A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis
Abstract
:1. Risk Factors and Complications of COVID-19
2. COVID-19-Induced Sepsis, Immunotherapies, and Antiviral Treatments
3. Bacterial Coinfections and the Relationship between LPS and SARS-CoV-2
4. Influence of SARS-CoV-2 on the Coagulation System
5. Long COVID-19 Syndrome
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting enzyme 2 |
ARDS | Acute Respiratory Distress Syndrome |
AT | Antithrombin |
C-C Chemokine Receptor 2 | CCR2 |
C-C Chemokine Receptor 5 | CCR5 |
C-C Chemokine Receptor 7 | CCR7 |
C-C Chemokine Ligand 2 | CCL2/MCP-1 |
C-C Chemokine Ligand 4 | CCL4/MIP-1β |
C-C Chemokine Ligand 5 | CCL5/RANTES |
CD69 | Cluster of Differentiation 69 |
COVID-19 | Coronavirus Disease of 2019 |
DIC | Disseminated Intravascular Coagulation |
E | Envelope protein |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
FDA EUA | FDA Emergency Use Authorization |
FITC | Fluorescein Isothiocyanate |
HE | Hemagglutinin-esterase protein |
IL-1 | Interleukin-1 |
IL-10 | Interleukin-10 |
IL-6 | Interleukin-6 |
IRF | Interferon Regulatory Factor |
KD | Dissociation constant |
LBP | LPS-binding protein |
LPS | Lipopolysaccharide |
M | Membrane protein |
MD-2 | Myeloid differentiation factor 2 |
MODS | Multiple Organ Dysfunction Syndrome |
N | Nucleocapsid protein |
NIH | US National Institutes of Health |
NF-κB | Nuclear Factor Kappa-B |
PD-1 | Programmed Death-1 |
S | Spike protein |
SARS | Severe Acute Respiratory Syndrome |
SARS-CoV-2 | Coronavirus 2 cause of SARS |
TGF-β1 | Transforming Growth Factor Beta 1 |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumor Necrosis Factor Alpha |
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Ochani, R.K.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Ochani, R.; Arshad, M.H.; et al. COVID-19 Pandemic: From Origins to Outcomes. A Comprehensive Review of Viral Pathogenesis, Clinical Manifestations, Diagnostic Evaluation, and Management. Infez. Med. 2021, 29, 20–36. [Google Scholar]
- Gallo, C.G.; Fiorino, S.; Posabella, G.; Antonacci, D.; Tropeano, A.; Pausini, E.; Pausini, C.; Guarniero, T.; Hong, W.; Giampieri, E.; et al. COVID-19, What Could Sepsis, Severe Acute Pancreatitis, Gender Differences, and Aging Teach Us? Cytokine 2021, 148, 155628. [Google Scholar] [CrossRef]
- Torge, D.; Bernardi, S.; Arcangeli, M.; Bianchi, S. Histopathological Features of SARS-CoV-2 in Extrapulmonary Organ Infection: A Systematic Review of Literature. Pathogens 2022, 11, 867. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Peng, Y.; Wu, X.; Pang, B.; Yang, F.; Zheng, W.; Liu, C.; Zhang, J. Comorbidities and Complications of COVID-19 Associated with Disease Severity, Progression, and Mortality in China with Centralized Isolation and Hospitalization: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 923485. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Rai, A.K.; Phukan, M.M.; Hussain, A.; Borah, D.; Gogoi, B.; Chakraborty, P.; Buragohain, A.K. Accumulating Impact of Smoking and Co-Morbidities on Severity and Mortality of COVID-19 Infection: A Systematic Review and Meta-Analysis. Curr. Genom. 2021, 22, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Honardoost, M.; Janani, L.; Aghili, R.; Emami, Z.; Khamseh, M.E. The Association between Presence of Comorbidities and COVID-19 Severity: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2021, 50, 132–140. [Google Scholar] [CrossRef]
