A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling
Abstract
:1. Introduction
2. Results
2.1. IVRT: Experimental Results
2.2. IVPT: Experimental Results
2.2.1. Desoximetasone Permeation Studies
2.2.2. Desoximetasone Absorption in Skin
2.2.3. IVRT: Experiments vs. Simulations
2.2.4. IVPT: Experiments vs. Simulations
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.2.1. HPLC Method Development and Quantification
3.2.2. In Vitro Release Testing
3.2.3. Ex Vivo Skin Permeation Studies
3.2.4. Statistical Analysis
3.3. Computational Methods
3.3.1. Virtual Skin Model
3.3.2. IVRT Computational Model Setup
3.3.3. IVPT Computational Model Setup
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IVRT | In vitro Release Test |
IVPT | In vitro Permeation Test |
D3S | Dermal Drug Delivery Systems |
PBPK | Physiologically based pharmacokinetic |
UV | Ultraviolet |
LOQ | Limit of Quantification |
LOD | Limit of Detection |
S.D. | Standard Deviation |
FDC | Franz Diffusion Cells |
HPLC | High-Performance Liquid Chromatography |
PBS | Phosphate buffer saline |
ANOVA | Analysis of Variance |
CoBi | Computational Biology |
pH | Potential of Hydrogen |
MWCo | Molecular weight cut off |
pKa | Acid Dissociation Constant |
CoBi-Q3D | Quasi-Three-dimensional models developed in CoBi |
API | Active Pharmaceutical Ingredient |
References
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, M.R.; Das, D.; Garimella, H.T.; German, C.L.; Przekwas, A.J.; Simon, L. An integrated biophysical model for predicting the clinical pharmacokinetics of transdermally delivered compounds. Eur. J. Pharm. Sci. 2021, 167, 105924. [Google Scholar] [CrossRef] [PubMed]
- Raunio, H. In Silico Toxicology—Non-Testing Methods. Front. Pharmacol. 2011, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Sebastia-Saez, D.; Burbidge, A.; Engmann, J.; Ramaioli, M. New trends in mechanistic transdermal drug delivery modelling: Towards an accurate geometric description of the skin microstructure. Comput. Chem. Eng. 2020, 141, 106976. [Google Scholar] [CrossRef]
- Michaels, A.S.; Chandrasekaran, S.K.; Shaw, J.E. Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J. 1975, 21, 985–996. [Google Scholar] [CrossRef]
- Williams, P.L.; Riviere, J.E. A biophysically based dermatopharmacokinetic compartment model for quantifying percutaneous penetration and absorption of topically applied agents. I. Theory. J. Pharm. Sci. 1995, 84, 599–608. [Google Scholar] [CrossRef]
- Johnson, M.E.; Blankschtein, D.; Langer, R. Evaluation of Solute Permeation through the Stratum Corneum: Lateral Bilayer Diffusion as the Primary Transport Mechanism. J. Pharm. Sci. 1997, 86, 1162–1172. [Google Scholar] [CrossRef]
- Mccarley, K.D.; Bunge, A.L. Pharmacokinetic models of dermal absorption. J. Pharm. Sci. 2001, 90, 1699–1719. [Google Scholar] [CrossRef]
- Mitragotri, S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release 2003, 86, 69–92. [Google Scholar] [CrossRef]
- Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv. 2010, 1, 109–131. [Google Scholar] [CrossRef]
- Naegel, A.; Heisig, M.; Wittum, G. Detailed modeling of skin penetration—An overview. Adv. Drug Deliv. Rev. 2013, 65, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Anissimov, Y.G.; Roberts, M.S. Mathematical Models for Topical and Transdermal Drug Products. In Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah, V.P., Maibach, H.I., Jenner, J., Eds.; Springer: New York, NY, USA, 2014; pp. 249–298. [Google Scholar] [CrossRef]
- Narasimhan, A.; Joseph, A. Porous Medium Modeling of Combined Effects of Cell Migration and Anisotropicity of Stratum Corneum on Transdermal Drug Delivery. J. Heat Transf. 2015, 137, 121007. [Google Scholar] [CrossRef]
