Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the CS Catalyst Support
2.2. Characterization of the Pd/CS Catalysts
2.3. Results of the Hydrogenation Reactions
3. Materials and Methods
3.1. Materials
3.2. Characterization Techniques
3.3. Preparation of the “Carbon Snake” Carbon-Foil
3.4. Deposition of the Catalytically Active Palladium Metal Nanoparticles onto the Surface of the Carbon Nanofoils of CS
3.5. Catalytic Tests of the Carbon-Foil-Supported Catalyst in Benzophenone Hydrogenation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.P.; Pandey, A.K. A Novel Catalytic Method for the Alkylation of Benzene to Diphenylmethane over H-ZSM-5 Zeolite Catalysts. Catal. Lett. 1999, 60, 157–159. [Google Scholar] [CrossRef]
- Beck, U.; Bayer, A.G. Ullmann’s Encyclopedia of Industrial Chemistry; Gerhartz, W., Ed.; Weinheim: New York, NY, USA, 1985; Volume 13. [Google Scholar]
- Peng, Y.; Richardson, J.T. Properties of Ceramic Foam Catalyst Supports: One-Dimensional and Two-Dimensional Heat Transfer Correlations. Appl. Catal. A Gen. 2004, 266, 235–244. [Google Scholar] [CrossRef]
- Shi, H.; Wang, S.; Qin, L.; Gui, C.; Zhang, X.; Fang, L.; Chen, S.; Tang, B.Z. Construction of Two AIE Luminogens Comprised of a Tetra-/Tri-Phenylethene Core and Carbazole Units for Non-Doped Organic Light-Emitting Diodes. Dye. Pigment. 2018, 149, 323–330. [Google Scholar] [CrossRef]
- Chan, C.Y.K.; Lam, J.W.Y.; Deng, C.; Chen, X.; Wong, K.S.; Tang, B.Z. Synthesis, Light Emission, Explosive Detection, Fluorescent Photopatterning, and Optical Limiting of Disubstituted Polyacetylenes Carrying Tetraphenylethene Luminogens. Macromolecules 2015, 48, 1038–1047. [Google Scholar] [CrossRef]
- Dusan, J.E. Preparation of Diphenylmethane 1979. U.S. Patent US4251675A, 17 February 1981. [Google Scholar]
- Prekob; Vanyorek, L.; Fejes, Z. Hydrogenation of Benzophenone by Carbon-Supported Pd Catalysts. Mater. Today Chem. 2021, 19, 100409. [Google Scholar] [CrossRef]
- Kumbhar, P.S.; Rajadhyaksha, R.A. Liquid Phase Catalytic Hydrogenation of Benzophenone: Role of Metal Support Interaction, Bimetallic Catalysts, Solvents and Additives. Stud. Surf. Sci. Catal. 1993, 78, 251–258. [Google Scholar] [CrossRef]
- Bai, G.; Niu, L.; Zhao, Z.; Li, N.; Li, F.; Qiu, M.; He, F.; Chen, G.; Ma, Z. Ni-La-B Amorphous Alloys Supported on SiO2 and γ-Al2O3 for Selective Hydrogenation of Benzophenone. J. Mol. Catal. A Chem. 2012, 363–364, 411–416. [Google Scholar] [CrossRef]
- Bawane, S.P.; Sawant, S.B. Kinetics of Liquid-Phase Catalytic Hydrogenation of Benzophenone to Benzhydrol. Org. Process Res. Dev. 2009, 7, 769–773. [Google Scholar] [CrossRef]
- Bai, G.; Niu, L.; Qiu, M.; He, F.; Fan, X.; Dou, H.; Zhang, X. Liquid-Phase Selective Hydrogenation of Benzophenone over Ultrasonic-Assisted Ni–La–B Amorphous Alloy Catalyst. Catal. Commun. 2010, 12, 212–216. [Google Scholar] [CrossRef]
- Karczmarska, A.; Adamek, M.; El Houbbadi, S.; Kowalczyk, P.; Laskowska, M. Carbon-Supported Noble-Metal Nanoparticles for Catalytic Applications—A Review. Crystals 2022, 12, 584. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, R.; Xu, Y.; Zhang, L.; Liu, P.; Chen, Q. Adsorbate-Mediated Deposition of Noble-Metal Nanoparticles on Carbon Substrates for Electrocatalysis. ACS Appl. Energy Mater. 2020, 3, 6460–6465. [Google Scholar] [CrossRef]
