A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Traits Analyses
2.2. Drought Indices Analysis
2.3. Target Enrichment Sequencing and SNP/InDel Discovery
2.4. Population Structure
2.5. Association Mapping
2.5.1. Marker-Trait Association Under NS Condition
2.5.2. Marker-Trait Association Under WS Condition
2.5.3. Marker-Trait Association for Drought Tolerance Indices
3. Discussion
3.1. Phenotypic Data Analysis
3.2. SNP Detection
3.3. Population Structure Analysis
3.4. Association Mapping
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Phenotyping and Field Data Analysis
4.3. Candidate Genes and SNP/InDel Discovery
4.4. Population Structure and Relative Kinship
4.5. Linkage Disequilibrium and Association Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakshmanan, P.; Robinson, N. Stress Physiology: Abiotic Stresses. In Sugarcane: Physiology, Biochemistry, and Functional Biology, 1st ed.; Moore, P.H., Botha, F.C., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 411–434. [Google Scholar]
- Jarumaneeroj, P.; Laosareewatthanakul, N.; Akkerman, R. A multi-objective approach to sugarcane harvest planning in Thailand: Balancing output maximization, grower equity, and supply chain efficiency. Comput. Ind. Eng. 2021, 154, 107129. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.; Lu, G.; Zeng, R.; Que, Y. Sugarcane Ratooning Ability: Research Status, Shortcomings, and Prospects. Biology 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Silalertruksa, T.; Gheewala, S.H. Land-water-energy nexus of sugarcane production in Thailand. J. Clean. Prod. 2018, 182, 521–528. [Google Scholar] [CrossRef]
- Ferreira, T.H.S.; Tsunada, M.S.; Bassi, D.; Araújo, P.; Mattiello, L.; Guidelli, G.V.; Righetto, G.L.; Gonçalves, V.R.; Lakshmanan, P.; Menossi, M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. Front. Plant Sci. 2017, 8, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garsmeur, O.; Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2018, 9, 2638. [Google Scholar] [CrossRef] [Green Version]
- Shearman, J.R.; Pootakham, W.; Sonthirod, C.; Naktang, C.; Yoocha, T.; Sangsrakru, D.; Jomchai, N.; Tongsima, S.; Piriyapongsa, J.; Ngamphiw, C.; et al. A draft chromosome-scale genome assembly of a commercial sugarcane. Sci. Rep. 2022, 12, 20474. [Google Scholar] [CrossRef]
- Inman-Bamber, N.G.; Lakshmanan, P.; Park, S. Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Res. 2012, 134, 95–104. [Google Scholar] [CrossRef]
- Silva, M.D.A.; Silva, J.A.G.D.; Enciso, J.; Sharma, V.; Jifon, J. Yield components as indicators of drought tolerance of sugarcane. Sci. Agric. 2008, 65, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Nawae, W.; Shearman, J.R.; Tangphatsornruang, S.; Punpee, P.; Yoocha, T.; Sangsrakru, D.; Naktang, C.; Sonthirod, C.; Wirojsirasak, W.; Ukoskit, K.; et al. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ 2020, 8, e9608. [Google Scholar] [CrossRef]
- Li, C.; Nong, Q.; Solanki, M.K.; Liang, Q.; Xie, J.; Liu, X.; Li, Y.; Wang, W.; Yang, L.; Li, Y. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci. Rep. 2016, 6, 25698. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Gao, L.; Hu, W.; Gao, Q.; Yang, B.; Zhou, J.; Xu, C. Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum. Sustainability 2022, 14, 14339. [Google Scholar] [CrossRef]
- Negisho, K.; Shibru, S.; Matros, A.; Pillen, K.; Ordon, F.; Wehner, G. Association Mapping of Drought Tolerance Indices in Ethiopian Durum Wheat (Triticum turgidum ssp. durum). Front. Plant Sci. 2022, 13, 838088. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Song, S.; Wang, W.; Wang, C.; Li, H.; Wang, F.; Li, S.; Sun, X. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol. 2020, 20, 321. [Google Scholar] [CrossRef] [PubMed]
- Balding, D.J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 2006, 7, 781–791. [Google Scholar] [CrossRef]
- Anderson, J.T.; Willis, J.H.; Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 2011, 27, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingvarsson, P.K.; Street, N.R. Association genetics of complex traits in plants. New Phytol. 2011, 189, 909–922. [Google Scholar] [CrossRef]
