Molecular Modelling of Polychlorinated Dibenzo-p-Dioxins Non-Covalent Interactions with β and γ-Cyclodextrins
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, S.S.; Birnbaum, L.S. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 197–211. [Google Scholar] [CrossRef]
- Van Den Heuvel, J.P.; Lucier, G. Environmental toxicology of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Health Perspect. 1993, 100, 189–200. [Google Scholar] [CrossRef]
- Hites, R.A. Dioxins: An overview and history. Environ. Sci. Technol. 2011, 45, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Sobol, Ł.; Dyjakon, A.; Soukup, K. Dioxins and furans in biochars, hydrochars and torreficates produced by thermochemical conversion of biomass: A review. Environ. Chem. Lett. 2023, 21, 2225–2249. [Google Scholar] [CrossRef]
- Kirkok, S.K.; Kibet, J.K.; Kinyanjui, T.K.; Okanga, F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. SN Appl. Sci. 2020, 2, 1729. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef] [PubMed]
- Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Dreher, E.-L.; Langer, E.; Rassaerts, H.; Kleinschmidt, P.; Strack, H.; Cook, R.; et al. Chlorinated Hydrocarbons. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Chicester, UK, 2006. [Google Scholar] [CrossRef]
- Mandal, P.K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2005, 175, 221–230. [Google Scholar] [CrossRef]
- Nikiema, J.; Wielgosiński, G. The Possibilities of Reduction of Polychlorinated Dibenzo-P-Dioxins and Polychlorinated Dibenzofurans Emission. Int. J. Chem. Eng. 2010, 2010, 392175. [Google Scholar] [CrossRef][Green Version]
- Seidel, S.D.; Winters, G.M.; Rogers, W.J.; Ziccardi, M.H.; Li, V.; Keser, B.; Denison, M.S. Activation of the Ah Receptor Signaling Pathway by Prostaglandins. J. Biochem. Mol. Toxicol. 2001, 15, 187–196. [Google Scholar] [CrossRef]
- Sorg, O. AhR signalling and dioxin toxicity. Toxicol. Lett. 2013, 230, 225–233. [Google Scholar] [CrossRef]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Crumling, M.A.; King, K.A.; Duncan, R.K. Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk. Front. Cell. Neurosci. 2017, 11, 355. [Google Scholar] [CrossRef]
- Winkler, R.; Fioravanti, S.; Ciccott, G.; Margheritis, C.; Villa, M. Hydration of β-cyclodextrin: A molecular dynamics simulation study. J. Comput.-Aided Mol. Des. 2000, 14, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Gidwani, B.; Vyas, A. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed Res. Int. 2015, 2015, 198268. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2010, 2, 72–79. [Google Scholar] [CrossRef]
- Bethanis, K.; Christoforides, E.; Tsorteki, F.; Fourtaka, K.; Mentzafos, D. Structural studies of the inclusion compounds of α-naphthaleneacetic acid in heptakis(2,6-di-O-methyl)-β-Cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin by X-ray crystallography and molecular dynamics. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 157–171. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, D.; Zhan, J. Investigation on the inclusions of PCB52 with cyclodextrins by performing DFT calculations and molecular dynamics simulations. J. Phys. Chem. A 2010, 114, 13122–13128. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Luo, X.; Lin, X.; Lu, X. Adsorption of 2,3,7,8-tetrochlorodibenzo-p-dioxins on intrinsic, defected, and Ti (N, Ag) doped graphene: A DFT study. J. Mol. Model. 2014, 20, 2238. [Google Scholar] [CrossRef]