- Chen, T.; Lian, G.; Kattou, P. In Silico Modelling of Transdermal and Systemic Kinetics of Topically Applied Solutes: Model Development and Initial Validation for Transdermal Nicotine. Pharm. Res. 2016, 33, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Rantou, E.; Raney, S.G.; Ghosh; Hassan, H.; Stinchcomb, A. Cutaneous Pharmacokinetics of Acyclovir Cream 5% Products: Evaluating Bioequivalence with an In Vitro Permeation Test and an Adaptation of Scaled Average Bioequivalence. Pharm. Res. 2020, 37, 210. [Google Scholar] [CrossRef] [PubMed]
- Tiffner, K.I.; Kanfer, I.; Augustin, T.; Raml, R.; Raney, S.G.; Sinner, F. A comprehensive approach to qualify and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5%. Int. J. Pharm. 2018, 535, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Miron, D.S.; Rădulescu, F.S.; Voicu, V.A.; Mînea, A.; Cardot, J.-M.; Shah, V.P. Rheological and in vitro release measurements of manufactured acyclovir 5% creams: Confirming sensitivity of the in vitro release. Pharm. Dev. Technol. 2021, 26, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Pensado, A.; Hattam, L.; White, K.J.; McGrogan, A.; Bunge, A.L.; Guy, R.H.; Delgado-Charro, M.B. Skin Pharmacokinetics of Transdermal Scopolamine: Measurements and Modeling. Mol. Pharm. 2021, 18, 2714–2723. [Google Scholar] [CrossRef]
- Shah, P.; Goodyear, B.; Dholaria, N.; Puri, V.; Michniak-Kohn, B. Nanostructured Non-Ionic Surfactant Carrier-Based Gel for Topical Delivery of Desoximetasone. Int. J. Mol. Sci. 2021, 22, 1535. [Google Scholar] [CrossRef]
- Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release 2011, 149, 159–167. [Google Scholar] [CrossRef]
- Kilfoyle, B.E.; Sheihet, L.; Zhang, Z.; Laohoo, M.; Kohn, J.; Michniak-Kohn, B.B. Development of paclitaxel-TyroSpheres for topical skin treatment. J. Control. Release 2012, 163, 18–24. [Google Scholar] [CrossRef]
- Zhang, J.; Froelich, A.; Michniak-Kohn, B. Topical Delivery of Meloxicam using Liposome and Microemulsion Formulation Approaches. Pharmaceutics 2020, 12, 282. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Osmałek, T.; Michniak-Kohn, B. Deformable Liposomal Hydrogel for Dermal and Transdermal Delivery of Meloxicam. Int. J. Nanomed. 2020, 15, 9319–9335. [Google Scholar] [CrossRef]
- Haq, A.; Michniak-Kohn, B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Deliv. 2018, 25, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Spatial Modeling Tools for Cell Biology. Available online: https://apps.dtic.mil/sti/citations/ADA460852 (accessed on 27 May 2023).
- Pak, J.; Chen, Z.J.; Sun, K.; Przekwas, A.; Walenga, R.; Fan, J. Computational modeling of drug transport across the in vitro cornea. Comput. Biol. Med. 2018, 92, 139–146. [Google Scholar] [CrossRef]
- Bernardo, F.P.; Saraiva, P.M. A Theoretical Model for Transdermal Drug Delivery from Emulsions and its Dependence upon Formulation. J. Pharm. Sci. 2008, 97, 3781–3809. [Google Scholar] [CrossRef] [PubMed]
- Tsakalozou, E.; Babiskin, A.; Zhao, L. Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1%. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Banga, A.K. Transdermal and Intradermal Delivery of Therapeutic Agents: Application of Physical Technologies; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Banga, A.K. Electrically Assisted Transdermal And Topical Drug Delivery; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Dandekar, A.A.; Kale, M.; Garimella, H.T.; Banga, A.K. Effect of compromised skin barrier on delivery of diclofenac sodium from brand and generic formulations via microneedles and iontophoresis. Int. J. Pharm. 2022, 628, 122271. [Google Scholar] [CrossRef]
Time (Hours) | p-Value | F-Stat |
---|---|---|
0 | 0 | 0 |
12 | 0.1479 | 2.5657 |
14 | 0.0231 | 7.8625 |
16 | 0.0149 | 9.5416 |
18 | 0.0438 | 5.7154 |
20 | 0.146 | 2.5929 |
22 | 0.407 | 0.7658 |
24 | 0.7935 | 0.0733 |
36 | 0.803 | 0.0665 |
Model Parameter | Mechanistic Estimation | Optimized Cream–Skin | Optimized Ointment–Skin |
