Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis
Abstract
:1. Introduction
2. Results
2.1. Human and Mouse Macrophages Had a Conspicuous Tubulin Network
2.2. The Microtubules Did Not Have A Great Impact on Phagocytosis in the Resting Stage
2.3. The Change in the Microtubule Network after Macrophage Activation
2.4. Paclitaxel Inhibited Frill-like Structure Formation and Phagocytosis
2.5. Depolymerization of the Microtubules Affected Phagolysosome Maturation
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture
4.3. Fixation and Immunofluorescence
4.4. Confocal Microscopy
4.5. Phagocytosis Assay
4.6. Inhibitor Experiments
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boada-Romero, E.; Martinez, J.; Heckmann, B.L.; Green, D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 2020, 21, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Jaumouillé, V.; Waterman, C.M. Physical Constraints and Forces Involved in Phagocytosis. Front. Immunol. 2020, 11, 1097. [Google Scholar] [CrossRef]
- Uribe-Querol, E.; Rosales, C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front. Immunol. 2020, 11, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Mylvaganam, S.; Freeman, S.A.; Grinstein, S. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 2021, 31, R619–R632. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.D.; Swanson, J.A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell 2004, 15, 3509–3519. [Google Scholar] [CrossRef] [Green Version]
- Alekhina, O.; Burstein, E.; Billadeau, D.D. Cellular functions of WASP family proteins at a glance. J. Cell Sci. 2017, 130, 2235–2241. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Haka, A.S.; Bhardwaj, P.; Zha, X.; Maxfield, F.R. Dynamic Actin Reorganization and Vav/Cdc42-Dependent Actin Polymerization Promote Macrophage Aggregated LDL (Low-Density Lipoprotein) Uptake and Catabolism. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 137–149. [Google Scholar] [CrossRef]
- Mylvaganam, S.M.; Grinstein, S.; Freeman, S.A. Picket-fences in the plasma membrane: Functions in immune cells and phagocytosis. Semin. Immunopathol. 2018, 40, 605–615. [Google Scholar] [CrossRef]
- Ronzier, E.; Laurenson, A.J.; Manickam, R.; Liu, S.; Saintilma, I.M.; Schrock, D.C.; Hammer, J.A.; Rotty, J.D. The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells 2022, 11, 1806. [Google Scholar] [CrossRef]
- Rotty, J.D.; Brighton, H.E.; Craig, S.L.; Asokan, S.B.; Cheng, N.; Ting, J.P.; Bear, J.E. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev. Cell 2017, 42, 498–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, C.E.; Fountain, A.; Dayam, R.M.; Somerville, E.; Sheth, J.; Jacobelli, V.; Somerville, A.; Terebiznik, M.R.; Botelho, R.J. Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J. Cell Biol. 2021, 220, e202005072. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.; Grinstein, S.; Canton, J. The life cycle of phagosomes: Formation, maturation, and resolution. Immunol. Rev. 2016, 273, 156–179. [Google Scholar] [CrossRef] [PubMed]
- Mascanzoni, F.; Iannitti, R.; Colanzi, A. Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells 2022, 11, 354. [Google Scholar] [CrossRef]
- Botelho, R.J.; Grinstein, S. Phagocytosis. Curr. Biol. 2011, 21, R533–R538. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, A.E.; Wong, A.C.; Zajd, C.M.; Zhang, X.; Murali, A.; Trebak, M.; Lennartz, M.R. PKC-ε regulates vesicle delivery and focal exocytosis for efficient IgG-mediated phagocytosis. J. Cell Sci. 2021, 134, jcs258886. [Google Scholar] [CrossRef]