- Izakmehri, Z.; Davish Ganji, M.; Ardjmand, M. Adsorption of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine, defected and Al-doped carbon nanotube: A dispersion corrected DFT study. Vacuum 2017, 136, 51–59. [Google Scholar] [CrossRef]
- Paustenbach, D.J.; Wenning, R.J.; Lau, V.; Harrington, N.W.; Rennix, D.K.; Parsons, A.H. Recent developments on the hazards posed by 2,3,7,8-tetrachlorodibenzo-p-dioxin in soil: Implications for setting risk-based cleanup levels at residential and industrial sites. J. Toxicol. Environ. Health 1992, 36, 103–1049. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.H.; Nguyen, X.-T.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhang, D.; Zhan, J. Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations. J. Hazard. Mater. 2011, 192, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Mandravel, C.; Vergoten, G.; Stanculescu, I. Interactions Moleculaires; Applications aux Medicaments, Editura Universitatii din Bucuresti: Bucharest, Romania, 2007. [Google Scholar]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Mod. 1999, 17, 57–61. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Kollman, P. A general analysis of noncovalent intermolecular interactions. J. Am. Chem. Soc. 1977, 99, 4875–4894. [Google Scholar] [CrossRef]
- Brinck, T.; Murray, J.S.; Politzer, P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int. J. Quantum Chem. 1992, 44, 57–64. [Google Scholar] [CrossRef]
- Borovina, M.; Kodrin, I.; Đaković, M. Testing the limits of halogen bonding in coordination chemistry. Cryst. Eng. Comm. 2018, 20, 539–549. [Google Scholar] [CrossRef]
- Kashina, M.V.; Kinzhalov, M.A.; Smirnov, A.S.; Ivanov, D.M.; Novikov, A.S.; Kukushkin, V.Y. Dihalomethanes as bent bifunctional XB/XB-Donating building blocks for construction of metal-involving halogen bonded hexagons. Chem.—Asian J. 2019, 14, 3915–3920. [Google Scholar] [CrossRef]
- Bulatova, M.; Melekhova, A.A.; Novikov, A.S.; Ivanov, D.M.; Bokach, N.A. Redox reactive (RNC)CuII species stabilized in the solid state via halogen bond with I2. Z. Kristallogr.—Crystal. Mater. 2018, 233, 371–377. [Google Scholar] [CrossRef]
- Gamekkanda, J.C.; Sinha, A.S.; Desper, J.; Ðaković, M.; Aakeröy, C.B. The Role of Halogen Bonding in Controlling Assembly and Organization of Cu (II)-Acac Based Coordination Complexes. Crystals 2017, 7, 226. [Google Scholar] [CrossRef]
- Anisimova, T.B.; Kinzhalov, M.A.; da Silva, M.F.C.G.; Novikov, A.S.; Kukushkin, V.Y.; Pombeiro, A.J.; Luzyanin, K.V. Addition of N-nucleophiles to gold (III)-bound isocyanides leading to short-lived gold (III) acyclic diaminocarbene complexes. New J. Chem. 2017, 41, 3246–3250. [Google Scholar] [CrossRef]
