Cavazza, A.; Sartori, G.; Gardini, G.; Boni, C. Long lasting response to the multikinase inhibitor Bay 43-9006 (sorafenib) in a heavily pretreated metastatic thymic carcinoma. J. Thorac. Oncol. 2009, 4, 773–775. [Google Scholar] [CrossRef]
- Ströbel, P.; Bargou, R.; Wolff, A.; Spitzer, D.; Manegold, C.; Dimitrakopoulou-Strauss, A.; Strauss, L.; Sauer, C.; Mayer, F.; Hohenberger, P.; et al. Sunitinib in metastatic thymic carcinomas: Laboratory findings and initial clinical experience. Br. J. Cancer 2010, 103, 196–200. [Google Scholar] [CrossRef]
- Perrino, M.; De Pas, T.; Bozzarelli, S.; Giordano, L.; De Vincenzo, F.; Conforti, F.; Digiacomo, N.; Cordua, N.; D’Antonio, F.; Borea, F.; et al. Resound Trial: A phase 2 study of regorafenib in patients with thymoma (type B2–B3) and thymic carcinoma previously treated with chemotherapy. Cancer 2022, 128, 719–726. [Google Scholar] [CrossRef]
- Remon, J.; Girard, N.; Mazieres, J.; Dansin, E.; Pichon, E.; Greillier, L.; Dubos, C.; Lindsay, C.R.; Besse, B. Sunitinib in patients with advanced thymic malignancies: Cohort from the French RYTHMIC network. Lung Cancer 2016, 97, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Rajan, A.; Berman, A.; Tomita, Y.; Brzezniak, C.; Lee, M.-J.; Lee, S.; Ling, A.; Spittler, A.J.; Carter, C.A.; et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: An open-label phase 2 trial. Lancet Oncol. 2015, 16, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Sunitinib for Advanced Thymus Cancer Following Earlier Treatment. Results Posted. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT01621568?cond=Sunitinib+for+Advanced+Thymus+Cancer+Following+Earlier+Treatment&draw=2&rank=1 (accessed on 1 October 2023).
- Rajan, A.; Kim, C.; Guha, U.; Szabo, E.; Berman, A.; Sciuto, L.; Spittler, A.J.; Trepel, J.; Steinberg, S.; Harris, P.; et al. Evaluation of a modified dosing regimen (2 weeks on/1 week off) of sunitinib as part of a phase II trial in thymic carcinoma. J. Thorac. Oncol. 2017, 12, S313–S314. [Google Scholar] [CrossRef][Green Version]
- Kim, S.H.; Kim, Y.J.; Ock, C.; Kim, M.; Keam, B.; Kim, T.M.; Kim, D.; Heo, D.S.; Lee, J.S. Phase II study of sunitinib in patients with thymic carcinoma previously treated with platinum based chemotherapy (KOSMIC trial). J. Thorac. Oncol. 2018, 13, S346–S347. [Google Scholar] [CrossRef]
- Proto, C.; Manglaviti, S.; Russo, G.L.; Musca, M.; Galli, G.; Imbimbo, M.; Perrino, M.; Cordua, N.; Rulli, E.; Ballatore, Z.; et al. STYLE (NCT03449173): A Phase 2 Trial of Sunitinib in Patients with Type B3 Thymoma or Thymic Carcinoma in Second and Further Lines. J. Thorac. Oncol. 2023, 18, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Antonarelli, G.; Corti, C.; Zucali, P.A.; Perrino, M.; Manglaviti, S.; Russo, G.L.; Varano, G.M.; Salvini, P.; Curigliano, G.; Catania, C.; et al. Continuous sunitinib schedule in advanced platinum refractory thymic epithelial neoplasms: A retrospective analysis from the ThYmic MalignanciEs (TYME) Italian collaborative group. Eur. J. Cancer 2022, 174, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Satouchi, M.; Itoh, S.; Okuma, Y.; Niho, S.; Mizugaki, H.; Murakami, H.; Fujisaka, Y.; Kozuki, T.; Nakamura, K.; et al. Lenvatinib in patients with advanced or metastatic thymic carcinoma (REMORA): A multicentre, phase 2 trial. Lancet Oncol. 2020, 21, 843–850. [Google Scholar] [CrossRef]
- Zuo, R.; Zhang, C.; Lin, L.; Meng, Z.; Wang, Y.; Su, Y.; Abudurazik, M.; Du, Y.; Chen, P. Durable efficacy of anlotinib in a patient with advanced thymic squamous cell carcinoma after multiline chemotherapy and apatinib: A case report and literature review. Thorac. Cancer 2020, 11, 3383–3387. [Google Scholar] [CrossRef]