- Heckmann, B.L.; Green, D.R. LC3-associated phagocytosis at a glance. J. Cell Sci. 2019, 132, jcs222984. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Nguyen, S.; McKeehan, W.L.; Liu, L. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol. 2010, 11, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Kanneganti, T.D. Inflammasome activation and assembly at a glance. J. Cell Sci. 2017, 130, 3955–3963. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.Z.; Yang, F.; Li, C.G.; Xu, L.H.; He, X.H.; Mai, F.Y.; Zeng, C.Y.; Zhang, C.C.; Zha, Q.B.; Ouyang, D.Y. Paclitaxel Enhances the Innate Immunity by Promoting NLRP3 Inflammasome Activation in Macrophages. Front. Immunol. 2019, 10, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Sumiya, Y.; Ishikawa, M.; Inoue, T.; Inui, T.; Kuchiike, D.; Kubo, K.; Uto, Y.; Nishikata, T. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages. Anticancer Res. 2015, 35, 4447–4451. [Google Scholar] [PubMed]
- Ishikawa, M.; Mashiba, R.; Kawakatsu, K.; Tran, N.K.; Nishikata, T. A high-throughput quantitative assay system for macrophage phagocytic activity. Macrophage 2018, 5, e1627. [Google Scholar] [CrossRef]
- Nonaka, K.; Onizuka, S.; Ishibashi, H.; Uto, Y.; Hori, H.; Nakayama, T.; Matsuura, N.; Kanematsu, T.; Fujioka, H. Vitamin D binding protein-macrophage activating factor inhibits HCC in SCID mice. J. Surg. Res. 2012, 172, 116–122. [Google Scholar] [CrossRef]
- Kawakatsu, K.; Maemura, M.; Seta, Y.; Nishikata, T. Involvement of Annexin A2 in Serum-MAF Dependent Phagocytic Activation of Macrophages. Anticancer Res. 2021, 41, 4089–4092. [Google Scholar] [CrossRef]
- Kawakatsu, K.; Ishikawa, M.; Mashiba, R.; Tran, N.K.; Akamatsu, M.; Nishikata, T. Characteristic Morphological Changes and Rapid Actin Accumulation in Serum-MAF-treated Macrophages. Anticancer Res. 2019, 39, 4533–4537. [Google Scholar] [CrossRef]
- Mashiba, R.; Ishikawa, M.; Sumiya, Y.U.; Kawakatsu, K.; Tran, N.K.; Nishikata, T. Phagocytic Activation of Macrophages with Serum MAF Depends on Engulfment Efficiency and Not Migratory Activity. Anticancer Res. 2018, 38, 4295–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikata, T.; Goto, T.; Yagi, H.; Ishii, H. Massive cytoplasmic transport and microtubule organization in fertilized chordate eggs. Dev. Biol. 2019, 448, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Torii, S.; Kondo, A.; Kawakami, J.; Yagi, H.; Suekane, M.; Kataoka, Y.; Nishikata, T. Dynamic changes in the association between maternal mRNAs and endoplasmic reticulum during ascidian early embryogenesis. Dev. Genes Evol. 2022, 232, 1–14. [Google Scholar] [CrossRef]
- Ramirez Rios, S.; Torres, A.; Diemer, H.; Collin-Faure, V.; Cianférani, S.; Lafanechère, L.; Rabilloud, T. A proteomic-informed view of the changes induced by loss of cellular adherence: The example of mouse macrophages. PLoS ONE 2021, 16, e0252450. [Google Scholar] [CrossRef]
- Kawai, K.; Nishigaki, A.; Moriya, S.; Egami, Y.; Araki, N. Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway that Diverges from Canonical Macropinocytosis in RAW264 Macrophages. Front. Immunol. 2021, 12, 649600. [Google Scholar] [CrossRef]
- Imasaki, T.; Kikkawa, S.; Niwa, S.; Saijo-Hamano, Y.; Shigematsu, H.; Aoyama, K.; Mitsuoka, K.; Shimizu, T.; Aoki, M.; Sakamoto, A.; et al. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. eLife 2022, 11, e77365. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Meng, W.; Nagae, S.; Takeichi, M. Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc. Natl. Acad. Sci. USA 2012, 109, 20029–20034. [Google Scholar] [CrossRef] [Green Version]
- Pineau, J.; Pinon, L.; Mesdjian, O.; Fattaccioli, J.; Lennon Duménil, A.M.; Pierobon, P. Microtubules restrict F-actin polymerization to the immune synapse via GEF-H1 to maintain polarity in lymphocytes. eLife 2022, 11, e78330. [Google Scholar] [CrossRef] [PubMed]
- Ando, J.; Shima, T.; Kanazawa, R.; Shimo-Kon, R.; Nakamura, A.; Yamamoto, M.; Kon, T.; Iino, R. Small stepping motion of processive dynein revealed by load-free high-speed single-particle tracking. Sci Rep. 2020, 10, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Ishikawa, M.; Sumiya, Y.; Kohda, H.; Inui, T.; Kuchiike, D.; Kubo, K.; Uto, Y.; Nishikata, T. Establishment of a Macrophage-activating Factor Assay System Using the Human Monocytic Cell Line THP-1. Anticancer Res. 2015, 35, 4441–4445. [Google Scholar] [PubMed]
