Frontotemporal Dementia, Where Do We Stand? A Narrative Review
Abstract
:1. Introduction
2. Epidemiology
3. Clinical Manifestations
3.1. bvFTD
bvFTD Neurological Examination and Neuropsychological Profile
3.2. Language Variants of FTD (PPAs)
3.2.1. SvPPA
3.2.2. svPPA Neuropsychological Profile
3.2.3. nfvPPA
3.2.4. nfvPPA Neuropsychological Profile
3.2.5. lvPPA
3.3. rtvFTD
4. Genetics and Pathomechanism
4.1. MAPT
4.2. GRN
4.3. C9orf72
Causative Genes | |||||||
Gene | Chromosome | Mutations | Frequency | Protein Function | Neuropathology | Phenotypes | References |
C9orf72 | 9 | Intronic hexanucleotide repeat expansions | 10% | Nucleocytoplasmic transport, autophagy, intercellular trafficking | TDP-43 (types B, A), RNA foci, DRPs inclusions | FTD, ALS, FTD-ALS | [73,74,81,82,83,85] |
GRN | 17 | Frameshit, splicing, nonsense, deletions | 10% | Angiogenesis, wound healing, inflammation, lysosomal function, brain development, synapse functioning | TDP-43 type A | FTD, PPA, CBS | [73,74,96,97,99,100] |
MAPT | 17 | Missense, splicing, deletions, duplications | 10% | Microtubule stabilisation, assembly, neuronal activity, neurogenesis, iron transport, DNA maintenance | TAU | FTD, FTD with parkinsonism, PSP, CBS, AD | [73,74,86,87,88,89,105] |
TBK1 | 12 | Missense | 5% | Pattern recognition receptors signalling pathway upon viral infection, autophagy | TDP-43 types A, B | ALS, FTD, FTD-MND | [103,106,107] |
TARDBP | 1 | Missense | 1% | Encodes for TDP-43, RNA processing and metabolism, stress granule formation | TDP-43 | ALS, FTD with or without MND, FTD-MND plus hypokinetic or hyperkinetic movement disorders | [108,109] |
FUS | 16 | Missense | 1% | DNA and RNA metabolism, including DNA repair, transcription regulation, RNA splicing and export to the cytoplasm | FET | ALS | [110] |
CHMP2B | 3 | Splicing | <1% | Encodes for a component of ESCRT-III (endosomal sorting complex required for transport III), degradation of surface receptor proteins, formation of endocytic multivesicular bodies | UPS | FTD, ALS, FTD-MND | [111] |
VCP-1 | 9 | Missense | <1% | Organelle biogenesis, ubiquitin-dependent protein degradation, autophagy | TDP-43 type D | IBMPFD (Paget bone disease, inclusion body myositis and FTD), ALS, FTD-MND (MSP) | [112,113] |
SQSTM1 | 5 | Missense | <1% | NFkB signaling, apoptosis, transcription regulation, ubiquitin-mediated autophagy | TDP-43 | Paget bone disease, ALS, FTD, distal myopathy (MSP) | [114] |
CHCHD10 | 22 | Missense | <1% | OXPHOS regulation, maintenance of mitochondrial cristae morphology | Not classified, no TDP-43 accumulation | FTD-MND, mitochondrial myopathy | [115] |
OPTN | 10 | Missense, deletions | <1% | Vesicular trafficking, endocytic trafficking, NFkB signaling | TDP-43 type A | ALS, FTD-MND | [107] |
UBQLN2 | X | Missense | <1% | Regulation of proteasome-mediated ubiquinated proteins degradation | U | ALS with FTD | [116] |
TUBA4A | 2 | Missense | <1% | Microtubule network assembly | TDP-43 type A | ALS, FTD | [117] |
CCNF | 16 | Missense | <1% | Proteasomal degradation | TDP-43 | FTD-ALS | [118] |
TIA1 | 2 | Missense | <1% | Splicing regulation, translation repression | TDP-43 | ALS, FTD-ALS | [119] |
CYLD | 16 | Missense | <1% | Deubiquitination, negative regulator of NFkB | TDP-43 | FTD-ALS | [120] |
ABCA7 | 19 | Frameshit | <1% | Lipids transporter, phagocytosis | FTD | [75] | |
CTSF | 11 | Missense | <1% | Lysosomal protease | FTD | [75] | |
Risk Factors | |||||||
Gene | Chromosome | SNPs | Protein Function | Details | References | ||
TMEM106B | 7 | rs102004, rs6966915, rs1990622 | Transmembrane protein, late endosomes and lysosome functioning | Increased TMEM106B expression level (rs1990622 protect GRN and C9orf72 mutations carriers from developing FTD) | [121,122] | ||
RAB8/CTSC locus | 11 | rs302652 | Protein trafficking to lysosomal-related organelles, maturation of phagosomes/serine proteinases activation in immune and inflammatory response | 50% reduction in RAB8 mRNA level in blood | [123] | ||
HLA locus | 6 | rs1980493 | Immune system regulation | Changes in the methylation levels related to HLADRA in the frontal cortex | [123] | ||
GFRA2 | 8 | rs36196656 | Neuronal differentiation, proliferation and survival | Decreased GFRA2 expression level | [124] |
5. Neuropathology
- bvFTD: atrophy mainly affects the anterior cingulate cortex, anterior insula, striatum, amygdala, hypothalamus, and thalamus [129]. These interconnected areas form a salience network that allows us to focus attention on the internal and external stimuli of interest [130]. Approximately 15–20% of bvFTD results from mutations in the genes described above (MAPT, GRN, and C9orf72), resulting in slightly different patterns of alterations [8]. In particular, MAPT mutations result in a ventral degeneration pattern (initially affecting the amygdala, hippocampus, entorhinal cortex, and temporal pole) [131], whereas GRN mutations are associated with a lateral degeneration pattern [132], with frequent extension to areas not typical of bvFTD, particularly in the posterior regions, possibly for an overlap with AD pathology [133]. Regarding the C9orf72 hexanucleotide repeat expansion, the most common genetic cause of FTD, a mild but diffuse damage could be present [134], or a prevalence in the medial thalamus or, rarely, a cerebellar involvement [135]. In sporadic bvFTD, the most common neuropathological findings are Pick’s disease, FTLD-TDP (type B in particular), and corticobasal degeneration. As for FTD genetic forms, MAPT mutations cause a specific tauopathy, whereas GRN mutations are generally associated with FTLD-TDP type A. C9orf72 expansion also causes FTLD-TDP, but the subtype is less regular (however, type B is the most frequent) [128].
- svPPA: it is characterised by marked atrophy of the left anterior temporal lobe, progressively extending to the contralateral temporal lobe and the orbitofrontal and posterior brain areas [72]. In the late stages, atrophy is also evident in the cingulate cortex, thalamus, and hippocampal region [136]. It generally shows C-type TDP-43 inclusions, characterised by long dystrophic neurites [136,137], but also combinations of different protein aggregates, including TDP type A and B, tau, β-amyloid, and α-synuclein pathology, have been described [138,139,140].