- Ahlström, B.; Frithiof, R.; Larsson, I.-M.; Strandberg, G.; Lipcsey, M.; Hultström, M. A Comparison of Impact of Comorbidities and Demographics on 60-Day Mortality in ICU Patients with COVID-19, Sepsis and Acute Respiratory Distress Syndrome. Sci. Rep. 2022, 12, 15703. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.; Wang, F.; Chen, Y.; Kaminga, A.C.; Xu, H. Comorbidities’ Potential Impacts on Severe and Non-Severe Patients with COVID-19. Medicine 2021, 100, e24971. [Google Scholar] [CrossRef]
- Drake, T.M.; Riad, A.M.; Fairfield, C.J.; Egan, C.; Knight, S.R.; Pius, R.; Hardwick, H.E.; Norman, L.; Shaw, C.A.; McLean, K.A.; et al. Characterisation of In-Hospital Complications Associated with COVID-19 Using the ISARIC WHO Clinical Characterisation Protocol UK: A Prospective, Multicentre Cohort Study. Lancet 2021, 398, 223–237. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological Findings and Complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef]
- Kostakis, I.; Smith, G.B.; Prytherch, D.; Meredith, P.; Price, C.; Chauhan, A. The Performance of the National Early Warning Score and National Early Warning Score 2 in Hospitalised Patients Infected by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Resuscitation 2021, 159, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Lalueza, A.; Lora-Tamayo, J.; Maestro-de la Calle, G.; Folgueira, D.; Arrieta, E.; de Miguel-Campo, B.; Díaz-Simón, R.; Lora, D.; de la Calle, C.; Mancheño-Losa, M.; et al. A Predictive Score at Admission for Respiratory Failure among Hospitalized Patients with Confirmed 2019 Coronavirus Disease: A Simple Tool for a Complex Problem. Intern. Emerg. Med. 2022, 17, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Herminghaus, A.; Osuchowski, M.F. How Sepsis Parallels and Differs from COVID-19. eBioMedicine 2022, 86, 104355. [Google Scholar] [CrossRef]
- Stasi, A.; Franzin, R.; Fiorentino, M.; Squiccimarro, E.; Castellano, G.; Gesualdo, L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int. J. Mol. Sci. 2021, 22, 5980. [Google Scholar] [CrossRef]
- Coudereau, R.; Waeckel, L.; Cour, M.; Rimmele, T.; Pescarmona, R.; Fabri, A.; Jallades, L.; Yonis, H.; Gossez, M.; Lukaszewicz, A.; et al. Emergence of Immunosuppressive LOX-1+ PMN-MDSC in Septic Shock and Severe COVID-19 Patients with Acute Respiratory Distress Syndrome. J. Leukoc. Biol. 2022, 111, 489–496. [Google Scholar] [CrossRef]
- Stasi, A.; Castellano, G.; Ranieri, E.; Infante, B.; Stallone, G.; Gesualdo, L.; Netti, G.S. SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. J. Clin. Med. 2020, 9, 4057. [Google Scholar] [CrossRef]
- Dong, X.; Wang, C.; Liu, X.; Gao, W.; Bai, X.; Li, Z. Lessons Learned Comparing Immune System Alterations of Bacterial Sepsis and SARS-CoV-2 Sepsis. Front. Immunol. 2020, 11, 598404. [Google Scholar] [CrossRef]
- Górski, A.; Borysowski, J.; Międzybrodzki, R. Sepsis, Phages, and COVID-19. Pathogens 2020, 9, 844. [Google Scholar] [CrossRef]
- Limmer, A.; Engler, A.; Kattner, S.; Gregorius, J.; Pattberg, K.T.; Schulz, R.; Schwab, J.; Roth, J.; Vogl, T.; Krawczyk, A.; et al. Patients with SARS-CoV-2-Induced Viral Sepsis Simultaneously Show Immune Activation, Impaired Immune Function and a Procoagulatory Disease State. Vaccines 2023, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Remy, K.E.; Mazer, M.; Striker, D.A.; Ellebedy, A.H.; Walton, A.H.; Unsinger, J.; Blood, T.M.; Mudd, P.A.; Yi, D.J.; Mannion, D.A.; et al. Severe Immunosuppression and Not a Cytokine Storm Characterizes COVID-19 Infections. JCI Insight 2020, 5, e140329. [Google Scholar] [CrossRef] [PubMed]