- Fickett, N.; Gutierrez, A.; Verma, M.; Pontif, M.; Hale, A.; Kimbeng, C.; Baisakh, N. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics 2019, 111, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Chanroj, V.; Rattanawong, R.; Phumichai, T.; Tangphatsornruang, S.; Ukoskit, K. Genome-wide association mapping of latex yield and girth in Amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone. Genomics 2017, 109, 475–484. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Pflieger, S.; Lefebvre, V.; Causse, M. The candidate gene approach in plant genetics: A review. Mol. Breed. 2001, 7, 275–291. [Google Scholar] [CrossRef]
- Vander Woude, J.; Huisman, J.; Vander Berg, L.; Veenstra, J.; Bos, A.; Kalsbeek, A.; Koster, K.; Ryder, N.; Tintle, N.L. Evaluating the performance of gene-based tests of genetic association when testing for association between methylation and change in triglyceride levels at GAW20. BMC Proc. 2018, 12, 50. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Dalgleish, J.; Lee, J.; Wang, C.; Liu, L.; Gill, R.; Buxbaum, J.D.; Chung, W.K.; Aschard, H.; Silverman, E.K.; et al. Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. Proc. Natl. Acad. Sci. USA 2021, 118, e2105191118. [Google Scholar] [CrossRef] [PubMed]
- Khanbo, S.; Tangphatsornruang, S.; Piriyapongsa, J.; Wirojsirasak, W.; Punpee, P.; Klomsa-ard, P.; Ukoskit, K. Candidate gene association of gene expression data in sugarcane contrasting for sucrose content. Genomics 2021, 113, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Bhusudsawang, G.; Rattanawong, R.; Phumichai, T.; Pootakham, W.; Tangphatsornruang, S.; Ukoskit, K. Identification of Candidate Gene-Based Markers for Girth Growth in Rubber Trees. Plants 2021, 10, 1440. [Google Scholar] [CrossRef]
- Castiblanco, V.; Marulanda, J.J.; Würschum, T.; Miedaner, T. Candidate gene-based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet. 2017, 18, 49. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Pijut, P.M.; Byrne, S.; Asp, T.; Bai, G.; Jiang, Y. Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Sci. 2015, 235, 37–45. [Google Scholar] [CrossRef]
- Khonghintaisong, J.; Songsri, P.; Jongrungklang, N. Understanding Growth Rate Patterns among Different Drought Resistant Sugarcane Cultivars during Plant and Ratoon Crops Encountered Water Deficit at Early Growth Stage under Natural Field Conditions. Agronomy 2021, 11, 2083. [Google Scholar] [CrossRef]
- Xu, C.; Mao, J.; Li, X.; Burner, D.M.; Li, C.; Hussin Hussin, S.H.; Lin, X.; Liu, H.; Zhao, P.; Lu, X.; et al. Evaluation of drought tolerance in sugarcane genotypes using the membership function value of drought tolerance (MFVD). Euphytica 2023, 219, 37. [Google Scholar] [CrossRef]
- Bernardo, R. Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor. Appl. Genet. 2013, 126, 999–1009. [Google Scholar] [CrossRef]
- Inman-Bamber, N.G.; Smith, D.M. Water relations in sugarcane and response to water deficits. Field Crops Res. 2005, 92, 185–202. [Google Scholar] [CrossRef]
- Begum, M.; Islam, M. Effect of drought stress on yield and yield components of sugarcane. J. Agrofor. Environ. 2012, 6, 105–109. [Google Scholar]
- Ramesh, P.; Mahadevaswamy, M. Effect of Formative Phase Drought on Different Classes of Shoots, Shoot Mortality, Cane Attributes, Yield and Quality of Four Sugarcane Cultivars. J. Agron. Crop Sci. 2000, 185, 249–258. [Google Scholar] [CrossRef]
- Chumphu, S.; Jongrungklang, N.; Songsri, P. Association of Physiological Responses and Root Distribution Patterns of Ratooning Ability and Yield of the Second Ratoon Cane in Sugarcane Elite Clones. Agronomy 2019, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Song, J.; You, Q.; Paudel, D.R.; Zhang, J.; Wang, J. Mining sequence variations in representative polyploid sugarcane germplasm accessions. BMC Genom. 2017, 18, 594. [Google Scholar] [CrossRef] [Green Version]
- Bundock, P.C.; Casu, R.E.; Henry, R.J. Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant Biotechnol. J. 2012, 10, 657–667. [Google Scholar] [CrossRef]