- nfvPPA: the anterior areas of the language circuit are the most vulnerable, and in particular, the dominant inferior frontal lobe is almost always involved. Moreover, other areas of the dominant hemisphere, in particular the anterior opercular and perisylvian ones, the anterior insula, and the superior temporal gyrus, are often affected [36]. Tau-positive inclusions are most commonly found [137], but TDP-43 and, in cases where agrammatism is not emphasised, even AD pathology have been highlighted [1].
- rtvFTD: atrophy usually starts in the right temporal lobe and then spreads to either the frontal or left temporal areas [141]. The most common findings are FTLD-TDP type C, tau-MAPT, and TDP type A and B. On the other hand, svFTD, i.e., its left counterpart, is associated with the TDP type C pathology [137,141,142]. Furthermore, associations with FUS [79] and TDP-E have very rarely been described [141,143]. Interestingly, this pathology is often associated with MND [144].
6. Diagnosis
6.1. Diagnostic Criteria of FTD
6.2. Neuroimaging
- bvFTD: bvFTD patients show bilateral medial prefrontal, right orbitofrontal, anterior insular cortex, and anterior cingulate cortex atrophy [1,149]. A smaller grey matter volume has been found in superior, middle, and inferior frontal gyrus, orbito-frontal, insular, temporal, and parahippocampal gyrus and hippocampus, compared to controls [150]. Furthermore, in bvFTD, there are significant volume reductions in striatum, bilateral globus pallidus, and left putamen [1]. Through resting-state functional MRI (fMRI), it is possible to show that patients with bvFTD have a preferential disruption of the intrahemispheric connectivity, in particular in the frontoinsular, temporal, and basal ganglia networks bilaterally [151]. The salience network (involving frontal-insula-anterior cingulate gyrus) also displays decreased functional connectivity [149]. Surprisingly, enhanced connectivity has been observed among the basal ganglia and relatively unaffected regions, although it is yet to be explained if this is a cause or a consequence of the disease [151]. Hypometabolism in FDG-PET mainly involves caudate nuclei, superior medial frontal cortex of both sides, right middle frontal gyrus and right inferior frontal cortex, left anterior cingulate cortex, and right inferior temporal gyrus [152]. Usually, it spreads from the frontal regions into parietal and temporal cortices [148].
- svPPA: in svPPA patients, the anterior temporal lobe atrophy is bilateral, usually asymmetrical, and typically left sided. Over time, it may involve the posterior temporal lobes and the inferior frontal lobes [149]. Volume reduction in the amygdala has been observed too [1]. White-matter atrophy has been shown in the temporal portions of the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and uncinate fasciculus bilaterally [137]. Hypometabolism has been demonstrated in the temporal lobe, with an asymmetric anteroposterior gradient (posterior more than anterior) in lateral temporal regions, mainly observed in the left hemisphere [148]. Metabolic decline has also been observed in bilateral anterior medial temporal, orbitofrontal, medial prefrontal, medial and inferolateral parietal cortices, and subcortical structures [148].
- nfvPPA: the atrophy in nfvPPA patients usually involves the anterior perisylvian cortex of the dominant hemisphere, in particular the left frontal operculum and Broca’s areas 44, 45, and 47 [149]. Over time, the atrophy expands into the left precentral, inferior, and middle frontal gyri, anterior insula, inferior parietal cortex, and subcortical structures [148]. White-matter atrophy has been observed, in particular involving the left superior longitudinal fasciculus and the body of the corpus callosum, as well as bilateral anterior corona radiata [137]. Hypometabolism has been demonstrated in the same areas by FDG-PET [1].
- rtvFTD: it has recently been introduced into FTD’s clinical syndromes. Consensus criteria for the diagnosis still need to be defined [55], and there are still few studies that describe the pattern of atrophy in this variant. MRI shows grey-matter volume loss of the right ventral frontal area and the left temporal lobe, similarly to svPPA. In particular, an MRI shows bilateral asymmetrical (right more than left) grey-matter atrophy in the anterior temporal lobes and in the right ventral frontal area. Right-sided grey-matter atrophy has been observed in the temporal poles, the superior, medial, and inferior temporal gyri, medial temporal lobe, insula, fusiform gyrus, angular gyrus, supramarginal gyrus, inferior frontal gyrus, gyrus rectus, and orbitofrontal cortex [61]. As the disease progresses, thinning in the orbitofrontal cortex and anterior cingulate has been reported [72].
Neuroimaging in Genetic FTD
6.3. Biomarkers
- Neurofilaments (NfLs): NfLs are a particular type of intermediate filaments and are fundamental components of the cytoskeleton in both the CNS and the periphery [165,166]. They are crucial in ensuring the stability of axons (especially the larger myelinised ones) [167], mitochondria, and the cytoskeletal content of microtubules [168,169]; at the synaptic level, they guarantee the structure and function of dendritic spines and glutamatergic and dopaminergic neurotransmission [170]. NfLs increase in many neurological diseases, reasonably because of damage and degeneration of axons [171], resulting in their release into the CSF and, subsequently, into the blood, in which they are usually present at a ratio of 1:40 to the CSF [172]. They seem to be able to identify FTD patients, especially those affected by bvFTD [173], as well as being a possible index of disease severity, since they correlate with survival [174]. Interestingly, values in the CSF correlate well with those in the blood [175], and values in presymptomatic subjects are lower than in symptomatic ones, allowing a possible follow-up [176]. Specifically, NfLs are above normal limits in all categories of FTD, i.e., bvFTD, nfvPPA, and svPPA [177], with the exception of lvPPA [178,179]. Furthermore, the increase in NfL values is more pronounced in FTD patients than in other neurodegenerative diseases, including AD [180], LBD, mixed dementia (vascular and AD-related), Parkinson’s disease dementia (PDD), and other types, with useful implications for differential diagnosis [181,182]. Moreover, given the close correlation between CSF and blood values of NfLs, measurements on blood samples have also been shown to distinguish FTD patients from healthy controls [183,184,185]. Another important aspect to emphasise is the ability of high values of NfLs to distinguish between FTD and primary psychiatric disorders, which is often clinically demanding [153,186]. Both NfL values in the CSF [187] and blood values [183] show utility from a prognostic point of view, as values at baseline correlate with the progression of cognitive deficits, assessed by the mini-mental-state examination (MMSE) and clinical dementia rating (CDR), as well as with survival [179,188]. Regarding the genetic forms of FTD, the highest values of NfLs in the CSF were shown in association with the GRN mutation [189], whereas the highest blood values were documented in patients with the C9orf72 expansion [190]. However, some potential concerns associated with the use of this biomarker must be considered: first, it is not sufficient on its own to make the diagnosis of FTD [191]; moreover, although it is generally believed that an increase in this biomarker reflects axonal damage, it could also be attributable to increased transport by exosomes or through active secretion [192] or reflect an alteration at the synaptic rather than the axonal site [193]. In addition, their drainage may occur along the intramural perivascular spaces and/or by lymphatic and glymphatic systems, so the mechanisms of transport from the CNS have not yet been fully elucidated [194]. Finally, the reason why levels are higher in FTD than in other types of dementia is not yet fully understood, as it could be due to a higher severity of FTD in terms of neurodegeneration [165] or subclinical motor neuron degeneration linked to a concomitant ALS, especially in a TDP-43 pathology [195]. Even considering these caveats, their diagnostic and prognostic value is clear, and further studies may delve into the still unresolved issues, also to design future clinical trials.