- Song, Z.; Lou, G.; Wang, Y.; Yang, Z.; Wang, W.; Ji, Y.; Chen, S.; Xu, C.; Hu, X.; Zhang, Y. Apatinib in patients with recurrent or metastatic thymic epithelial tumor: A single-arm, multicenter, open-label, phase II trial. BMC Med. 2022, 20, 15. [Google Scholar] [CrossRef]
- Guan, Y.; Gu, X.; Si, J.; Xiang, J.; Wei, J.; Hao, Y.; Wang, W.; Sun, Y. The efficacy of small molecule anti-angiogenic drugs in previously treated Thymic carcinoma. BMC Cancer 2023, 23, 16. [Google Scholar] [CrossRef]
- Li, S.; Zhou, H.; Zhang, X.; Bu, B.; Tao, R.; Zhang, H.; Yu, J. The Efficacy and Safety Of Anlotinib Alone and in Combination with Other Drugs in Previously Treated Advanced Thymic Epithelia Tumors: A Retrospective Analysis. Recent Pat. Anti-Cancer Drug Discov. 2023, 18, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Yudong, S.; Zhaoting, M.; Xinyue, W.; Li, L.; Xiaoyan, X.; Ran, Z.; Jinliang, C.; Peng, C. EGFR exon 20 insertion mutation in advanced thymic squamous cell carcinoma: Response to apatinib and clinical outcomes. Thorac. Cancer 2018, 9, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Besse, B.; Girard, N.; Gazzah, A.; Hierro, C.; Tabernero, J.; Debraud, F.; Camboni, G.; Dubois, F.; Leger, C.; Legrand, F.; et al. Clinical activity of lucitanib in advanced thymic epithelial tumours. J. Thorac. Oncol. 2015, 10, S353. [Google Scholar]
- Janik, S.; Bekos, C.; Hacker, P.; Raunegger, T.; Schiefer, A.I.; Müllauer, L.; Veraar, C.; Dome, B.; Klepetko, W.; Ankersmit, H.J.; et al. Follistatin impacts tumor angiogenesis and outcome in thymic epithelial tumors. Sci. Rep. 2019, 9, 17359. [Google Scholar] [CrossRef]
- Tomita, M.; Matsuzaki, Y.; Edagawa, M.; Maeda, M.; Shimizu, T.; Hara, M.; Onitsuka, T. Correlation between tumor angiogenesis and invasiveness in thymic epithelial tumors. J. Thorac. Cardiovasc. Surg. 2002, 124, 493–498. [Google Scholar] [CrossRef]
- Pinedo, H.M.; Verheul, H.M.; D’Amato, R.J.; Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 1998, 352, 1775–1777. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 1971, 133, 275–278. [Google Scholar] [CrossRef]
- Nicosia, R.F. What is the role of vascular endothelial growth factor related molecules in tumor angiogenesis? Am. J. Pathol. 1998, 153, 11–16. [Google Scholar] [CrossRef]
- Felmeden, D.C.; Blann, A.D.; Lip, G.Y.H. Angiogenesis: Basic pathophysiology and implications for disease. Eur. Heart J. 2003, 24, 586–603. [Google Scholar] [CrossRef]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef]
- Ferrara, N. VEGF as a Therapeutic Target in Cancer. Oncology 2005, 69 (Suppl. S3), 11–16. [Google Scholar] [CrossRef]
- Kerbel, R.; Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2002, 2, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer 2008, 8, 579–591. [Google Scholar] [CrossRef]
- Ciardiello, F.; Caputo, R.; Bianco, R.; Damiano, V.; Fontanini, G.; Cuccato, S.; De Placido, S.; Bianco, A.R.; Tortora, G. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer Res. 2001, 7, 1459–1465. [Google Scholar] [PubMed]
- Al-Husein, B.; Abdalla, M.; Trepte, M.; DeRemer, D.L.; Somanath, P.R. Antiangiogenic therapy for cancer: An update. Pharmacotherapy 2012, 32, 1095–1111. [Google Scholar] [CrossRef]
- Hsu, J.Y.; Wakelee, H.A. Monoclonal antibodies targeting vascular endothelial growth factor: Current status and future challenges in cancer therapy. BioDrugs 2009, 23, 289–304. [Google Scholar] [CrossRef]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for nonsmall-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef]
- Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non–small-cell lung cancer: AVAiL. J. Clin. Oncol. 2009, 27, 1227–1234. [Google Scholar] [CrossRef]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.A.; Camphausen, K.; et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomised, double-blind phase III trial. Lancet 2007, 370, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Halabi, S.; Rosenberg, J.E.; Stadler, W.M.; Vaena, D.A.; Archer, L.; Atkins, J.N.; Picus, J.; Czaykowski, P.; Dutcher, J.; et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206. J. Clin. Oncol. 2010, 28, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef]
- Minhajat, R.; Harjianti, T.; Islam, I.C.M.; Winarta, S.B.; Liyadi, Y.N.B.; Bamatraf, N.P.B.; Amanuddin, R.B. Bevacizumab side effects and adverse clinical complications in colorectal cancer patients: Review article. Ann. Med. Surg. 2023, 85, 3931–3937. [Google Scholar] [CrossRef]
- Ciombor, K.K.; Berlin, J.; Chan, E. Aflibercept. Clin. Cancer Res. 2013, 19, 1920–1925. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, L.; Huang, Z.; Bai, Z.; Xie, R.; Sun, L.; Lin, K. Development and strategies of VEGFR-2/KDR inhibitors. Future Med. Chem. 2012, 4, 1839–1852. [Google Scholar] [CrossRef]
- Knights, V.; Cook, S.J. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol. Ther. 2010, 125, 105–117. [Google Scholar] [CrossRef]
- Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer 2010, 10, 116–129. [Google Scholar] [CrossRef]
- Wesche, J.; Haglund, K.; Haugsten, E.M. Fibroblast growth factors and their receptors in cancer. Biochem. J. 2011, 437, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Vafopoulou, P.; Kourti, M. Anti-angiogenic drugs in cancer therapeutics: A review of the latest preclinical and clinical studies of anti-angiogenic agents with anticancer potential. J. Cancer Metastasis Treat. 2022, 8, 18. [Google Scholar] [CrossRef]
- Cimpean, A.M.; Raica, M.; Encica, S.; Cornea, R.; Bocan, V. Immunohistochemical expression of vascular endothelial growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and pathologic conditions of the human thymus. Ann. Anat.-Anat. Anz. 2008, 190, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Yukiue, H.; Kobayashi, Y.; Nakashima, Y.; Moriyama, S.; Kaji, M.; Kiriyama, M.; Fukai, I.; Yamakawa, Y.; Fujii, Y. Elevated serum vascular endothelial growth factor and basic fıbroblast growth factor levels in patients with thymic epithelial neoplasms. Surg. Today 2001, 31, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Cimpean, A.M.; Ceauşu, R.; Encică, S.; Gaje, P.N.; Ribatti, D.; Raica, M. Platelet-derived growth factor and platelet-derived growth factor receptor-alpha expression in the normal human thymus and thymoma. Int. J. Exp. Pathol. 2011, 92, 340–344. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet 2006, 368, 1329–1338. [Google Scholar] [CrossRef]
- Kulke, M.H.; Lenz, H.J.; Meropol, N.J.; Posey, J.; Ryan, D.P.; Picus, J.; Bergsland, E.; Stuart, K.; Tye, L.; Huang, X.; et al. Activity of Sunitinib in Patients with Advanced Neuroendocrine Tumors. J. Clin. Oncol. 2008, 26, 3403–3410. [Google Scholar] [CrossRef]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S. ESMO Guidelines Committee. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v40–v55. [Google Scholar] [CrossRef]
- Xie, C.; Wan, X.; Quan, H.; Zheng, M.; Fu, L.; Li, Y.; Lou, L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor 2 inhibitor. Cancer Sci. 2018, 109, 1207–1219. [Google Scholar] [CrossRef]
- Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene 2018, 654, 77–86. [Google Scholar] [CrossRef]
- Ramucirumab and Carbo-Paclitaxel for Untreated Thymic Carcinoma/B3 Thymoma with Carcinoma (RELEVENT). Table View. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03921671?cond=Ramucirumab%20and%20Carbo-Paclitaxel%20for%20Untreated%20Thymic%20Carcinoma&rank=1&tab=table (accessed on 1 October 2023).