- Yang, X.; Song, J.; Todd, J.; Peng, Z.; Paudel, D.; Luo, Z.; Ma, X.; You, Q.; Hanson, E.; Zhao, Z.; et al. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a “sweet” crop with “bitter” genomes. Plant Biotechnol. J. 2018, 17, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Pootakham, W.; Shearman, J.R.; Ruang-Areerate, P.; Sonthirod, C.; Sangsrakru, D.; Jomchai, N.; Yoocha, T.; Triwitayakorn, K.; Tragoonrung, S.; Tangphatsornruang, S. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz). PLoS ONE 2014, 9, e116028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muraya, M.M.; Schmutzer, T.; Ulpinnis, C.; Scholz, U.; Altmann, T. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition. PLoS ONE 2015, 10, e0132120. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Luo, Z.; Todd, J.; Sood, S.; Wang, J. Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). Plant Genome 2020, 13, e20006. [Google Scholar] [CrossRef] [Green Version]
- Ukoskit, K.; Posudsavang, G.; Pongsiripat, N.; Chatwachirawong, P.; Klomsa-ard, P.; Poomipant, P.; Tragoonrung, S. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics 2019, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Beavis, W.D. QTL Analyses: Power, Precision, and Accuracy. In Molecular Dissection of Complex Traits; Paterson, A.H., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 145–162. [Google Scholar]
- Schulz, P.; Piepenburg, K.; Lintermann, R.; Herde, M.; Schöttler, M.A.; Schmidt, L.K.; Ruf, S.; Kudla, J.; Romeis, T.; Bock, R. Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnol. J. 2021, 19, 74–86. [Google Scholar] [CrossRef]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H.; Shafqat, N. Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PLoS ONE 2019, 14, e0213407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.; Maruthi, N.M.; Jahn, C.E. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. J. Exp. Bot. 2015, 66, 4595–4606. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yan, M.; Li, L.; He, J.; Zhou, S.; Li, Z.; Niu, C.; Bao, C.; Zhi, F.; Ma, F.; et al. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. Hortic. Res. 2020, 7, 195. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzis, P.; Fragkostefanakis, S.; Dandachi, F.; Siomos, A. The role of prolyl 4-hydroxylases in tomato fruit ripening. Acta Hortic. 2010, 877, 999–1004. [Google Scholar] [CrossRef]
- Tilahun, S.; Choi, H.R.; Kwon, H.; Park, S.M.; Park, D.S.; Jeong, C.S. Transcriptome Analysis of ‘Haegeum’ Gold Kiwifruit Following Ethylene Treatment to Improve Postharvest Ripening Quality. Agronomy 2020, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Kesari, R.; Trivedi, P.K.; Nath, P. Ethylene-induced ripening in banana evokes expression of defense and stress-related genes in fruit tissue. Postharvest Biol. Technol. 2007, 46, 136–143. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, C.; Wang, M.; Liao, F.; Liao, Q.; Liu, X.; Li, Y.; Lakshmanan, P.; Long, M.; Huang, D. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biol. 2019, 19, 285. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Hassan, M.J.; Li, Z.; Peng, Y. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid-related genes and inhibiting senescence genes. BMC Plant Biol. 2020, 20, 150. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Li, S.; Luo, J.; Wang, X.; Shi, C. QTL mapping and transcriptome analysis of sugar content during fruit ripening of Pyrus pyrifolia. Front. Plant Sci. 2023, 14, 1137104. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.H.; Verde, N.; Lourenço, T.; Magalhães, A.P.; Tavares, R.M.; Bejarano, E.R.; Azevedo, H. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana. Plant Cell Physiol. 2015, 56, 2297–2311. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Cao, Y.; Ku, L.; Yao, W.; Cao, Y.; Ren, Z.; Dou, D.; Wang, H.; Ren, Z.; Liu, H.; et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J. Exp. Bot. 2018, 69, 5177–5189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, K.; Ju, Z.; Cao, D.; Fu, D.; Zhu, H.; Zhu, B.; Luo, Y. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genom. 2016, 17, 36. [Google Scholar] [CrossRef] [Green Version]