- TDP-43: TDP-43 is a highly conserved nuclear RNA/DNA-binding protein crucial for RNA processing regulation [196]. TDP-43-positive cytoplasmic inclusions are shown in about 50% of FTD patients, mostly in bvFTD [197] and in svPPA, sometimes in FTD-MND, and rarely in nfvPPA [159]. In particular, in bvFTD, the spread of the phosphorylated-TDP-43 (p-TDP-43) pathology encompasses four stages: in the first one, there are p-TDP-43 inclusions in the basal and anterior portions of the prefrontal neocortex and amygdala; in the second stage, p-TDP-43 spreads in the anteromedial area, superior and middle temporal gyri, and subsequently, striatum, and medial and lateral portions of the thalamus. In the third stage, the pathological burden is present in the motor cortex, neocortical areas, and spinal cord anterior horn. In the final stage, the inclusions spread to the occipital neocortex [195]. Notably, the spreading pathway is very similar to that of ALS, providing interesting clues about a possible pathological overlap [195]. Unfortunately, most of the CSF TDP-43 amount is due to the passage through the blood–brain barrier (BBB); thus, CSF levels do not reflect the precise neuropathological condition in the CNS [198]. Of note, both plasma and CSF levels of p-TDP-43 are higher in patients carrying the C9orf72 mutation, in comparison with other genetic variants [199]. Very interestingly, recent work by Scialò et al. highlighted the possibility of using RT-QuIC to identify the presence of TDP-43 on CSF, exploiting both the excellent level of technology achieved and the prion-like behaviour of the protein aggregates, providing considerable insight into the early detection of this finding in patients with ALS and FTD [200]. Furthermore, a very recent study showed the possibility of using a multimer detection system to assess the plasma oligomeric form of TDP-43, highlighting a significant increase in patients with svPPA compared to healthy controls and other neurodegenerative diseases, suggesting its usefulness as a plasma biomarker [201]. However, it is important to point out that TDP-43 forms various types of assemblies (e.g., monomers, dimers, oligomers, and aggregates), whose significance, in terms of function, phase separation, and aggregation, is not yet fully understood [202]. Further studies are therefore needed to clarify the role of this complex protein in the pathophysiology of FTD.
- Progranulin: it is a ubiquitous growth factor, which is important for tissue development, proliferation, and repair [159]; in particular, progranulin has been implicated in various brain mechanisms [203], including neurite outgrowth [204], stress response [205], TDP-43 aggregation [206], and synaptic function [207], although the evidence is not yet conclusive. It is reduced in the CSF of patients with bvFTD and svPPA (i.e., those with predominantly TDP-43 pathology) compared to those with nfvPPA (i.e., those with predominantly tau pathology) [159,208]. Importantly, patients with GRN mutations manifest reduced progranulin concentrations in both blood and CSF; thus, this index could be used to identify carriers of this mutation in the appropriate clinical context [209,210]. Moreover, the reduction in its levels is associated with complement activation in brain tissue, demonstrated by increases in complement fractions C1qa and C3B in the CSF during the disease course [211].
- β-amyloid and tau: according to the recent ATN classification, the presence of β-amyloid and tau (in CSF and/or in neuroimaging) is the neuropathological hallmark of AD [212]. β-amyloid, in particular, generally might help to rule out other dementias in the differential diagnosis, although overlaps in the neuropathological frame are sometimes observed, leading to inconsistencies between the clinical diagnosis and the neuropathological classification [213,214,215,216]. Thus, FTDs have lower levels of the secreted form of the amyloid precursor protein [217], and the combined use of altered NfL values and normal values of β-amyloid 42 allows patients with FTD to be differentiated with good sensitivity and specificity from AD ones or healthy controls [180]. The FTD subtype showing the lowest amount of typical AD biomarkers is bvFTD [218], and regardless of variant, all FTD patients have a lower ratio of phosphorylated tau (p-Tau) to total tau (t-Tau) [179]. The only exception is the so-called lvPPA, which, consistently, has neuropathological findings compatible with AD in the majority of cases and is now more commonly related to AD than FTD [57]. Concerning plasma markers, some studies have reported higher t-tau levels in patients with bvFTD and PPA compared to healthy controls [219], while a recent meta-analysis has shown that AD patients have higher p-tau values than those with FTD, underlining their potential role in the differential diagnosis [220].
- Glial fibrillary acidic protein (GFAP): astrogliosis, i.e., the inflammatory reaction against damage that characterises glial cells in various neuropathological contexts, including neurodegenerative diseases, can be assessed by measuring related markers, such as GFAP [221]. Interest in this marker is growing, as shown by recent studies that have documented a correlation between its plasma levels and β-amyloid pathology, and not tau pathology, in AD patients [222]. A recent literature review has shown altered levels of this marker, in particular in the plasma of subjects characterised by the GRN mutation and with higher levels in symptomatic patients than in presymptomatic ones, highlighting a potential prognostic role of this protein [220].
- Protein triggering receptor expressed on myeloid cells 2 (TREM2): TREM2 is an innate immunity receptor that characterises microglial cells, and its expression increases during phagocytosis, response to neuronal damage, and chemotaxis [223]. Therefore, it could be used as a marker of microglial activity in patients affected by FTD [159], and its soluble fraction (sTREM2) is measurable in both CSF and blood [199]. In particular, its CSF levels are elevated in GRN patients, whereas no significant differences have been documented between patients with FTD variants and healthy controls [224].
- Dipeptide repeats: the increased expression of polyglutamine (poly(GP)) linked to the expansion of C9orf72 is a characteristic feature of most familial forms of FTD [81]. This expansion results in the production of aberrant proteins (i.e., abnormal DPRs), which can be found in the CSF of patients with a specificity of 100% [178]. Notably, their levels are particularly high in symptomatic mutation carriers; thus, it might be a potential marker of disease activity [159].