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/search?term=NCT03463460 (accessed on 1 October 2023).
- Available online: https://clinicaltrials.gov/search?term=NCT04710628 (accessed on 1 October 2023).
- Available online: https://clinicaltrials.gov/search?term=NCT03583086 (accessed on 1 October 2023).
- Gao, G.; Zhao, J.; Ren, S.; Wang, Y.; Chen, G.; Chen, J.; Gu, K.; Guo, R.; Pan, Y.; Wang, Q.; et al. Efficacy and safety of camrelizumab plus apatinib as second-line treatment for advanced squamous non-small cell lung cancer. Ann. Transl. Med. 2022, 10, 441. [Google Scholar] [CrossRef] [PubMed]
- Kawazoe, A.; Fukuoka, S.; Nakamura, Y.; Kuboki, Y.; Wakabayashi, M.; Nomura, S.; Mikamoto, Y.; Shima, H.; Fujishiro, N.; Higuchi, T.; et al. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 26, 5. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Type of Study | Molecule | Patients Enrolled | Histology | mPFS (Months) | mOS (Months) | ORR | DCR | Grade 3–4 AE |
---|---|---|---|---|---|---|---|---|---|
Perrino 2022 [20] (Resound trial) | Phase II | Regorafenib | 19 | 11 thymomas/8 TC | 9.6 (95% CI, 3.6–12.8%) | 33.8 (95% CI, 10.2% not reached) | NR | 78.9% (95% CI, 54.4–94.0%; N = 15) | 52.6% |
Remon 2016 [21] | Prospective cohort | Sunitinib | 28 | 8 thymomas/20 TC | Overall population 3.7 (5.4 thymomas, 3.3 TC) | Overall population 15.4 (not reached thymomas, 12.3 TC) | Overall 22.2%, thymomas 28.6%, TC 20% | 63% (86% for thymomas, and 55% for TC) | 28.6% |
Thomas 2015 [22] | Phase II | Sunitinib | 41 | 16 thymomas/25 TC | TC: 7.2 (3.4–15.2), thymoma: 8.5 (2.8–11.3) | TC: not reached, thymoma: 15.5 (12.6 undefined) | NR | TC: 91% (95% CI 72.0–98.9), thymomas: 81%, 54·4–96·0 | 70% |
Rajan 2023 [24] | Phase II | Sunitinib | 56 | Group 1 (Thymoma and TC): 41 Group 2 (TC only): 15 | Group 1: 8.5 (2.8–11.3) and for TC 7.2 (3.4–15.2). Group 2: 5.0 (2.7–5.5) | NR | NR | NR | Group 1: 95 grade 3 AE and 6 grade 4 AE Group 2: 40 grade 3 and 3 grade 4 AE |
Proto 2023 (STYLE trial) [26] | Phase II | Sunitinib | 44 | 12 B3 Thymomas/32 TC | Thymomas: 7.7 months (95% CI: 2.4–45.5), TC: 8.8 months (95% CI: 5.3–11.1) | Thymomas: 47.9 months (95% CI: 4.5 not reached), TC: 27.8 months (95% CI: 13.2–53.2) | Thymomas: 0% (90% CI: 0.0–22.1%), TC: 21.4% (95% CI: 8.3–41.0%) | Thymomas: 91.7% (95% CI: 61.5–99.8%), TC: 89.3% (95% CI: 71.8–97.7%) | Thymoma group: 25% TC group: 51.6% |