- Cao, X.; Chen, J.; Li, B.; Dang, J.; Zhang, W.; Zhong, X.; Wang, C.; Raoof, M.; Sun, Z.; Yu, J.; et al. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. Sci. Adv. 2022, 8, eabl9171. [Google Scholar] [CrossRef]
- Lukinavičius, G.; Reymond, L.; D’Este, E.; Masharina, A.; Göttfert, F.; Ta, H.; Güther, A.; Fournier, M.; Rizzo, S.; Waldmann, H.; et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 2014, 11, 731–733. [Google Scholar] [CrossRef]
(1) Untreated § | (2) +Paclitaxel ¶ | (3) +Nocodazole † | (2)/(1) | (3)/(1) | |
---|---|---|---|---|---|
up to 10 min | |||||
Number of attached beads/cells | 1.46 ± 0.22 | 1.48 ± 0.16 | 1.85 ± 0.25 | 1.01 | 1.27 |
Number of internalized beads/cells | 0.15 ± 0.07 | 0.11 ± 0.03 | 0.33 ± 0.01 * | 0.73 | 2.20 |
Phagocytic efficiency (%) | 9.88 ± 2.77 | 7.56 ± 2.61 | 17.76 ± 1.89 * | 0.77 | 1.80 |
up to 30 min | |||||
Number of attached beads/cells | 1.65 ± 0.28 | 1.55 ± 0.16 | 2.31 ± 0.17 * | 0.94 | 1.40 |
Number of internalized beads/cells | 0.27 ± 0.07 | 0.25 ± 0.06 | 0.76 ± 0.11 * | 0.93 | 2.81 |
Phagocytic efficiency (%) | 16.05 ± 1.83 | 16.73 ± 5.62 | 44.14 ± 13.42 * | 1.04 | 2.75 |
up to 60 min | |||||
Number of attached beads/cells | 2.11 ± 0.44 | 1.75 ± 0.09 | 3.18 ± 0.24 * | 0.83 | 1.51 |
Number of internalized beads/cells | 0.44 ± 0.01 | 0.35 ± 0.07 | 1.03 ± 0.12 * | 0.80 | 2.34 |
Phagocytic efficiency (%) | 21.70 ± 5.01 | 19.87 ± 4.56 | 53.83 ± 19.13 * | 0.92 | 2.48 |
(1) serum-MAF § | (2) serum-MAF+Paclitaxel ¶ | (2)/(1) | |
---|---|---|---|
up to 10 min | |||
Number of attached beads/cells | 2.88 ± 0.37 | 1.37 ± 0.04 * | 0.48 |
Number of internalized beads/cells | 2.39 ± 0.30 | 0.16 ± 0.04 * | 0.07 |
Internalization efficiency (%) | 84.76 ± 0.86 | 11.52 ± 3.02 * | 0.14 |
up to 30 min | |||
Number of attached beads/cells | 5.08 ± 1.34 | 1.83 ± 0.14 * | 0.36 |
Number of internalized beads/cells | 3.59 ± 0.77 | 1.02 ± 0.20 * | 0.28 |
Internalization efficiency (%) | 71.46 ± 6.42 | 55.51 ± 7.62 | 0.78 |
up to 60 min | |||
Number of attached beads/cells | 6.14 ± 1.45 | 2.96 ± 0.24 | 0.48 |
Number of internalized beads/cells | 4.56 ± 0.74 | 1.73 ± 0.11 * | 0.38 |
Internalization efficiency (%) | 75.48 ± 5.36 | 58.73 ± 1.65 | 0.78 |
(1) serum-MAF § | (2) serum-MAF+Nocodazole ¶ | (2)/(1) | |
---|---|---|---|
up to 10 min | |||
Number of attached beads/cells | 2.88 ± 0.37 | 3.00 ± 0.09 | 1.04 |
Number of internalized beads/cells | 2.39 ± 0.30 | 2.34 ± 0.22 | 0.98 |
Internalization efficiency (%) | 84.76 ± 0.86 | 77.96 ± 5.35 | 0.92 |
up to 30 min | |||
Number of attached beads/cells | 5.08 ± 1.34 | 5.91 ± 0.89 | 1.16 |
Number of internalized beads/cells | 3.59 ± 0.77 | 3.96 ± 0.42 | 1.1 |
Internalization efficiency (%) | 71.46 ± 6.42 | 67.60 ± 5.08 | 0.95 |
up to 60 min | |||
Number of attached beads/cells | 6.14 ± 1.45 | 6.91 ± 1.19 | 1.13 |
Number of internalized beads/cells | 4.56 ± 0.74 | 4.92 ± 0.73 | 1.08 |
Internalization efficiency (%) | 75.48 ± 5.36 | 71.70 ± 4.16 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seta, Y.; Kawakatsu, K.; Degawa, S.; Goto, T.; Nishikata, T. Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis. Int. J. Mol. Sci. 2023, 24, 1373. https://doi.org/10.3390/ijms24021373
Seta Y, Kawakatsu K, Degawa S, Goto T, Nishikata T. Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis. International Journal of Molecular Sciences. 2023; 24(2):1373. https://doi.org/10.3390/ijms24021373
Chicago/Turabian StyleSeta, Yoshika, Kumpei Kawakatsu, Shiori Degawa, Toshiyuki Goto, and Takahito Nishikata. 2023. "Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis" International Journal of Molecular Sciences 24, no. 2: 1373. https://doi.org/10.3390/ijms24021373