Promising Biomarkers
6.4. Neurophysiology
7. FTD Animal Models
8. Treatments
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Olney, N.T.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Neurol. Clin. 2017, 35, 339–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesulam, M.M.; Wieneke, C.; Thompson, C.; Rogalski, E.; Weintraub, S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 2012, 135 Pt 5, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Brun, A. Identification and Characterization of Frontal Lobe Degeneration: Historical perspective on the development of FTD. Alzheimer Dis. Assoc. Disord. 2007, 21, S3–S4. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Piccininni, M.; Graff, C.; Hardiman, O.; Ludolph, A.C.; Moreno, F.; Otto, M.; Remes, A.M.; Rowe, J.B.; Seelaar, H.; et al. Incidence of Syndromes Associated with Frontotemporal Lobar Degeneration in 9 European Countries. JAMA Neurol. 2023, 80, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef] [Green Version]
- Onyike, C.U.; Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int. Rev. Psychiatry 2013, 25, 130–137. [Google Scholar] [CrossRef]
- Sosa-Ortiz, A.L.; Acosta-Castillo, I.; Prince, M.J. Epidemiology of Dementias and Alzheimer’s Disease. Arch. Med. Res. 2012, 43, 600–608. [Google Scholar] [CrossRef]
- Coyle-Gilchrist, I.T.; Dick, K.M.; Patterson, K.; Vázquez Rodríquez, P.; Wehmann, E.; Wilcox, A.; Lansdall, C.J.; Dawson, K.E.; Wiggins, J.; Mead, S.; et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016, 86, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Kwong, L.K.; Truax, A.C.; Vanmassenhove, B.; Kretzschmar, H.A.; Van Deerlin, V.M.; Clark, C.M.; Grossman, M.; Miller, B.L.; Trojanowski, J.Q.; et al. TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions. J. Neuropathol. Exp. Neurol. 2007, 66, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Seeley, W.W. Behavioral Variant Frontotemporal Dementia. Contin. Lifelong Learn. Neurol. 2019, 25, 76–100. [Google Scholar] [CrossRef]
- Gazzina, S.; Manes, M.A.; Padovani, A.; Borroni, B. Clinical and biological phenotypes of frontotemporal dementia: Perspectives for disease modifying therapies. Eur. J. Pharmacol. 2017, 817, 76–85. [Google Scholar] [CrossRef]
- Piguet, O.; Kumfor, F. Frontotemporal dementias: Main syndromes and underlying brain changes. Curr. Opin. Neurol. 2020, 33, 215–221. [Google Scholar] [CrossRef]
- Sheelakumari, R.; Bineesh, C.; Varghese, T.; Kesavadas, C.; Verghese, J.; Mathuranath, P.S. Neuroanatomical correlates of apathy and disinhibition in behavioural variant frontotemporal dementia. Brain Imaging Behav. 2020, 14, 2004–2011. [Google Scholar] [CrossRef]
- Warren, J.D.; Rohrer, J.D.; Rossor, M.N. Frontotemporal dementia. BMJ 2013, 347, f4827. [Google Scholar] [CrossRef] [Green Version]
- Hodges, J.R.; Piguet, O. Progress and Challenges in Frontotemporal Dementia Research: A 20-Year Review. J. Alzheimer’s Dis. 2018, 62, 1467–1480. [Google Scholar] [CrossRef]
- Convery, R.; Mead, S.; Rohrer, J.D. Review: Clinical, genetic and neuroimaging features of frontotemporal dementia. Neuropathol. Appl. Neurobiol. 2019, 45, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Harciarek, M.; Cosentino, S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int. Rev. Psychiatry 2013, 25, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Eslinger, P.J.; Moore, P.; Anderson, C.; Grossman, M.; Mendez, M.F.; Carr, A.R.; Jimenez, E.E.; Riedel, B.C.; Thompson, P.M.; Nowrangi, M.A.; et al. Social Cognition, Executive Functioning, and Neuroimaging Correlates of Empathic Deficits in Frontotemporal Dementia. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Gami-Patel, P.; van Dijken, I.; van Swieten, J.C.; Pijnenburg, Y.A.L.; Netherlands Brain Bank; Rozemuller, A.J.M.; Hoozemans, J.J.M.; Dijkstra, A.A. Von Economo neurons are part of a larger neuronal population that are selectively vulnerable in C9orf72 frontotemporal dementia. Neuropathol. Appl. Neurobiol. 2019, 45, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Ibañez, A.; Manes, F. Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology 2012, 78, 1354–1362. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.; Hornberger, M.; Piguet, O.; Hodges, J.R. Neural basis of music knowledge: Evidence from the dementias. Brain 2011, 134 Pt 9, 2523–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finger, E.C. Frontotemporal Dementias. Contin. Lifelong Learn. Neurol. 2016, 22, 464–489. [Google Scholar] [CrossRef] [Green Version]
- Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.; Roberts-South, A.; Benatar, M.; Hortobágyi, T.; et al. Amyotrophic lateral sclerosis—Frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.C.; Stopford, C.L.; Snowden, J.S.; Neary, D. Qualitative neuropsychological performance characteristics in frontotemporal dementia and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, C.; Hodges, J.R.; Hornberger, M. Neural Correlates of Episodic Memory in Behavioral Variant Frontotemporal Dementia. J. Alzheimer’s Dis. 2011, 24, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134 Pt 9, 2456–2477. [Google Scholar] [CrossRef]
- Valverde, A.H.; Jimenez-Escrig, A.; Gobernado, J.; Barón, M. A short neuropsychologic and cognitive evaluation of frontotemporal dementia. Clin. Neurol. Neurosurg. 2009, 111, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, S.; Chute, D.; Libon, D.; Moore, P.; Grossman, M. How does the brain support script comprehension? A study of executive processes and semantic knowledge in dementia. Neuropsychology 2006, 20, 307–318. [Google Scholar] [CrossRef]
- Possin, K.; Chester, S.K.; Laluz, V.; Bostrom, A.; Rosen, H.; Miller, B.L.; Kramer, J.K. The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia. J. Int. Neuropsychol. Soc. 2012, 18, 834–844. [Google Scholar] [CrossRef] [Green Version]
- Kumfor, F.; Piguet, O. Disturbance of Emotion Processing in Frontotemporal Dementia: A Synthesis of Cognitive and Neuroimaging Findings. Neuropsychol. Rev. 2012, 22, 280–297. [Google Scholar] [CrossRef]