- Lian, C.; Li, Q.; Yao, K.; Zhang, Y.; Meng, S.; Yin, W.; Xia, X. Corrigendum: Populus trichocarpa PtNF-YA9, a Multifunctional Transcription Factor, Regulates Seed Germination, Abiotic Stress, Plant Growth and Development in Arabidopsis. Front. Plant Sci. 2018, 9, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stortenbeker, N.; Bemer, M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 2018, 70, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Gray, W.M. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. Mol. Plant 2015, 8, 1153–1164. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.C.; Olivares, F.L.; Peres, L.E.P.; Piccolo, A.; Canellas, L.P. Plant hormone crosstalk mediated by humic acids. Chem. Biol. Technol. Agric. 2022, 9, 29. [Google Scholar] [CrossRef]
- Guo, J.; Polymenis, M. Dcr2 targets Ire1 and downregulates the unfolded protein response in Saccharomyces cerevisiae. EMBO Rep. 2006, 7, 1124–1127. [Google Scholar] [CrossRef] [Green Version]
- Yoon, G.M.; Kieber, J.J. ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signal Behav. 2013, 8, e26478. [Google Scholar] [CrossRef] [Green Version]
- Young, T.E.; Meeley, R.B.; Gallie, D.R. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J. 2004, 40, 813–825. [Google Scholar] [CrossRef]
- Mathews, K.L.; Malosetti, M.; Chapman, S.; McIntyre, L.; Reynolds, M.; Shorter, R.; van Eeuwijk, F. Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor. Appl. Genet. 2008, 117, 1077–1091. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Park, J.B.; Cho, Y.J.; Jung, C.; Seo, H.S.; Park, S.K.; Nahm, B.H.; Song, J.T. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol. Cells 2010, 30, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Deng, P.; Saha, S.; Jenkins, J.; Hsu, C.-Y.; Abdurakhmonov, I.; Buriev, Z.; Pepper, A.; Ma, D.-P. Transcriptome Analysis of Ten-DPA Fiber in an Upland Cotton (Gossypium hirsutum) Line with Improved Fiber Traits from Phytochrome A1 RNAi Plants. Am. J. Plant Sci. 2017, 08, 2530–2553. [Google Scholar] [CrossRef] [Green Version]
- Oles, V.; Panchenko, A.; Smertenko, A. Modeling Hormonal Control of Cambium Proliferation. PLoS ONE 2017, 12, e0171927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbi, S.; Kumar, A.; Naraghi, S.; Sapkota, S.; Alamri, S.; Elias, E.; Kianian, S.; Seetan, R.; Missaoui, A.; Solanki, S.; et al. Identification of Main-Effect and Environmental Interaction QTL and Their Candidate Genes for Drought Tolerance in a Wheat RIL Population between Two Elite Spring Cultivars. Front. Genet. 2021, 12, 656037. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.J.; Zhang, F.J.; Zhang, G.Z.; Jiang, X.Y.; Yu, H.M.; Hou, B.K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3 contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2017, 89, 85–103. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Li, P.; Wang, T.; Zhang, F.J.; Huang, X.X.; Hou, B.K. The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses. Ann. Bot. 2018, 122, 1203–1217. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Y.-Q.; Huang, X.-X.; Mu, T.-J.; Li, Y.-J.; Li, X.-K.; Liu, X.; Hou, B.-K. Overexpression of OsUGT3 enhances drought and salt tolerance through modulating ABA synthesis and scavenging ROS in rice. Environ. Exp. Bot. 2021, 192, 104653. [Google Scholar] [CrossRef]
- de Medeiros, N.M.C.; de Medeiros, A.L.M.; Helaine Cristiane, S.; Katia Castanho, S. Recent Advances in Plant DNA Repair. In Advances in DNA Repair; Clark, C.C., Ed.; IntechOpen: Rijeka, Croatia, 2015; pp. 3–42. [Google Scholar]
- Tuteja, R.; Tuteja, N. Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa. Plant Physiol. Biochem. 2013, 71, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Roulin, A.; Auer, P.L.; Libault, M.; Schlueter, J.; Farmer, A.; May, G.; Stacey, G.; Doerge, R.W.; Jackson, S.A. The fate of duplicated genes in a polyploid plant genome. Plant J. 2013, 73, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Min, D.; Yasir, T.A.; Hu, Y.-G. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res. 2012, 137, 195–201. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 28 June 2023).