- Zhou, R.; Qiao, S.Z. Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. Chem. Mater. 2014, 26, 5868–5873. [Google Scholar] [CrossRef]
- Lam, E.; Luong, J.H.T. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393–3410. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhao, Q.; Li, D.; Wang, J.Q.; Cho, M.; Cho, H.; Terasaki, O.; Chen, S.; Wan, Y. Highly Active Heterogeneous 3 Nm Gold Nanoparticles on Mesoporous Carbon as Catalysts for Low-Temperature Selective Oxidation and Reduction in Water. ACS Catal. 2015, 5, 797–802. [Google Scholar] [CrossRef]
- Liu, X.; Villacorta, R.; Adame, A.; Kannan, A.M. Comparison of Pt/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2011, 36, 10877–10883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, L. Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catal. 2015, 5, 7244–7253. [Google Scholar] [CrossRef]
- Yoo, J.S.; Zhao, Z.J.; Nørskov, J.K.; Studt, F. Effect of Boron Modifications of Palladium Catalysts for the Production of Hydrogen from Formic Acid. ACS Catal. 2015, 5, 6579–6586. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Jang, S.; Yu, J.-h.; Yoo, J.S.; Oh, J. Effect of Facile Nitrogen Doping on Catalytic Performance of NaW/Mn/SiO2 for Oxidative Coupling of Methane. Appl. Catal. B Environ. 2021, 292, 120161. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Dai, Y.; Han, X.; Xing, B.; Zhu, L.; Qiu, K.; Wang, S. A Novel Approach for Preparing In-Situ Nitrogen Doped Carbon via Pyrolysis of Bean Pulp for Supercapacitors. Energy 2021, 216, 119227. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, T.; Qiao, Y.; Chen, Y.; Zhang, L. In Situ Synthesis of Nitrogen Doped Carbon with Embedded Co@Co3O4 Nanoparticles as a Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Chem. Commun. 2018, 54, 12746–12749. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, S.; Xie, J.; Liu, J.; Tian, J.; Wang, P.; Zou, Z. Effect of Nitrogen-Doped PtRu/Graphene Catalyst on Its Activity and Durability for Methanol Oxidation. J. Appl. Electrochem. 2016, 46, 895–900. [Google Scholar] [CrossRef]
- Matus, E.V.; Suboch, A.N.; Lisitsyn, A.S.; Svinsitskiy, D.A.; Modin, E.; Chuvilin, A.; Ismagilov, Z.R.; Podyacheva, O.Y. Beneficial Role of the Nitrogen-Doped Carbon Nanotubes in the Synthesis of the Active Palladium Supported Catalyst. Diam. Relat. Mater. 2019, 98, 107484. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Bao, Y.; Wang, G.; Zhang, Y.; Fu, M.; Wu, J.; Ye, D. Roles of Nitrogen Species on Nitrogen-Doped CNTs Supported Cu-ZrO2 System for Carbon Dioxide Hydrogenation to Methanol. Catal. Today 2018, 307, 212–223. [Google Scholar] [CrossRef]
- Richardson, J.T.; Remue, D.; Hung, J.K. Properties of Ceramic Foam Catalyst Supports: Mass and Heat Transfer. Appl. Catal. A Gen. 2003, 250, 319–329. [Google Scholar] [CrossRef]
- Poshkus, A.C.; Parker, J.A. Studies on Nitroaniline–Sulfuric Acid Compositions: Aphrogenic Pyrostats. J. Appl. Polym. Sci. 1970, 14, 2049–2064. [Google Scholar] [CrossRef]
- Xing, Z.; Ju, Z.; Zhao, Y.; Wan, J.; Zhu, Y.; Qiang, Y.; Qian, Y. One-Pot Hydrothermal Synthesis of Nitrogen-Doped Graphene as High-Performance Anode Materials for Lithium Ion Batteries. Sci. Rep. 2016, 6, 26146. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chew, L.M.; Kostka, A.; Muhler, M.; Xia, W. The Structural and Electronic Promoting Effect of Nitrogen-Doped Carbon Nanotubes on Supported Pd Nanoparticles for Selective Olefin Hydrogenation. Catal. Sci. Technol. 2013, 3, 1964–1971. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- He, Z.; Su, A.; Gao, C.; Zhou, Z.; Pan, C.; Liu, S. Carbon Paper Modified by Hydrothermal Ammoniated Treatment for Vanadium Redox Battery. Ionics 2013, 19, 1021–1026. [Google Scholar] [CrossRef]