- Kumfor, F.; Irish, M.; Hodges, J.R.; Piguet, O. Discrete Neural Correlates for the Recognition of Negative Emotions: Insights from Frontotemporal Dementia. PLoS ONE 2013, 8, e67457. [Google Scholar] [CrossRef] [Green Version]
- Bertoux, M.; Delavest, M.; de Souza, L.C.; Funkiewiez, A.; Lépine, J.P.; Fossati, P.; Sarazin, M. Social Cognition and Emotional Assessment differentiates frontotemporal dementia from depression. J. Neurol. Neurosurg. Psychiatry 2011, 83, 411–416. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.; Flanagan, S.; Martin, I.; Saunders, C. The ecological validity of TASIT: A test of social perception. Neuropsychol. Rehabil. 2014, 14, 285–302. [Google Scholar] [CrossRef]
- Kumfor, F.; Honan, C.; McDonald, S.; Hazelton, J.L.; Hodges, J.R.; Piguet, O. Assessing the “social brain” in dementia: Applying TASIT-S. Cortex 2017, 93, 166–177. [Google Scholar] [CrossRef]
- Hodges, J.R.; Mitchell, J.; Dawson, K.; Spillantini, M.G.; Xuereb, J.H.; McMonagle, P.; Nestor, P.J.; Patterson, K. Semantic dementia: Demography, familial factors and survival in a consecutive series of 100 cases. Brain 2010, 133 Pt 1, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Younes, K.; Miller, B.L. Neuropsychiatric Aspects of Frontotemporal Dementia. Psychiatr. Clin. N. A. 2020, 43, 345–360. [Google Scholar] [CrossRef]
- Botha, H.; Josephs, K.A. Primary Progressive Aphasias and Apraxia of Speech. Contin. Lifelong Learn. Neurol. 2019, 25, 101–127. [Google Scholar] [CrossRef]
- Josephs, K.A.; Whitwell, J.L.; Knopman, D.S.; Boeve, B.F.; Vemuri, P.; Senjem, M.L.; Parisi, J.E.; Ivnik, R.J.; Dickson, D.W.; Petersen, R.C., Jr.; et al. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 2009, 73, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Bott, N.T.; Radke, A.; Stephens, M.L.; Kramer, J.H. Frontotemporal dementia: Diagnosis, deficits and management. Neurodegener. Dis. Manag. 2014, 4, 439–454. [Google Scholar] [CrossRef] [Green Version]
- Rabinovici, G.D.; Miller, B.L. Frontotemporal Lobar Degeneration: Epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010, 24, 375–398. [Google Scholar] [CrossRef]
- Harris, J.M.; Saxon, J.A.; Jones, M.; Snowden, J.S.; Thompson, J.C. Neuropsychological differentiation of progressive aphasic disorders. J. Neuropsychol. 2019, 13, 214–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesulam, M.; Rogalski, E.; Wieneke, C.; Cobia, D.; Rademaker, A.; Thompson, C.; Weintraub, S. Neurology of anomia in the semantic variant of primary progressive aphasia. Brain 2009, 132 Pt 9, 2553–2565. [Google Scholar] [CrossRef]
- Shim, H.; Hurley, R.S.; Rogalski, E.; Mesulam, M.M. Anatomic, clinical, and neuropsychological correlates of spelling errors in primary progressive aphasia. Neuropsychologia 2012, 50, 1929–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butts, A.M.; Machulda, M.M.; Duffy, J.R.; Strand, E.A.; Whitwell, J.L.; Josephs, K.A. Neuropsychological Profiles Differ among the Three Variants of Primary Progressive Aphasia. J. Int. Neuropsychol. Soc. 2015, 21, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lippa, C.F. Clinical Subtypes of Frontotemporal Dementia. Am. J. Alzheimer’s Dis. Other Dementiasr. 2015, 30, 653–661. [Google Scholar] [CrossRef]
- Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol. 2012, 11, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.R.; Hardy, C.J.D.; Volkmer, A.; Russell, L.L.; Bond, R.L.; Fletcher, P.D.; Clark, C.N.; Mummery, C.J.; Schott, J.M.; Rossor, M.N.; et al. Primary progressive aphasia: A clinical approach. J. Neurol. 2018, 265, 1474–1490. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, S.; Mesulam, M.M.; Wieneke, C.; Rademaker, A.; Rogalski, E.J.; Thompson, C.K. The Northwestern Anagram Test: Measuring Sentence Production in Primary Progressive Aphasia. Am. J. Alzheimer’s Dis. Other Dementiasr. 2009, 24, 408–416. [Google Scholar] [CrossRef]
- Graham, N.L.; Leonard, C.; Tang-Wai, D.F.; Black, S.; Chow, T.W.; Scott, C.J.; McNeely, A.A.; Masellis, M.; Rochon, E. Lack of Frank Agrammatism in the Nonfluent Agrammatic Variant of Primary Progressive Aphasia. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 407–423. [Google Scholar] [CrossRef]
- Knibb, J.A.; Woollams, A.M.; Hodges, J.R.; Patterson, K. Making sense of progressive non-fluent aphasia: An analysis of conversational speech. Brain 2009, 132, 2734–2746. [Google Scholar] [CrossRef] [Green Version]
- Le Rhun, E.; Richard, F.; Pasquier, F. Natural history of primary progressive aphasia. Neurology 2005, 65, 887–891. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M.; et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Rosen, H.J.; Allison, S.C.; Ogar, J.M.; Amici, S.; Rose, K.; Dronkers, N.; Miller, B.L.; Gorno-Tempini, M.L. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 2006, 67, 1752–1756. [Google Scholar] [CrossRef]
- Mesulam, M.M.; Grossman, M.; Hillis, A.; Kertesz, A.; Weintraub, S. The core and halo of primary progressive aphasia and semantic dementia. Ann. Neurol. 2003, 54 (Suppl. S5), S11–S14. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Weigand, S.D.; Duffy, J.R.; Clark, H.M.; Strand, E.A.; Machulda, M.M.; Spychalla, A.J.; Senjem, M.L.; Jack, C.R., Jr.; Josephs, K.A. Predicting clinical decline in progressive agrammatic aphasia and apraxia of speech. Neurology 2017, 89, 2271–2279. [Google Scholar] [CrossRef]
- Boeve, B.F.; Boxer, A.L.; Kumfor, F.; Pijnenburg, Y.; Rohrer, J.D. Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022, 21, 258–272. [Google Scholar] [CrossRef]
- Teichmann, M.; Kas, A.; Boutet, C.; Ferrieux, S.; Nogues, M.; Samri, D.; Rogan, C.; Dormont, D.; Dubois, B.; Migliaccio, R. Deciphering logopenic primary progressive aphasia: A clinical, imaging and biomarker investigation. Brain 2013, 136 Pt 11, 3474–3488. [Google Scholar] [CrossRef]
- Henry, M.L.; Gorno-Tempini, M.L. The logopenic variant of primary progressive aphasia. Curr. Opin. Neurol. 2010, 23, 633–637. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Caso, F.; Mahoney, C.; Henry, M.; Rosen, H.J.; Rabinovici, G.; Rossor, M.N.; Miller, B.; Warren, J.D.; Fox, N.C.; et al. Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain Lang. 2013, 127, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.M.; Gall, C.; Thompson, J.C.; Richardson, A.M.; Neary, D.; du Plessis, D.; Pal, P.; Mann, D.M.; Snowden, J.S.; Jones, M. Classification and pathology of primary progressive aphasia. Neurology 2013, 81, 1832–1839. [Google Scholar] [CrossRef]