- Gawel, N.J.; Jarret, R.L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Report. 1991, 9, 262–266. [Google Scholar] [CrossRef]
- Iskandar, H.M.; Casu, R.E.; Fletcher, A.T.; Schmidt, S.; Xu, J.; Maclean, D.J.; Manners, J.M.; Bonnett, G.D. Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol. 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alter, S.; Bader, K.C.; Spannagl, M.; Wang, Y.; Bauer, E.; Schön, C.-C.; Mayer, K.F.X. DroughtDB: An expert-curated compilation of plant drought stress genes and their homologs in nine species. Database 2015, 2015, bav046. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Vargas, L.; Santa Brígida, A.B.; Mota Filho, J.P.; de Carvalho, T.G.; Rojas, C.A.; Vaneechoutte, D.; Van Bel, M.; Farrinelli, L.; Ferreira, P.C.G.; Vandepoele, K.; et al. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways. PLoS ONE 2014, 9, e114744. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.A.; Maruyama, K.; Abe, H.; Khan, M.A.; Katsura, K.; Ito, Y.; Yoshiwara, K.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses. Plant Physiol. 2003, 133, 1755–1767. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, J.; Shang, H.; Huang, Y.; Yao, W.; Chen, B.; Zhang, M. Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Sci. Rep. 2018, 8, 1683. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthies, I.E.; van Hintum, T.; Weise, S.; Röder, M.S. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol. Breed. 2012, 30, 951–966. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef] [Green Version]
Traits | Non-Stressed | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CL | CD | IL | SCW | NMC | CY | CCS | FB | BR | PO | PU | SY | ||
Water Stressed | CL | 0.60 ** | −0.06 | 0.70 ** | 0.26 ** | 0.11 | 0.35 ** | −0.36 ** | 0.36 ** | −0.20 * | −0.33 ** | −0.38 ** | −0.06 |
CD | −0.05 | 0.82 ** | −0.26 ** | 0.90 ** | −0.83 ** | 0.45 ** | 0.44 ** | −0.68 ** | 0.04 | 0.34 ** | 0.51 ** | 0.58 ** | |
IL | 0.71 ** | −0.36 ** | 0.63 ** | −0.03 | 0.28 ** | 0.26 ** | −0.36 ** | 0.43 ** | −0.19 * | −0.31 ** | −0.39 ** | −0.11 | |
SCW | 0.19 * | 0.77 ** | −0.29 ** | 0.72 ** | −0.74 ** | 0.58 ** | 0.31 ** | −0.52 ** | −0.01 | 0.23 ** | 0.38 ** | 0.57 ** | |
NMC | 0.45 ** | −0.55 ** | 0.59 ** | −0.41 ** | 0.78 ** | −0.14 | −0.49 ** | 0.70 ** | −0.08 | −0.39 ** | −0.56 ** | −0.40 ** | |
CY | 0.49 ** | 0.26 ** | 0.25 ** | 0.35 ** | 0.50 ** | 0.35 ** | 0.01 | −0.25 ** | −0.18 * | −0.05 | 0.07 | 0.60 ** | |
CCS | −0.48 ** | 0.28 ** | −0.49 ** | 0.15 | −0.50 ** | −0.26 ** | 0.82 ** | −0.49 ** | 0.77 ** | 0.97 ** | 0.93 ** | 0.77 ** | |