- Plocque, A.; Mitri, C.; Lefèvre, C.; Tabary, O.; Touqui, L.; Philippart, F. Should We Interfere with the Interleukin-6 Receptor During COVID-19: What Do We Know So Far? Drugs 2023, 83, 1–36. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine Storm and Sepsis Disease Pathogenesis. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Tang, H.; Qin, S.; Li, Z.; Gao, W.; Tang, M.; Dong, X. Early Immune System Alterations in Patients with Septic Shock. Front. Immunol. 2023, 14, 1126874. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J. Failure of Treatments Based on the Cytokine Storm Theory of Sepsis: Time for a Novel Approach. Immunotherapy 2013, 5, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Fortier, M.-E.; Kent, S.; Ashdown, H.; Poole, S.; Boksa, P.; Luheshi, G.N. The Viral Mimic, Polyinosinic:Polycytidylic Acid, Induces Fever in Rats via an Interleukin-1-Dependent Mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R759–R766. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Zhao, S.; Jin, G.; Song, M.; Zhi, Y.; Zhao, R.; Ma, F.; Zheng, Y.; Wang, K.; Liu, H.; et al. Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model. Front. Immunol. 2021, 11, 621441. [Google Scholar] [CrossRef]
- Allaouchiche, B. Immunotherapies for COVID-19: Restoring the Immunity Could Be the Priority. Anaesth. Crit. Care Pain. Med. 2020, 39, 385. [Google Scholar] [CrossRef]
- Perlin, D.S.; Neil, G.A.; Anderson, C.; Zafir-Lavie, I.; Raines, S.; Ware, C.F.; Wilkins, H.J. Randomized, Double-Blind, Controlled Trial of Human Anti-LIGHT Monoclonal Antibody in COVID-19 Acute Respiratory Distress Syndrome. J. Clin. Investig. 2022, 132, e153173. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, K.; Li, Y.; Lu, C.; Ling, K.; Cai, C.; Wang, W.; Ye, D. Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Front. Public. Health 2022, 10, 833967. [Google Scholar] [CrossRef]
- National Institutes of Health COVID-19 Treatment Guidelines Panel. In Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Stapleton, NY, USA, 2019.
- Remy, K.E.; Brakenridge, S.C.; Francois, B.; Daix, T.; Deutschman, C.S.; Monneret, G.; Jeannet, R.; Laterre, P.-F.; Hotchkiss, R.S.; Moldawer, L.L. Immunotherapies for COVID-19: Lessons Learned from Sepsis. Lancet Respir. Med. 2020, 8, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Chamberlain, T.C.; Mui, A.L.; Little, J.P. Elevated Interleukin-10 Levels in COVID-19: Potentiation of Pro-Inflammatory Responses or Impaired Anti-Inflammatory Action? Front. Immunol. 2021, 12, 677008. [Google Scholar] [CrossRef] [PubMed]
- Dalinghaus, M.; Gratama, J.W.C.; Koers, J.H.; Gerding, A.M.; Zijlstra, W.G.; Kuipers, J.R.G. Left Ventricular Oxygen and Substrate Uptake in Chronically Hypoxemic Lambs. Pediatr. Res. 1993, 34, 471–477. [Google Scholar] [CrossRef]
- Davitt, E.; Davitt, C.; Mazer, M.B.; Areti, S.S.; Hotchkiss, R.S.; Remy, K.E. COVID-19 Disease and Immune Dysregulation. Best. Pract. Res. Clin. Haematol. 2022, 35, 101401. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Nasillo, V.; Tagliafico, E.; Trenti, T.; Comoli, P.; Luppi, M. COVID-19: More than a Cytokine Storm. Crit. Care 2020, 24, 549. [Google Scholar] [CrossRef]