- Khavasi, H.R.; Norouzi, F.; Azhdari Tehrani, A. Halogen bonding synthon modularity in coordination compounds. Crystal Growth Des. 2015, 15, 2579–2583. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T.; Resnati, G. The σ-hole revisited. Phys. Chem. Chem. Phys. 2017, 19, 32166–32178. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, G.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef]
- Sirimulla, S.; Bailey, J.B.; Vegesna, R.; Narayan, M. Halogen Interactions in Protein−Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design. J. Chem. Inf. Model. 2013, 53, 2781–2791. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Zhu, X.; Zhu, W.; Liu, H. How does halogen bonding behave in solution? A theoretical study using implicit solvation model. J. Phys. Chem. A 2011, 115, 4467–4475. [Google Scholar] [CrossRef]
- Murray, J.S.; Evans, P.; Politzer, P. A comparative analysis of the electrostatic potentials of some structural analogues of 2,3,7,8-tetrachlorodibenzo-p-dioxin and of related aromatic systems. Int. J. Quant. Chem. 1990, 37, 271–289. [Google Scholar] [CrossRef]
- Sjoberg, P.; Murray, J.S.; Brinck, T.; Evans, P.; Politzer, P. The use of the electrostatic potential at the molecular surface in recognition interactions: Dibenzo-p-dioxins and related systems. J. Mol. Graph. 1990, 8, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Mathematical modeling and physical reality in noncovalent interactions. J. Mol. Model. 2015, 21, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Pinjari, R.V.; Joshi, K.A.; Gejji, S.P. Molecular Electrostatic Potentials and Hydrogen Bonding in α-, β-, and γ-Cyclodextrins. J. Phys. Chem. A 2006, 110, 13073–13080. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Politzer, P. Hydrogen Bonding: A Coulombic σ-Hole Interaction. J. Indian. Inst. Sci. 2020, 100, 21–30. [Google Scholar] [CrossRef]
- Steiner, T.; Saenger, W. Geometry of C-H···O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1992, 114, 10146–10154. [Google Scholar] [CrossRef]
- Desiraju, G.R. The C-H···O hydrogen bond: Structural implications and supramolecular design. Acc. Chem. Res. 1996, 29, 441–449. [Google Scholar] [CrossRef]
- Yan, C.; Xiu, Z.; Li, X.; Hao, C. Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. J. Mol. Graph. Model. 2007, 26, 420–428. [Google Scholar] [CrossRef]
- Hyperchem Program, Version 6.01 for Windows; Hypercube Inc.: Gainesville, FL, USA, 2000.
- Available online: http://www.rcsb.org/pdb/home/home.do (accessed on 16 December 2022).
- Camacho, C.J.; Vajda, S. Protein docking along smooth association pathways. Proc. Natl. Acad. Sci. USA 2001, 98, 10636–10641. [Google Scholar] [CrossRef]
- Hobza, P.; Zahradnic, R. Intermolecular Complexes; Akademia: Praha, Czech Republic, 1988. [Google Scholar]
- Lino, A.C.S.; Takahata, Y.; Jaime, C. Alpha- and beta-cyclodextrin complexes with n-alkyl carboxylic acids and n-alkyl p-hydroxy benzoates. A molecular mechanics study of 1:1 and 1:2 associations. J. Mol. Struct. THEOCHEM 2002, 594, 207–213. [Google Scholar] [CrossRef]