- Shlyakhova, E.V.; Bulusheva, L.G.; Kanygin, M.A.; Plyusnin, P.E.; Kovalenko, K.A.; Senkovskiy, B.V.; Okotrub, A.V. Synthesis of Nitrogen-Containing Porous Carbon Using Calcium Oxide Nanoparticles. Phys. Status Solidi 2014, 251, 2607–2612. [Google Scholar] [CrossRef]
- Geng, D.; Yang, S.; Zhang, Y.; Yang, J.; Liu, J.; Li, R.; Sham, T.K.; Sun, X.; Ye, S.; Knights, S. Nitrogen Doping Effects on the Structure of Graphene. Appl. Surf. Sci. 2011, 257, 9193–9198. [Google Scholar] [CrossRef]
- Zawadzki, J.; Wiśniewski, M. An Infrared Study of the Behavior of SO2 and NOx over Carbon and Carbon-Supported Catalysts. Catal. Today 2007, 119, 213–218. [Google Scholar] [CrossRef]
- Qiao, X.; She, T.; Zhang, H.; Wen, X.; Niu, L.; Ricardez-Sandoval, L.; Li, J.; Bai, G. One-Pot Synthesis of Porous Silica-Supported Ultrafine Ni Nanoparticles as Efficient and Stable Catalyst for Selective Hydrogenation of Benzophenone. Appl. Catal. B Environ. 2019, 259, 118111. [Google Scholar] [CrossRef]
- Cirtiu, C.M.; Brisach-Wittmeyer, A.; Ménard, H. Comparative Study of Catalytic and Electrocatalytic Hydrogenation of Benzophenone. Catal. Commun. 2007, 8, 751–754. [Google Scholar] [CrossRef]
Catalyst | Solvent | T (K) | p (bar) | BF Conv. (%) | BH SELECT. (%) | DPM Select. (%) | Ref. |
---|---|---|---|---|---|---|---|
Pd/CS | THF | 323 | 20 | 72 | 99 | 1 | This work |
Pd/CS | Isopropanol | 323 | 20 | 99 | - | 99 | This work |
Pd/CS | Methanol | 323 | 20 | 97 | 87 | 13 | This work |
Ni-Fe/TiO2 | Methanol–water–NaOH | 408 | 60 | 88 | 98.4 | N.A. | [8] |
Ni-Fe/TiO2 | Methanol | 408 | 60 | 86.7 | 84.5 | 13.9 | [8] |
Ni-Fe/TiO2 | Isopropanol | 408 | 60 | 86 | 80 | N.A. | [8] |
Ni-Fe/TiO2 | Cyclohexane | 408 | 60 | 84 | 58.8 | N.A. | [8] |
Pd/act. C | Isopropanol | 323 | 15 | 93 | 100 | - | [10] |
Ni-La-B | Methanol | 403 | 25 | 99.8 | 90 | 6.9 | [11] |
Raney Ni | Methanol | 403 | 25 | 31.3 | 78.1 | 1 | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prekob, Á.; Hajdu, V.; Fejes, Z.; Kristály, F.; Viskolcz, B.; Vanyorek, L. Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone. Int. J. Mol. Sci. 2023, 24, 12211. https://doi.org/10.3390/ijms241512211
Prekob Á, Hajdu V, Fejes Z, Kristály F, Viskolcz B, Vanyorek L. Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone. International Journal of Molecular Sciences. 2023; 24(15):12211. https://doi.org/10.3390/ijms241512211
Chicago/Turabian StylePrekob, Ádám, Viktória Hajdu, Zsolt Fejes, Ferenc Kristály, Béla Viskolcz, and László Vanyorek. 2023. "Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone" International Journal of Molecular Sciences 24, no. 15: 12211. https://doi.org/10.3390/ijms241512211
APA StylePrekob, Á., Hajdu, V., Fejes, Z., Kristály, F., Viskolcz, B., & Vanyorek, L. (2023). Preparation and Testing of a Palladium-Decorated Nitrogen-Doped Carbon Foam Catalyst for the Hydrogenation of Benzophenone. International Journal of Molecular Sciences, 24(15), 12211. https://doi.org/10.3390/ijms241512211