FB | 0.51 ** | −0.60 ** | 0.69 ** | −0.45 ** | 0.64 ** | 0.08 | −0.61 ** | 0.89 ** | 0.01 | −0.34 ** | −0.60 ** | −0.48 ** | |
BR | −0.34 ** | −0.05 | −0.16 * | −0.19 * | −0.19 * | −0.33 ** | 0.70 ** | −0.08 | 0.69 ** | 0.86 ** | 0.56 ** | 0.51 ** | |
PO | −0.44 ** | 0.09 | −0.38 ** | −0.02 | −0.36 ** | −0.30 ** | 0.93 ** | −0.38 ** | 0.83 ** | 0.74 ** | 0.87 ** | 0.72 ** | |
PU | −0.46 ** | 0.28 ** | −0.53 ** | 0.20 * | −0.52 ** | −0.22 ** | 0.92 ** | −0.62 ** | 0.49 ** | 0.87 ** | 0.74 ** | 0.77 ** | |
SY | 0.16 * | 0.42 ** | −0.10 | 0.44 ** | 0.12 | 0.77 ** | 0.39 ** | −0.32 ** | 0.13 | 0.29 ** | 0.37 ** | 0.40 ** |
Traits | Non-stressed | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CL | CD | IL | SCW | NMC | CY | CCS | FB | BR | PO | PU | SY | RA | ||
Water Stressed | CL | 0.47 ** | −0.40 ** | 0.73 ** | 0.02 | 0.39 ** | 0.37 ** | −0.25 ** | 0.44 ** | −0.15 | −0.19 * | −0.24 ** | 0.08 | 0.30 ** |
CD | −0.14 | 0.78 ** | −0.36 ** | 0.78 ** | −0.83 ** | 0.25 ** | 0.23 * | −0.59 ** | −0.01 | 0.12 | 0.25 ** | 0.34 ** | −0.22 * | |
IL | 0.63 ** | −0.32 ** | 0.56 ** | −0.11 | 0.35 ** | 0.20 * | −0.33 ** | 0.41 ** | −0.24 ** | −0.33 ** | −0.39 ** | −0.11 | 0.10 | |
SCW | 0.43 ** | 0.59 ** | −0.06 | 0.44 ** | −0.74 ** | 0.57 ** | 0.20 * | −0.47 ** | −0.02 | 0.10 | 0.22 * | 0.55 ** | 0.08 | |
NMC | 0.51 ** | −0.11 | 0.43 ** | 0.08 | 0.43 ** | −0.05 | −0.36 ** | 0.60 ** | −0.15 | −0.28 ** | −0.38 ** | −0.31 ** | 0.31 ** | |
CY | 0.54 ** | 0.25 ** | 0.36 ** | 0.43 ** | 0.77 ** | 0.23 * | −0.07 | −0.20 * | −0.19 * | −0.14 | −0.08 | 0.64 ** | 0.57 ** | |
CCS | −0.23 * | 0.13 | −0.30 ** | 0.10 | −0.35 ** | −0.23 * | 0.62 ** | −0.35 ** | 0.85 ** | 0.95 ** | 0.95 ** | 0.70 ** | 0.02 | |
FB | 0.23 * | −0.39 ** | 0.29 ** | −0.21 * | 0.28 ** | 0.02 | −0.56 ** | 0.62 ** | −0.02 | −0.19* | −0.36 ** | −0.39 ** | 0.02 | |
BR | −0.01 | −0.24 ** | −0.02 | −0.11 | −0.12 | −0.25 ** | 0.61 ** | −0.04 | 0.41 ** | 0.93 ** | 0.78 ** | 0.51 ** | 0.04 | |
PO | −0.15 | 0.03 | −0.17 | 0.07 | −0.28 ** | −0.22 * | 0.88 ** | −0.41 ** | 0.77 ** | 0.48 ** | 0.94 ** | 0.62 ** | 0.02 | |
PU | −0.20 * | 0.20 * | −0.25 ** | 0.17 | −0.33 ** | −0.18 * | 0.86 ** | −0.56 ** | 0.48 ** | 0.92 ** | 0.53 ** | 0.66 ** | −0.01 | |
SY | 0.35 ** | 0.31 ** | 0.17 | 0.44 ** | 0.47 ** | 0.80 ** | 0.29 ** | −0.30 ** | 0.06 | 0.26 ** | 0.31 ** | 0.15 | 0.43 ** | |
RA | 0.37 ** | 0.20 * | 0.30 ** | 0.24 ** | 0.57 ** | 0.73 ** | −0.11 | −0.11 | −0.16 | −0.11 | −0.07 | 0.61 ** | 0.07 |
Trait | Mean | SD | Min | Max | CV (%) |
---|---|---|---|---|---|
Plant cane | |||||
DCCL | 0.78 | 0.09 | 0.54 | 1.15 | 14.03 |