- Scheiner, S. (Ed.) Molecular Interactions: From Van der Waals to Strongly Bound Complexes; Willey: Chicester, UK, 1997. [Google Scholar]
- Mindrila, G.; Mandravel, C.; Dobrica, I.; Bugheanu, P.; Stanculescu, I.R. Theoretical study of beta and gama-cyclodextrins inclusion complexes with nineteen atropisomeric polychlorobiphenyls. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 137–143. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Politzer, P. Expansion of the σ-hole concept. J. Mol. Model. 2009, 15, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Masetti, M.; Rocchia, W. Molecular mechanics and dynamics: Numerical tools to sample the configuration space. Front. Biosci. 2014, 19, 578–604. [Google Scholar] [CrossRef] [PubMed]
- Poltev, V. Molecular Mechanics: Principles, History, and Current Status. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
MM+ | Ecomplex (1) | EvdWcomplex (1) | Eperturbed (1) | EvdWperturbed (1) | Ecomplex (2) | EvdWcomplex (2) | Eperturbed (2) | EvdWperturbed (2) |
---|---|---|---|---|---|---|---|---|
TCDD2378 | 52.30 | 9.21 | 77.63 | 34.69 | 70.96 | 16.27 | 107.05 | 46.03 |
PCDD12378-123 | 58.43 | 10.12 | 82.79 | 34.35 | 76.29 | 24.11 | 95.08 | 42.33 |
PCDD12378-78 | 55.45 | 7.90 | 84.04 | 35.25 | 72.09 | 20.04 | 96.95 | 42.41 |
H6CDD123478-1234 | 65.27 | 16.84 | 88.07 | 36.74 | 78.16 | 23.64 | 99.43 | 43.89 |
H6CDD123478-78 | 63.77 | 13.90 | 87.65 | 37.60 | 77.10 | 21.25 | 99.71 | 43.16 |
H6CDD123678 | 63.80 | 15.10 | 91.05 | 40.99 | 81.29 | 22.55 | 108.66 | 48.22 |
H6CDD123789 | 65.79 | 16.38 | 92.52 | 41.63 | 81.46 | 24.61 | 107.58 | 48.36 |
H7CDD1234678-1234 | 66.58 | 16.77 | 87.98 | 37.25 | 79.74 | 23.51 | 103.61 | 44.80 |
H7CDD1234678-678 | 61.58 | 10.21 | 88.25 | 36.38 | 79.08 | 24.54 | 100.77 | 44.92 |
OCDD12346789 | 69.48 | 17.44 | 91.59 | 38.43 | 82.16 | 24.48 | 107.05 | 46.03 |
MM+ | Ecomplex (1) | EvdWcomplex (1) | Eperturbed (1) | EvdWperturbed (1) | Ecomplex (2) | EvdWcomplex (2) | Eperturbed (2) | EvdWperturbed (2) |
---|---|---|---|---|---|---|---|---|
TCDD2378 | 54.04 | 11.07 | 77.98 | 34.39 | 76.40 | 24.75 | 93.43 | 40.70 |
PCDD12378-123 | 58.66 | 15.88 | 80.37 | 35.51 | 72.15 | 18.61 | 90.11 | 34.21 |
PCDD12378-78 | 55.33 | 10.29 | 81.59 | 35.02 | 74.94 | 25.27 | 95.63 | 42.38 |
H6CDD123478-1234 | 64.47 | 18.87 | 84.53 | 35.60 | 80.69 | 27.01 | 100.38 | 43.54 |
H6CDD123478-78 | 57.79 | 10.64 | 84.90 | 36.80 | 81.95 | 27.50 | 99.99 | 43.45 |
H6CDD123678 | 69.16 | 18.90 | 92.32 | 41.50 | 84.23 | 27.02 | 107.46 | 48.54 |
H6CDD123789 | 74.42 | 27.62 | 90.60 | 41.75 | 80.21 | 23.61 | 103.20 | 43.73 |
H7CDD1234678-1234 | 66.17 | 17.00 | 88.74 | 38.03 | 79.55 | 24.34 | 102.83 | 44.74 |
H7CDD1234678-678 | 64.32 | 13.89 | 90.18 | 37.77 | 79.97 | 23.30 | 104.23 | 44.82 |
OCDD12346789 | 69.04 | 16.93 | 93.03 | 39.02 | 80.56 | 23.31 | 104.23 | 40.82 |
OPLS | Ecomplex (1) | EvdWcomplex (1) | Eperturbed (1) | EvdWperturbed (1) | Ecomplex (2) | EvdWcomplex (2) | Eperturbed (2) | EvdWperturbed (2) |