---|---|---|---|
Kp (Lipid/Vehicle) | 18.8 | 18.8 | 11.6 |
Permeability (Lipid/Corneocyte) Horizontal (m/s) | 4.15 × 10−11 | 1.04 × 10−10 | 0.87 × 10−10 |
Permeability (Lipid/Corneocyte) Vertical (m/s) | 2.07 × 10−9 | 5.2 × 10−9 | 4.35 × 10−9 |
Viable Epidermis Diffusivity (m2/s) | 3.65 × 10−11 | 1.1 × 10−9 | 1.1 × 10−9 |
Dermis Diffusivity (m2/s) | 3.65 × 10−11 | 1.1 × 10−9 | 1.1 × 10−9 |
Permeability (Dermis/Receptor) (m/s) | 7.02 × 10−9 | 3.5 × 10−7 | 3.5 × 10−7 |
Equation No. | Equation | Explanation |
---|---|---|
(1) | Generalized diffusive transport equation used in the model to simulate the transport between two compartments, A and B. In this equation, J is the diffusion flux between compartments A and B P is the permeability D is the diffusivity δ is the diffusion distance Kp is the partition coefficient (A/B) SA is the interface surface area C is the drug concentration This equation is used to model the transport between different compartments, including oil droplets or suspension particles, vehicle, skin, receptors, and others. The drug release from the oil droplets was simulated using the same governing equations (with corresponding drop volume). | |
(2) | Drug release from suspension particles (ointment) using the Nernst Brunner modification of the Noyes–Whitney equation. In this equation, J represents the flux from the particle to the vehicle N is the particle number D is the diffusivity at the surface of the particle SA is the particle surface area Cs is the solubility Cv is the vehicle drug concentration Rp is the particle radius. | |
(3) | Equation used to simulate the sampling effects in receptor compartment. In this equation, QSampling is the sample volume removal from the receptor compartment. The sampling process affects the overall concentration of the receptor. Jinput is the total effective input diffusive flux into the receptor. |
Model Component | Parameters | Value |
---|---|---|
Desoximethasone | Molecular Weight | 376.5 g/mol |
LogP | 2.35 | |
pH | 7.4 | |
pKa | 13.44 | |
Cream/Ointment | Thickness | 0.92 cm |
Initial Mass | 1250 µg | |
Ointment (solid dispersed in liquid) | Diffusivity (In Vehicle) | 1 × 10−10 m2/s |
Particle Solubility | 0.63 | |
Particle Size | ~3.37 µm | |
Partitioning (Vehicle/Receptor) | 223.872 | |
Cream (liquid in liquid) | Diffusivity (In Vehicle) | 0.85 × 10−10 m2/s |
Partitioning (Continuous Phase/Dispersed Phase) | 4.484 | |
Droplet Size | ~3.37 µm | |
Partitioning (Vehicle/Receptor) | 223.872 |
Model Component | Parameters | Value |
---|---|---|
Desoximethasone | Molecular weight | 376.5 |
logP | 2.35 | |
pH | 7.4 | |
pKa | 13.44 | |
Vehicle (Cream/Ointment) | Thickness | 0.92 cm |
Initial mass | 1250 µg | |
Stratum Corneum | Thickness | 14.075 µm |
Corneocyte diameter | 40 µm | |
Corneocyte thickness | 0.8 µm | |
Lipid thickness | 0.075 µm | |
Viable Epidermis | Thickness | ~56 µm |
Dermis | Thickness | ~1.2 mm |
Receptor | Volume | 4.7 mL |
Receptor | Sampling point | Center of the receptor compartment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matharoo, N.S.; Garimella, H.T.; German, C.; Przekwas, A.J.; Michniak-Kohn, B. A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling. Int. J. Mol. Sci. 2023, 24, 15118. https://doi.org/10.3390/ijms242015118
Matharoo NS, Garimella HT, German C, Przekwas AJ, Michniak-Kohn B. A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling. International Journal of Molecular Sciences. 2023; 24(20):15118. https://doi.org/10.3390/ijms242015118
Chicago/Turabian StyleMatharoo, Namrata S., Harsha T. Garimella, Carrie German, Andrzej J. Przekwas, and Bozena Michniak-Kohn. 2023. "A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling" International Journal of Molecular Sciences 24, no. 20: 15118. https://doi.org/10.3390/ijms242015118