- Mayor, S. Intensive Immunosuppression Reduces Deaths in Covid-19-Associated Cytokine Storm Syndrome, Study Finds. BMJ 2020, 370, m2935. [Google Scholar] [CrossRef]
- Zheng, H.-Y.; Zhang, M.; Yang, C.-X.; Zhang, N.; Wang, X.-C.; Yang, X.-P.; Dong, X.-Q.; Zheng, Y.-T. Elevated Exhaustion Levels and Reduced Functional Diversity of T Cells in Peripheral Blood May Predict Severe Progression in COVID-19 Patients. Cell Mol. Immunol. 2020, 17, 541–543. [Google Scholar] [CrossRef]
- Daix, T.; Mathonnet, A.; Brakenridge, S.; Dequin, P.-F.; Mira, J.-P.; Berbille, F.; Morre, M.; Jeannet, R.; Blood, T.; Unsinger, J.; et al. Intravenously Administered Interleukin-7 to Reverse Lymphopenia in Patients with Septic Shock: A Double-Blind, Randomized, Placebo-Controlled Trial. Ann. Intensive Care 2023, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight 2018, 3, e98960. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Lai, C.-C.; Wang, C.-Y.; Hsueh, P.-R. Co-Infections among Patients with COVID-19: The Need for Combination Therapy with Non-Anti-SARS-CoV-2 Agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Elnagdy, S.; AlKhazindar, M. The Potential of Antimicrobial Peptides as an Antiviral Therapy against COVID-19. ACS Pharmacol. Transl. Sci. 2020, 3, 780–782. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, X.; Zhang, F.; Xiang, Y.; Wang, J. The in Vitro Antiviral Activity of Lactoferrin against Common Human Coronaviruses and SARS-CoV-2 Is Mediated by Targeting the Heparan Sulfate Co-Receptor. Emerg. Microbes Infect. 2021, 10, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.; Jürgens, G.; Müller, M.; Fukuoka, S.; Koch, M.H.J. Biophysical Characterization of Lipopolysaccharide and Lipid A Inactivation by Lactoferrin. Biol. Chem. 2001, 382, 1215–1225. [Google Scholar] [CrossRef]
- Sohn, K.M.; Lee, S.-G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; et al. COVID-19 Patients Upregulate Toll-like Receptor 4-Mediated Inflammatory Signaling That Mimics Bacterial Sepsis. J. Korean Med. Sci. 2020, 35, e343. [Google Scholar] [CrossRef]
- Bárcena-Varela, S.; Martínez-de-Tejada, G.; Martin, L.; Schuerholz, T.; Gil-Royo, A.G.; Fukuoka, S.; Goldmann, T.; Droemann, D.; Correa, W.; Gutsmann, T.; et al. Coupling Killing to Neutralization: Combined Therapy with Ceftriaxone/Pep19-2.5 Counteracts Sepsis in Rabbits. Exp. Mol. Med. 2017, 49, e345. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.; Andrä, J.; Garidel, P.; Gutsmann, T. Peptide-Based Treatment of Sepsis. Appl. Microbiol. Biotechnol. 2011, 90, 799–808. [Google Scholar] [CrossRef]
- Brandenburg, K.; Schromm, A.B.; Weindl, G.; Heinbockel, L.; Correa, W.; Mauss, K.; Martinez De Tejada, G.; Garidel, P. An Update on Endotoxin Neutralization Strategies in Gram-Negative Bacterial Infections. Expert. Rev. Anti-Infect. Ther. 2021, 19, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Gutsmann, T.; Razquin-Olazarán, I.; Kowalski, I.; Kaconis, Y.; Howe, J.; Bartels, R.; Hornef, M.; Schürholz, T.; Rössle, M.; Sanchez-Gómez, S.; et al. New Antiseptic Peptides to Protect against Endotoxin-Mediated Shock. Antimicrob. Agents Chemother. 2010, 54, 3817–3824. [Google Scholar] [CrossRef]