DCCD | 0.99 | 0.10 | 0.75 | 1.32 | 11.23 |
DCIL | 0.88 | 0.13 | 0.58 | 1.32 | 13.93 |
DCSCW | 0.71 | 0.19 | 0.25 | 1.62 | 21.65 |
DCNMC | 0.86 | 0.26 | 0.35 | 1.83 | 15.80 |
DCCY | 0.64 | 0.26 | 0.11 | 1.54 | 21.74 |
DCSY | 0.67 | 0.30 | 0.10 | 1.78 | 25.34 |
MFVD | 0.37 | 0.11 | 0.13 | 0.70 | 17.10 |
Ratoon cane | |||||
DCCL | 0.61 | 0.11 | 0.33 | 0.97 | 14.69 |
DCCD | 0.84 | 0.10 | 0.56 | 1.12 | 9.43 |
DCIL | 0.64 | 0.11 | 0.40 | 0.90 | 14.93 |
DCSCW | 0.63 | 0.28 | 0.20 | 1.71 | 27.15 |
DCNMC | 0.71 | 0.36 | 0.13 | 1.70 | 28.29 |
DCCY | 0.51 | 0.30 | 0.12 | 1.45 | 30.86 |
DCSY | 0.40 | 0.29 | 0.09 | 1.88 | 33.60 |
MFVD | 0.36 | 0.13 | 0.11 | 0.67 | 23.19 |
Traits | Plant Cane | ||||||||
---|---|---|---|---|---|---|---|---|---|
DCCL | DCCD | DCIL | DCSCW | DCNMC | DCCY | DCSY | MFVD | ||
Ratoon Cane | DCCL | 0.42 ** | 0.36 ** | 0.55 ** | 0.46 ** | 0.21 * | 0.51 ** | 0.34 ** | 0.71 ** |
DCCD | 0.15 | 0.14 | 0.29 ** | 0.40 ** | 0.18 * | 0.42 ** | 0.29 ** | 0.63 ** | |
DCIL | 0.59 ** | 0.14 | 0.40 ** | −0.06 | 0.08 | 0.25 ** | 0.04 | 0.46 ** | |
DCSCW | 0.60 ** | 0.28 ** | 0.30 ** | 0.29 ** | 0.14 | 0.40 ** | 0.32 ** | 0.53 ** | |
DCNMC | 0.25 ** | 0.24 ** | 0.14 | 0.05 | 0.27 ** | 0.73 ** | 0.68 ** | 0.67 ** | |
DCCY | 0.43 ** | 0.34 ** | 0.24 ** | 0.38 ** | 0.79 ** | 0.37 ** | 0.84 ** | 0.90 ** | |
DCSY | 0.41 ** | 0.18 * | 0.22 * | 0.31 ** | 0.73 ** | 0.85 ** | 0.24 ** | 0.76 ** | |
MFVD | 0.71 ** | 0.48 ** | 0.56 ** | 0.60 ** | 0.70 ** | 0.87 ** | 0.79 ** | 0.35 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirojsirasak, W.; Songsri, P.; Jongrungklang, N.; Tangphatsornruang, S.; Klomsa-ard, P.; Ukoskit, K. A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane. Int. J. Mol. Sci. 2023, 24, 12801. https://doi.org/10.3390/ijms241612801
Wirojsirasak W, Songsri P, Jongrungklang N, Tangphatsornruang S, Klomsa-ard P, Ukoskit K. A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane. International Journal of Molecular Sciences. 2023; 24(16):12801. https://doi.org/10.3390/ijms241612801
Chicago/Turabian StyleWirojsirasak, Warodom, Patcharin Songsri, Nakorn Jongrungklang, Sithichoke Tangphatsornruang, Peeraya Klomsa-ard, and Kittipat Ukoskit. 2023. "A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane" International Journal of Molecular Sciences 24, no. 16: 12801. https://doi.org/10.3390/ijms241612801
APA StyleWirojsirasak, W., Songsri, P., Jongrungklang, N., Tangphatsornruang, S., Klomsa-ard, P., & Ukoskit, K. (2023). A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane. International Journal of Molecular Sciences, 24(16), 12801. https://doi.org/10.3390/ijms241612801