- González-Caballero, G.; Abellán-Miralles, I.; Sáenz-Sanjuan, M.J. Right temporal lobe variant of frontotemporal dementia. J. Clin. Neurosci. 2015, 22, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Ohyama, K.; Ueda, T. Early-stage right temporal lobe variant of frontotemporal dementia: 3 years of follow-up observations. BMJ Case Rep. 2018, 29, bcr2018224431. [Google Scholar] [CrossRef] [PubMed]
- Pozueta, A.; Lage, C.; García-Martínez, M.; Kazimierczak, M.; Bravo, M.; López-García, S.; Riancho, J.; González-Suarez, A.; Vázquez-Higuera, J.L.; de Arcocha-Torres, M.; et al. Cognitive and Behavioral Profiles of Left and Right Semantic Dementia: Differential Diagnosis with Behavioral Variant Frontotemporal Dementia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Harris, J.M.; Thompson, J.C.; Kobylecki, C.; Jones, M.; Richardson, A.M.; Neary, D. Semantic dementia and the left and right temporal lobes. Cortex 2018, 107, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Anderson, V.; Pijnenburg, Y.; Whitwell, J.; Barnes, J.; Scahill, R.; Stevens, J.M.; Barkhof, F.; Scheltens, P.; Rossor, M.N.; et al. The clinical profile of right temporal lobe atrophy. Brain 2009, 132 Pt 5, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Veronelli, L.; Makaretz, S.J.; Quimby, M.; Dickerson, B.C.; Collins, J.A. Geschwind Syndrome in frontotemporal lobar degeneration: Neuroanatomical and neuropsychological features over 9 years. Cortex 2017, 94, 27–38. [Google Scholar] [CrossRef]
- Joubert, S.; Felician, O.; Barbeau, E.; Ranjeva, J.-P.; Christophe, M.; Didic, M.; Poncet, M.; Ceccaldi, M. The right temporal lobe variant of frontotemporal dementia: Cognitive and neuroanatomical profile of three patients. J. Neurol. 2006, 253, 1447–1458. [Google Scholar] [CrossRef] [Green Version]
- Kamminga, J.; Kumfor, F.; Burrell, J.R.; Piguet, O.; Hodges, J.R.; Irish, M. Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An examination of clinical characteristics and emotion processing. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1082–1088. [Google Scholar] [CrossRef]
- Borghesani, V.; DeLeon, J.; Gorno-Tempini, M.L. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. Handb. Clin. Neurol. 2022, 187, 429–448. [Google Scholar] [CrossRef]
- Possin, K.L. Visual spatial cognition in neurodegenerative disease. Neurocase 2010, 16, 466–487. [Google Scholar] [CrossRef] [Green Version]
- Hornberger, M.; Piguet, O. Episodic memory in frontotemporal dementia: A critical review. Brain 2012, 135 Pt 3, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Kumfor, F.; Landin-Romero, R.; Devenney, E.; Hutchings, R.; Grasso, R.; Hodges, J.R.; Piguet, O. On the right side? A longitudinal study of left- versus right-lateralized semantic dementia. Brain 2016, 139 Pt 3, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Fenoglio, C.; Scarpini, E.; Serpente, M.; Galimberti, D. Role of Genetics and Epigenetics in the Pathogenesis of Alzheimer’s Disease and Frontotemporal Dementia. J. Alzheimer’s Dis. 2018, 62, 913–932. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Lorenz, G.; Volk, A.E.; Brunet, T.; Edbauer, D.; Berutti, R.; Zhao, C.; Anderl-Straub, S.; Bertram, L.; Danek, A.; et al. Clinico-genetic findings in 509 frontotemporal dementia patients. Mol. Psychiatry 2021, 26, 5824–5832. [Google Scholar] [CrossRef]
- Borroni, B.; Bonvicini, C.; Galimberti, D.; Tremolizzo, L.; Papetti, A.; Archetti, S.; Turla, M.; Alberici, A.; Agosti, C.; Premi, E.; et al. Founder effect and estimation of the age of the Progranulin Thr272fs mutation in 14 Italian pedigrees with frontotemporal lobar degeneration. Neurobiol. Aging 2011, 32, 555.e1–555.e8. [Google Scholar] [CrossRef]
- Barandiaran, M.; Estanga, A.; Moreno, F.; Indakoetxea, B.; Alzualde, A.; Balluerka, N.; Martí Massó, J.F.; López de Munain, A. Neuropsychological Features of Asymptomatic c.709-1G>A Progranulin Mutation Carriers. J. Int. Neuropsychol. Soc. 2012, 18, 1086–1090. [Google Scholar] [CrossRef]
- Floris, G.; Borghero, G.; Cannas, A.; Di Stefano, F.; Murru, M.R.; Corongiu, D.; Cuccu, S.; Tranquilli, S.; Cherchi, M.V.; Serra, A.; et al. Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J. Neurol. 2015, 262, 375–384. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Neumann, M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J. Neurochem. 2016, 138 (Suppl. S1), 54–70. [Google Scholar] [CrossRef]
- Kurtishi, A.; Rosen, B.; Patil, K.S.; Alves, G.W.; Møller, S.G. Cellular Proteostasis in Neurodegeneration. Mol. Neurobiol. 2019, 56, 3676–3689. [Google Scholar] [CrossRef]
- Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nat. Rev. Neurol. 2018, 14, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Beckers, J.; Tharkeshwar, A.K.; Van Damme, P. C9orf72 ALS-FTD: Recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021, 17, 3306–3322. [Google Scholar] [CrossRef] [PubMed]
- Lines, G.; Casey, J.M.; Preza, E.; Wray, S. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 2020, 109, 103553. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, L.; Yan, T.; Perry, G.; Wang, X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol. Cell. Neurosci. 2019, 100, 103396. [Google Scholar] [CrossRef]
- Houghton, O.H.; Mizielinska, S.; Gomez-Suaga, P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front. Cell Dev. Biol. 2022, 10, 838402. [Google Scholar] [CrossRef]
- Gomez-Suaga, P.; Mórotz, G.M.; Markovinovic, A.; Martín-Guerrero, S.M.; Preza, E.; Arias, N.; Mayl, K.; Aabdien, A.; Gesheva, V.; Nishimura, A.; et al. Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia. Aging Cell 2022, 21, e13549. [Google Scholar] [CrossRef]