- Kaconis, Y.; Kowalski, I.; Howe, J.; Brauser, A.; Richter, W.; Razquin-Olazarán, I.; Iñigo-Pestaña, M.; Garidel, P.; Rössle, M.; Martinez de Tejada, G.; et al. Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides. Biophys. J. 2011, 100, 2652–2661. [Google Scholar] [CrossRef]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial Coinfections in Coronavirus Disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef]
- Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.; Abraham, A.; Jeda, A.S.; Dashtbin, S.; Jalalifar, S.; Mohammadzadeh, R.; et al. Bacterial Co-infections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [Google Scholar] [CrossRef] [PubMed]
- Conti, G.; Amadori, F.; Bordanzi, A.; Majorana, A.; Bardellini, E. The Impact of the COVID-19 Pandemic on Pediatric Dentistry: Insights from an Italian Cross-Sectional Survey. Dent. J. 2023, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Rietschel, E.T.; Brade, H.; Holst, O.; Brade, L.; Müller-Loennies, S.; Mamat, U.; Zähringer, U.; Beckmann, F.; Seydel, U.; Brandenburg, K.; et al. Bacterial Endotoxin: Chemical Constitution, Biological Recognition, Host Response, and Immunological Detoxification. Pathol. Septic Shock. 1996, 216, 39–81. [Google Scholar] [CrossRef]
- De Tejada, G.M.; Heinbockel, L.; Ferrer-Espada, R.; Heine, H.; Alexander, C.; Bárcena-Varela, S.; Goldmann, T.; Correa, W.; Wiesmüller, K.H.; Gisch, N.; et al. Lipoproteins/Peptides Are Sepsis-Inducing Toxins from Bacteria That Can Be Neutralized by Synthetic Anti-Endotoxin Peptides. Sci. Rep. 2015, 5, 14292. [Google Scholar] [CrossRef]
- Wilson, J.G.; Simpson, L.J.; Ferreira, A.-M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rosenberg-Hasson, Y.; et al. Cytokine Profile in Plasma of Severe COVID-19 Does Not Differ from ARDS and Sepsis. JCI Insight 2020, 5, e140289. [Google Scholar] [CrossRef]
- Lüderitz, O.; Galanos, C.; Rietschel, E.T. Endotoxins of Gram-Negative Bacteria. Pharmacol. Ther. 1981, 15, 383–402. [Google Scholar] [CrossRef]
- Mohammad, S.; Al Zoubi, S.; Collotta, D.; Krieg, N.; Wissuwa, B.; Ferreira Alves, G.; Purvis, G.S.D.; Norata, G.D.; Baragetti, A.; Catapano, A.L.; et al. A Synthetic Peptide Designed to Neutralize Lipopolysaccharides Attenuates Metaflammation and Diet-Induced Metabolic Derangements in Mice. Front. Immunol. 2021, 12, 701275. [Google Scholar] [CrossRef]
- Munford, R.S. Endotoxin(s) and the Liver. Gastroenterology 1978, 75, 532–535. [Google Scholar] [CrossRef]
- Petruk, G.; Puthia, M.; Petrlova, J.; Samsudin, F.; Strömdahl, A.-C.; Cerps, S.; Uller, L.; Kjellström, S.; Bond, P.J.; Schmidtchen, A. SARS-CoV-2 Spike Protein Binds to Bacterial Lipopolysaccharide and Boosts Proinflammatory Activity. J. Mol. Cell Biol. 2020, 12, 916–932. [Google Scholar] [CrossRef]
- Andrä, J.; Gutsmann, T.; Garidel, P.; Brandenburg, K. Mechanisms of Endotoxin Neutralization by Synthetic Cationic Compounds. J. Endotoxin Res. 2006, 12, 261–277. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Dorneles, G.P.; Santana Filho, P.C.; da Silva, I.M.; Schipper, L.L.; Postiga, I.A.L.; Neves, C.A.M.; Rodrigues Junior, L.C.; Peres, A.; de Souto, J.T.; et al. Increased LPS Levels Coexist with Systemic Inflammation and Result in Monocyte Activation in Severe COVID-19 Patients. Int. Immunopharmacol. 2021, 100, 108125. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wu, Y.; Rui, X.; Yang, Y.; Ling, C.; Liu, S.; Liu, S.; Wang, Y. Animal Models for COVID-19: Advances, Gaps and Perspectives. Signal Transduct. Target. Ther. 2022, 7, 220. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Yang, J.; Bi, Z.; He, C.; Lei, H.; Yu, W.; Yang, Y.; Fan, C.; Lu, S.; Peng, X.; et al. A Mouse Model for SARS-CoV-2-Induced Acute Respiratory Distress Syndrome. Signal Transduct. Target. Ther. 2021, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Puthia, M.; Tanner, L.; Petruk, G.; Schmidtchen, A. Experimental Model of Pulmonary Inflammation Induced by SARS-CoV-2 Spike Protein and Endotoxin. ACS Pharmacol. Transl. Sci. 2022, 5, 141–148. [Google Scholar] [CrossRef]
- Tobias, P.S.; Soldau, K.; Gegner, J.A.; Mintz, D.; Ulevitch, R.J. Lipopolysaccharide Binding Protein-Mediated Complexation of Lipopolysaccharide with Soluble CD14. J. Biol. Chem. 1995, 270, 10482–10488. [Google Scholar] [CrossRef]
- Schumann, R.R.; Latz, E. Lipopolysaccharide-Binding Protein. Chem. Immunol. 2000, 74, 42–60. [Google Scholar] [CrossRef]
- Richter, W.; Vogel, V.; Howe, J.; Steiniger, F.; Brauser, A.; Koch, M.H.; Roessle, M.; Gutsmann, T.; Garidel, P.; Mäntele, W.; et al. Morphology, Size Distribution, and Aggregate Structure of Lipopolysaccharide and Lipid A Dispersions from Enterobacterial Origin. Innate Immun. 2011, 17, 427–438. [Google Scholar] [CrossRef]
- Mueller, M.; Lindner, B.; Kusumoto, S.; Fukase, K.; Schromm, A.B.; Seydel, U. Aggregates Are the Biologically Active Units of Endotoxin. J. Biol. Chem. 2004, 279, 26307–26313. [Google Scholar] [CrossRef]
- Schromm, A.B.; Brandenburg, K.; Loppnow, H.; Moran, A.P.; Koch, M.H.J.; Rietschel, E.T.; Seydel, U. Biological Activities of Lipopolysaccharides Are Determined by the Shape of Their Lipid A Portion. Eur. J. Biochem. 2000, 267, 2008–2013. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Chapter 19: Thermodynamic Principles of Self-Assembly. In Intermolecular & Surface Forces; Academic Press Ltd.: London, UK, 1991; Volume 2, pp. 341–365. ISBN 978-0-12-375182-9. [Google Scholar]
- Andra, J.; Garidel, P.; Majerle, A.; Jerala, R.; Ridge, R.; Paus, E.; Novitsky, T.; Koch, M.H.J.; Brandenburg, K. Biophysical Characterization of the Interaction of Limulus Polyphemus Endotoxin Neutralizing Protein with Lipopolysaccharide. Eur. J. Biochem. 2004, 271, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K. Fourier Transform Infrared Spectroscopy Characterization of the Lamellar and Nonlamellar Structures of Free Lipid A and Re Lipopolysaccharides from Salmonella Minnesota and Escherichia Coli. Biophys. J. 1993, 64, 1215–1231. [Google Scholar] [CrossRef]
- Howe, J.; Andrä, J.; Conde, R.; Iriarte, M.; Garidel, P.; Koch, M.H.J.; Gutsmann, T.; Moriyón, I.; Brandenburg, K. Thermodynamic Analysis of the Lipopolysaccharide-Dependent Resistance of Gram-Negative Bacteria against Polymyxin B. Biophys. J. 2007, 92, 2796–2805. [Google Scholar] [CrossRef]
- Garidel, P.; Brandenburg, K. Current Understanding of Polymyxin B Applications in Bacteraemia/ Sepsis Therapy Prevention: Clinical, Pharmaceutical, Structural and Mechanistic Aspects. Anti-Infect. Agents Med. Chem. 2009, 8, 367–385. [Google Scholar] [CrossRef]
- Petrlova, J.; Samsudin, F.; Bond, P.J.; Schmidtchen, A. SARS-CoV-2 Spike Protein Aggregation Is Triggered by Bacterial Lipopolysaccharide. FEBS Lett. 2022, 596, 2566–2575. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The Microbial Coinfection in COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 7777–7785. [Google Scholar] [CrossRef]