---|---|---|---|---|---|---|---|---|
TCDD2378 | 52.72 | −41.72 | 85.95 | −8.49 | 77.97 | −32.22 | 100.39 | −9.80 |
PCDD12378-123 | 58.95 | −37.93 | 87.18 | −9.69 | 76.95 | −33.64 | 100.46 | −10.13 |
PCDD12378-78 | 57.34 | −38.31 | 86.87 | −8.78 | 74.63 | −37.65 | 103.77 | −8.51 |
H6CDD123478-1234 | 59.19 | −37.29 | 87.20 | −9.39 | 74.43 | −35.77 | 103.38 | −6.82 |
H6CDD123478-78 | 56.33 | −39.99 | 86.96 | −9.39 | 76.36 | −36.89 | 107.98 | −5.27 |
H6CDD123678 | 53.50 | −43.28 | 87.62 | −9.15 | 73.72 | −36.66 | 101.55 | −8.83 |
H6CDD123789 | 52.50 | −43.02 | 86.38 | −9.15 | 74.85 | −34.63 | 105.06 | −4.42 |
H7CDD1234678-1234 | 56.78 | −41.52 | 88.17 | −10.13 | 75.83 | −37.60 | 105.20 | −8.23 |
H7CDD1234678-678 | 52.71 | −44.75 | 87.87 | −9.59 | 73.28 | −37.60 | 101.88 | −9.01 |
OCDD12346789 | 56.96 | −42.90 | 89.10 | −10.77 | 72.39 | −37.64 | 105.19 | −4.84 |
OPLS | Ecomplex (1) | EvdWcomplex (1) | Eperturbed (1) | EvdWperturbed (1) | Ecomplex (2) | EvdWcomplex (2) | Eperturbed (2) | EvdWperturbed (2) |
---|---|---|---|---|---|---|---|---|
TCDD2378 | 56.07 | −39.07 | 86.67 | −8.47 | 81.46 | −27.05 | 100.29 | −8.22 |
PCDD12378-123 | 57.97 | −38.71 | 87.36 | −9.33 | 80.82 | −30.40 | 101.85 | −9.37 |
PCDD12378-78 | 52.58 | −40.34 | 84.66 | −8.26 | 74.70 | −32.03 | 102.61 | −4.11 |
H6CDD123478-1234 | 59.18 | −11.31 | 84.77 | −13.66 | 80.36 | −29.02 | 104.26 | −5.12 |
H6CDD123478-78 | 56.33 | −39.99 | 85.66 | −9.17 | 55.41 | −39.42 | 85.66 | −9.17 |
H6CDD123678 | 60.61 | −33.65 | 85.03 | −9.22 | 76.10 | −33.67 | 104.20 | −5.57 |
H6CDD123789 | 57.38 | −38.27 | 86.25 | −9.41 | 82.23 | −27.11 | 104.68 | −4.66 |
H7CDD1234678-1234 | 61.63 | −32.62 | 85.05 | −9.19 | 78.77 | −30.61 | 100.61 | −8.77 |
H7CDD1234678-678 | 58.81 | −37.93 | 86.96 | −9.77 | 82.36 | −27.65 | 105.04 | −4.97 |
OCDD12346789 | 61.42 | −33.35 | 85.17 | −9.60 | 78.81 | −34.37 | 96.69 | −16.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghetu, M.-C.; Virgolici, M.; Tirsoaga, A.; Stanculescu, I. Molecular Modelling of Polychlorinated Dibenzo-p-Dioxins Non-Covalent Interactions with β and γ-Cyclodextrins. Int. J. Mol. Sci. 2023, 24, 13214. https://doi.org/10.3390/ijms241713214
Ghetu M-C, Virgolici M, Tirsoaga A, Stanculescu I. Molecular Modelling of Polychlorinated Dibenzo-p-Dioxins Non-Covalent Interactions with β and γ-Cyclodextrins. International Journal of Molecular Sciences. 2023; 24(17):13214. https://doi.org/10.3390/ijms241713214
Chicago/Turabian StyleGhetu, Maria-Cristina, Marian Virgolici, Alina Tirsoaga, and Ioana Stanculescu. 2023. "Molecular Modelling of Polychlorinated Dibenzo-p-Dioxins Non-Covalent Interactions with β and γ-Cyclodextrins" International Journal of Molecular Sciences 24, no. 17: 13214. https://doi.org/10.3390/ijms241713214
APA StyleGhetu, M.-C., Virgolici, M., Tirsoaga, A., & Stanculescu, I. (2023). Molecular Modelling of Polychlorinated Dibenzo-p-Dioxins Non-Covalent Interactions with β and γ-Cyclodextrins. International Journal of Molecular Sciences, 24(17), 13214. https://doi.org/10.3390/ijms241713214