- Lynch, T.; Sano, M.; Marder, K.S.; Bell, K.L.; Foster, N.L.; Defending, R.F.; Sima, A.A.; Keohane, C.; Nygaard, T.G.; Fahn, S.; et al. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia- parkinsonism-amyotrophy complex. Neurology 1994, 44, 1878. [Google Scholar] [CrossRef]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 22–35. [Google Scholar] [CrossRef]
- Kovacs, G.G. Tauopathies. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 145, pp. 355–368. [Google Scholar] [CrossRef]
- Rovelet-Lecrux, A.; Lecourtois, M.; Thomas-Anterion, C.; Le Ber, I.; Brice, A.; Frebourg, T.; Hannequin, D.; Campion, D. Partial deletion of the MAPT gene: A novel mechanism of FTDP-17. Hum. Mutat. 2009, 30, E591–E602. [Google Scholar] [CrossRef]
- Rovelet-Lecrux, A.; Hannequin, D.; Guillin, O.; Legallic, S.; Jurici, S.; Wallon, D.; Frebourg, T.; Campion, D. Frontotemporal Dementia Phenotype Associated with MAPT Gene Duplication. J. Alzheimer’s Dis. 2010, 21, 897–902. [Google Scholar] [CrossRef]
- Waheed, Z.; Choudhary, J.; Jatala, F.H.; Fatimah; Noor, A.; Zerr, I.; Zafar, S. The Role of Tau Proteoforms in Health and Disease. Mol. Neurobiol. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Boyarko, B.; Hook, V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front. Neurosci. 2021, 15, 702788. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Adams, J.; Harris, J.; Thompson, J.C.; Rollinson, S.; Richardson, A.; Jones, M.; Neary, D.; Mann, D.M.; Pickering-Brown, S. Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations. Amyotroph. Lateral Scler. Front. Degener. 2015, 16, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Epadovani, A.; Eborroni, B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front. Aging Neurosci. 2015, 7, 171. [Google Scholar] [CrossRef]
- Cruts, M.; Gijselinck, I.; van der Zee, J.; Engelborghs, S.; Wils, H.; Pirici, D.; Rademakers, R.; Vandenberghe, R.; Dermaut, B.; Martin, J.J.; et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006, 442, 920–924. [Google Scholar] [CrossRef]
- Paushter, D.H.; Du, H.; Feng, T.; Hu, F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 2018, 136, 1–17. [Google Scholar] [CrossRef]
- Yu, C.-E.; Bird, T.D.; Bekris, L.M.; Montine, T.J.; Leverenz, J.B.; Steinbart, E.; Galloway, N.M.; Feldman, H.; Woltjer, R.; Miller, C.A.; et al. The Spectrum of Mutations in Progranulin: A collaborative study screening 545 cases of neurodegeneration. Arch. Neurol. 2010, 67, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Boland, S.; Swarup, S.; Ambaw, Y.A.; Malia, P.C.; Richards, R.C.; Fischer, A.W.; Singh, S.; Aggarwal, G.; Spina, S.; Nana, A.L.; et al. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat. Commun. 2022, 13, 5924. [Google Scholar] [CrossRef]
- Bright, F.; Werry, E.L.; Dobson-Stone, C.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kassiou, M.; et al. Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 2019, 15, 540–555. [Google Scholar] [CrossRef]
- Renton, A.E.; Majounie, E.; Waite, A.; Simón-Saánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Farg, M.A.; Sundaramoorthy, V.; Sultana, J.M.; Yang, S.; Atkinson, R.A.; Levina, V.; Halloran, M.A.; Gleeson, P.A.; Blair, I.P.; Soo, K.Y.; et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 2014, 23, 3579–3595. [Google Scholar] [CrossRef]
- Shao, W.; Todd, T.W.; Wu, Y.; Jones, C.Y.; Tong, J.; Jansen-West, K.; Daughrity, L.M.; Park, J.; Koike, Y.; Kurti, A.; et al. Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science 2022, 378, 94–99. [Google Scholar] [CrossRef]
- Khan, B.K.; Yokoyama, J.S.; Takada, L.T.; Sha, S.J.; Rutherford, N.J.; Fong, J.C.; Karydas, A.M.; Wu, T.; Ketelle, R.S.; Baker, M.C.; et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J. Neurol. Neurosurg. Psychiatry 2012, 83, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Ghetti, B.; Wszolek, Z.K.; Boeve, B.F.; Spina, S.; Goedert, M. Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. In Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Chapter 14; pp. 110–134. [Google Scholar] [CrossRef]
- Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Müller, K.; Marroquin, N.; Nordin, F.; Hübers, A.; Weydt, P.; et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 2015, 18, 631–636. [Google Scholar] [CrossRef]
- Pottier, C.; Bieniek, K.F.; Finch, N.; van de Vorst, M.; Baker, M.; Perkersen, R.; Brown, P.; Ravenscroft, T.; van Blitterswijk, M.; Nicholson, A.M.; et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015, 130, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, G.G.; Murrell, J.R.; Horvath, S.; Haraszti, L.; Majtenyi, K.; Molnar, M.J.; Budka, H.; Ghetti, B.; Spina, S. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov. Disord. 2009, 24, 1842–1847. [Google Scholar] [CrossRef]
- Borghero, G.; Floris, G.; Cannas, A.; Marrosu, M.G.; Murru, M.R.; Costantino, E.; Parish, L.D.; Pugliatti, M.; Ticca, A.; Traynor, B.J.; et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol. Aging 2011, 32, 2327.e1–2327.e5. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Rademakers, R.; Roeber, S.; Baker, M.; Kretzschmar, H.A.; Mackenzie, I.R. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009, 132 Pt 11, 2922–2931. [Google Scholar] [CrossRef] [Green Version]
- Skibinski, G.; Parkinson, N.J.; Brown, J.M.; Chakrabarti, L.; Lloyd, S.L.; Hummerich, H.; Nielsen, J.E.; Hodges, J.R.; Spillantini, M.G.; Thusgaard, T.; et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 2005, 37, 806–808. [Google Scholar] [CrossRef]
- Watts, G.D.; Thomasova, D.; Ramdeen, S.K.; Fulchiero, E.C.; Mehta, S.G.; Drachman, D.A.; Weihl, C.C.; Jamrozik, Z.; Kwiecinski, H.; Kaminska, A.; et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin. Genet. 2007, 72, 420–426. [Google Scholar] [CrossRef]