- Miesbach, W.; Makris, M. COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620938149. [Google Scholar] [CrossRef]
- Hadid, T.; Kafri, Z.; Al-Katib, A. Coagulation and Anticoagulation in COVID-19. Blood Rev. 2021, 47, 100761. [Google Scholar] [CrossRef]
- José, R.J.; Williams, A.; Manuel, A.; Brown, J.S.; Chambers, R.C. Targeting Coagulation Activation in Severe COVID-19 Pneumonia: Lessons from Bacterial Pneumonia and Sepsis. Eur. Respir. Rev. 2020, 29, 200240. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Shetty, A.; Delanerolle, G.; Zeng, Y.; Zhang, Y.; Raymont, V.; Rathod, S.; Halabi, S.; Elliot, K.; Shi, J.Q.; et al. A Systematic Review and Meta-Analysis of Long COVID Symptoms. Syst. Rev. 2023, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Szabo, S.; Zayachkivska, O.; Hussain, A.; Muller, V. What Is Really ‘Long COVID’? Inflammopharmacology 2023, 31, 551–557. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, S.; Chang, H.-H.; Kim, S.-W. Long COVID Prevalence and Impact on Quality of Life 2 Years after Acute COVID-19. Sci. Rep. 2023, 13, 11207. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Number of Studies | Total Sample Size | Association with COVID-19 Severity |
---|---|---|---|
Diabetes | 142 | 59,476 | Yes |
Hypertension | 140 | 58,808 | Yes |
Malignancy | 94 | 48,488 | Yes |
Cerebrovascular disease | 71 | 16,124 | Yes |
Chronic liver disease | 56 | 27,924 | Yes |
COPD | 50 | 32,173 | Yes |
Chronic kidney disease | 43 | 20,103 | Yes |
Cardiovascular diseases | 37 | 25,016 | Yes |
Coronary heart disease | 33 | 16,525 | Yes |
Respiratory disease | 31 | 7552 | Yes |
Chronic lung disease | 31 | 3702 | Yes |
Chronic heart disease | 9 | 3583 | Yes |
Autoimmune disease | 7 | 2372 | Yes |
Renal insufficiency | 6 | 2997 | Yes |
Stroke | 5 | 1616 | Yes |
Cerebral infarction | 4 | 2647 | Yes |
Fatty liver | 4 | 992 | Yes |
Arrhythmia | 4 | 781 | Yes |
Cardiac insufficiency | 2 | 1912 | Yes |
Genital system diseases | 2 | 546 | Yes |
Kidney failure | 2 | 294 | Yes |
Coronary atherosclerosis | 1 | 3044 | Yes |
Benign prostatic hyperplasia | 1 | 3044 | Yes |
Myocardial infarction | 1 | 660 | Yes |
Aorta sclerosis | 1 | 140 | No |
Atrial fibrillation | 1 | 112 | No |
Coronary artery disease | 2 | 1073 | No |
Heart failure | 1 | 172 | No |
Intracerebral hemorrhage | 1 | 1767 | No |
Asthma | 3 | 5359 | No |
Chronic bronchitis | 2 | 2525 | No |
Tuberculosis | 7 | 4125 | No |
Nephritis | 1 | 3044 | No |
Gallbladder disease | 3 | 779 | No |
Hepatitis B | 6 | 3307 | No |
Gastrointestinal disease | 6 | 4764 | No |
Peptic ulcer | 1 | 145 | No |
Gout | 1 | 134 | No |
Hyperlipidemia | 7 | 4131 | No |
Hyperuricemia | 1 | 172 | No |
Thyroid disease | 5 | 1125 | No |
Cirrhosis | 3 | 5134 | No |
Prostatitis | 1 | 3044 | No |
Gynecological disease | 1 | 238 | No |
HIV infection | 7 | 1099 | No |
Nervous system disease | 5 | 2203 | No |
Rheumatism | 2 | 273 | No |
Urinary system disease | 2 | 1075 | No |
Urolithiasis | 1 | 140 | No |
Blood system diseases | 3 | 965 | No |
Bone disease | 1 | 238 | No |
Mechanism | Drug Family | Drugs | Status |
---|---|---|---|
Anti-inflammatory drugs | Systemic glucocorticoids | Dexamethasone, Prednisone, Hydrocortisone, Methylprednisolone | Recommended for certain hospitalized patients |