Song 2022 [30] | Phase II | Apatinib | 25 | 10 Thymomas/15 TC | Overall population: 9.0 (95% CI 5.4–12.6), Thymomas: 9.5 (95% CI 8.6–10.4), TC: 6.1 (95% CI 2.6–9.6) | Overall population: 24.0 (95% CI 8.2–39.8), Thymomas: 22.4 (95% CI 6.4–38.4), TC: 24.0 (95% CI 16.1–∞) | Thymomas: 70% (95% CI 35–93%), TC: 20% (95% CI 4–48%) | Thymomas: 100% (95% CI 69–100%), TC: 73% (95% CI 45–92%) | Grade 3 60%. No grade 4 AE |
Sato 2020 (REMORA trial) [28] | Phase II | Lenvatinib | 42 | TC | 9.3 (7.7–13.9) | Not reached (16.1 not reached) | 38% (25.6–52%) | 95% (83.8–99.4) | Hypertension 64%, palmar–plantar erythrodysaesthesia syndrome (7%) |
Bedano 2008 [17] | Phase II | Erlotinib/bevacizumab | 18 | 11 Thymoma, 7 TC | NR | Not reached | 0% | 61% | 38.8% |
NCT Number | Status | Histology | Drugs Assessed | Study Type | Number of Patients Enrolled (or Estimated) |
---|---|---|---|---|---|
NCT03921671 (RELEVENT trial) | Unknown | B3 Thymomas/TC | ramucirumab + carboplatin and paclitaxel | Phase 2 | 60 |
NCT03463460 | Recruiting | TC | pembrolizumab and sunitinib | Phase 2 | 40 |
NCT04710628 | Recruiting | B3 Thymomas/TC | pembrolizumab and lenvatinib | Phase 2 | 43 |
NCT03583086 | Active not recruiting | TC | vorolanib plus nivolumab | Phase 1/2 | 88 (overall population of different thoracic tumors) |
NCT01306045 | Active not recruiting | TC | AZD6244, MK-2206, erlotinib, sunitinib, lapatinib (according to molecular profiling) | Phase 2 | 647 (overall population of different thoracic tumors) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agrafiotis, A.C.; Berzenji, L.; Koyen, S.; Vermeulen, D.; Winthagen, R.; Hendriks, J.M.H.; Van Schil, P.E. An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors. Int. J. Mol. Sci. 2023, 24, 17065. https://doi.org/10.3390/ijms242317065
Agrafiotis AC, Berzenji L, Koyen S, Vermeulen D, Winthagen R, Hendriks JMH, Van Schil PE. An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors. International Journal of Molecular Sciences. 2023; 24(23):17065. https://doi.org/10.3390/ijms242317065
Chicago/Turabian StyleAgrafiotis, Apostolos C., Lawek Berzenji, Stien Koyen, Dries Vermeulen, Rachel Winthagen, Jeroen M. H. Hendriks, and Paul E. Van Schil. 2023. "An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors" International Journal of Molecular Sciences 24, no. 23: 17065. https://doi.org/10.3390/ijms242317065
APA StyleAgrafiotis, A. C., Berzenji, L., Koyen, S., Vermeulen, D., Winthagen, R., Hendriks, J. M. H., & Van Schil, P. E. (2023). An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors. International Journal of Molecular Sciences, 24(23), 17065. https://doi.org/10.3390/ijms242317065