Anti-IL-6 receptor antibodies | Tocilizumab, Sarulimab | Recommended for certain hospitalized patients | |
Anti-IL-6 antibody | Siltuximab | Not recommended. Under investigation in clinical trials | |
IL-1 receptor antagonists | Anakinra, Canakinumab | Anakinra received an FDA EUA for certain hospitalized patients. Canakinumab is not recommended | |
JAK/STAT inhibitors | Baricitinib, Tofacitinib, Ruxolitinib | Baricitinib and Tofacitinib recommended for certain hospitalized patients. Ruxolitinib under investigation in clinical trials | |
GM-CSF inhibitors | Lenzilumab, Mavrilimumab, Namilumab, Otilimab, Gimsilumab | Not recommended. Under investigation in clinical trials | |
TNF-alpha inhibitor | XPro1595, CERC-002, Infliximab, Adalimumab | Not recommended. Under investigation in clinical trials | |
Immune stimulants | Programmed death ligand pathway inhibitors | Nivolumab and Pembrolizumab | Not recommended. Under investigation in clinical trials |
IL-7 | Not recommended. Under investigation in clinical trials | ||
IFN-γ | Not recommended. Under investigation in clinical trials | ||
NKG2D-ACE2 CAR-NK cells | Not recommended. Under investigation in clinical trials |
Early Sepsis | Early COVID-19 | Late Sepsis | Late COVID-19 | |
---|---|---|---|---|
IL-6 increase | +++ | + | +++ | |
Lymphopenia | + | ++ | ++ | +++ |
Nosocomial infections | +++ | ++ |
Drug | Brand Name | FDA EUA | EMA CMA | Rescinded-Revised by FDA/EMA | |
---|---|---|---|---|---|
Antivirals | Hydroxychloroquine sulfate Chloroquine phosphate | Several | March 2020 | June 2020 | |
Remdesivir | Veklury | May 2020 | June 2020 | ||
Nirmatrelvir/Ritonavir | Paxlovid | December 2021 | January 2022 | ||
Molnupiravir | Lagevrio | December 2021 | |||
Anti-SARS-CoV-2-antibodies | Convalescent plasma | August 2020 | |||
Bamlanivimab | November 2020 | March 2021 | January 2022/ November 2021 | ||
Casirivimab/ Imdevimab | Regen-cov2 | November 2020 | February 2021 | January 2022 | |
Etesevimab | December 2021 | March 2021 | January 2022/ November 2021 | ||
Tixagevimab/ Cilgavimab | Evusheld | December 2021 | March 2022 | ||
Sotrovimab | Xevudy | January 2022 | May 2021 | ||
Regdanvimab | Regkirona | November 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandenburg, K.; Ferrer-Espada, R.; Martinez-de-Tejada, G.; Nehls, C.; Fukuoka, S.; Mauss, K.; Weindl, G.; Garidel, P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. Int. J. Mol. Sci. 2023, 24, 15169. https://doi.org/10.3390/ijms242015169
Brandenburg K, Ferrer-Espada R, Martinez-de-Tejada G, Nehls C, Fukuoka S, Mauss K, Weindl G, Garidel P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. International Journal of Molecular Sciences. 2023; 24(20):15169. https://doi.org/10.3390/ijms242015169
Chicago/Turabian StyleBrandenburg, Klaus, Raquel Ferrer-Espada, Guillermo Martinez-de-Tejada, Christian Nehls, Satoshi Fukuoka, Karl Mauss, Günther Weindl, and Patrick Garidel. 2023. "A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis" International Journal of Molecular Sciences 24, no. 20: 15169. https://doi.org/10.3390/ijms242015169
APA StyleBrandenburg, K., Ferrer-Espada, R., Martinez-de-Tejada, G., Nehls, C., Fukuoka, S., Mauss, K., Weindl, G., & Garidel, P. (2023). A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. International Journal of Molecular Sciences, 24(20), 15169. https://doi.org/10.3390/ijms242015169