- Johnson, J.O.; Mandrioli, J.; Benatar, M.; Abramzon, Y.; Van Deerlin, V.M.; Trojanowski, J.Q.; Gibbs, J.R.; Brunetti, M.; Gronka, S.; Wuu, J.; et al. Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. Neuron 2010, 68, 857–864, Erratum in Neuron 2011, 69, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Zee, J.; Van Langenhove, T.; Kovacs, G.G.; Dillen, L.; Deschamps, W.; Engelborghs, S.; Matěj, R.; Vandenbulcke, M.; Sieben, A.; Dermaut, B.; et al. Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathol. 2014, 128, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 2014, 137 Pt 8, 2329–2345. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.X.; Chen, W.; Hong, S.T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011, 477, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mol, M.O.; Wong, T.H.; Melhem, S.; Basu, S.; Viscusi, R.; Galjart, N.; Rozemuller, A.J.M.; Fallini, C.; Landers, J.E.; Kaat, L.D.; et al. Novel TUBA4A Variant Associated with Familial Frontotemporal Dementia. Neurol. Genet. 2021, 7, e596. [Google Scholar] [CrossRef]
- Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun. 2016, 7, 11253. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, I.R.; Nicholson, A.M.; Sarkar, M.; Messing, J.; Purice, M.D.; Pottier, C.; Annu, K.; Baker, M.; Perkerson, R.B.; Kurti, A.; et al. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 2017, 95, 808–816.e9. [Google Scholar] [CrossRef]
- Dobson-Stone, C.; Hallupp, M.; Shahheydari, H.; Ragagnin, A.M.G.; Chatterton, Z.; Carew-Jones, F.; Shepherd, C.E.; Stefen, H.; Paric, E.; Fath, T.; et al. CYLD is a causative gene for frontotemporal dementia—Amyotrophic lateral sclerosis. Brain 2020, 143, 783–799. [Google Scholar] [CrossRef]
- Van Deerlin, V.M.; Sleiman, P.M.; Martinez-Lage, M.; Chen-Plotkin, A.; Wang, L.S.; Graff-Radford, N.R.; Dickson, D.W.; Rademakers, R.; Boeve, B.F.; Grossman, M.; et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 2010, 42, 234–239. [Google Scholar] [CrossRef]
- Finch, N.; Carrasquillo, M.M.; Baker, M.; Rutherford, N.J.; Coppola, G.; DeJesus-Hernandez, M.; Crook, R.; Hunter, T.; Ghidoni, R.; Benussi, L.; et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 2011, 76, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Hernandez, D.G.; Nalls, M.A.; Rohrer, J.D.; Ramasamy, A.; Kwok, J.B.; Dobson-Stone, C.; Brooks, W.S.; Schofield, P.R.; Halliday, G.M.; et al. Frontotemporal dementia and its subtypes: A genome-wide association study. Lancet Neurol. 2014, 13, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Pottier, C.; Zhou, X.; Perkerson, R.B., 3rd; Baker, M.; Jenkins, G.D.; Serie, D.J.; Ghidoni, R.; Benussi, L.; Binetti, G.; López de Munain, A.; et al. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: A genome-wide association study. Lancet Neurol. 2018, 17, 548–558. [Google Scholar] [CrossRef] [Green Version]
- Brun, A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch. Gerontol. Geriatr. 1987, 6, 193–208. [Google Scholar] [CrossRef]
- Jones, D.T.; Knopman, D.S.; Graff-Radford, J.; Syrjanen, J.A.; Senjem, M.L.; Schwarz, C.G.; Dheel, C.; Wszolek, Z.; Rademakers, R.; Kantarci, K.; et al. In vivo 18F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms. Neurology 2018, 90, e947–e954. [Google Scholar] [CrossRef]
- Neumann, M.; MacKenzie, I.R.A. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 2019, 45, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.C.; Brown, J.A.; Possin, K.L.; Datta, S.; Trujillo, A.; Radke, A.; Karydas, A.; Kornak, J.; Sias, A.C.; Rabinovici, G.D.; et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 2017, 140, 3329–3345. [Google Scholar] [CrossRef] [Green Version]
- Seeley, W.W.; Crawford, R.; Rascovsky, K.; Kramer, J.H.; Weiner, M.; Miller, B.L.; Gorno-Tempini, M.L. Frontal Paralimbic Network Atrophy in Very Mild Behavioral Variant Frontotemporal Dementia. Arch. Neurol. 2008, 65, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Molnar-Szakacs, I.; Uddin, L.Q. Anterior insula as a gatekeeper of executive control. Neurosci. Biobehav. Rev. 2022, 139, 104736. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Jack, C.R., Jr.; Boeve, B.F.; Senjem, M.L.; Baker, M.; Ivnik, R.J.; Knopman, D.S.; Wszolek, Z.K.; Petersen, R.C.; Rademakers, R.; et al. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology 2009, 73, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; Rohrer, J.D.; Campbell, T.; Isaacs, A.; Morrison, K.E.; Goodall, E.F.; Warrington, E.K.; Stevens, J.; Revesz, T.; Holton, J.; et al. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 2008, 131 Pt 3, 706–720. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.C.; Lehmann, M.; Yokoyama, J.S.; Karydas, A.; Lee, J.J.; Coppola, G.; Grinberg, L.T.; Geschwind, D.; Seeley, W.W.; Miller, B.L.; et al. Progranulin Mutations as Risk Factors for Alzheimer Disease. JAMA Neurol. 2013, 70, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Boylan, K.B.; Graff-Radford, N.R.; DeJesus-Hernandez, M.; Knopman, D.S.; Pedraza, O.; Vemuri, P.; Jones, D.; Lowe, V.; Murray, M.E.; et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 2012, 135 Pt 3, 765–783. [Google Scholar] [CrossRef]
- Mahoney, C.J.; Beck, J.; Rohrer, J.D.; Lashley, T.; Mok, K.; Shakespeare, T.; Yeatman, T.; Warrington, E.K.; Schott, J.M.; Fox, N.C.; et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: Clinical, neuroanatomical and neuropathological features. Brain 2012, 135 Pt 3, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.H.; Wong, S.; Kril, J.J.; Piguet, O.; Hornberger, M.; Hodges, J.R.; Halliday, G.M. Beyond the temporal pole: Limbic memory circuit in the semantic variant of primary progressive aphasia. Brain 2014, 137 Pt 7, 2065–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinelli, E.G.; Mandelli, M.L.; Miller, Z.A.; Santos-Santos, M.A.; Wilson, S.M.; Agosta, F.; Grinberg, L.T.; Huang, E.J.; Trojanowski, J.Q.; Meyer, M.; et al. Typical and atypical pathology in primary progressive aphasia variants. Ann. Neurol. 2017, 81, 430–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelpi, E.; van der Zee, J.; Turon Estrada, A.; Van Broeckhoven, C.; Sanchez-Valle, R. TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol. Appl. Neurobiol. 2014, 40, 225–230. [Google Scholar] [CrossRef]
- Chare, L.; Hodges, J.R.; Leyton, C.E.; McGinley, C.; Tan, R.H.; Kril, J.J.; Halliday, G.M. New criteria for frontotemporal dementia syndromes: Clinical and pathological diagnostic implications. J. Neurol. Neurosurg. Psychiatry 2014, 85, 865–870. [Google Scholar] [CrossRef]
- Josephs, K.A.; Hodges, J.R.; Snowden, J.S.; Mackenzie, I.R.; Neumann, M.; Mann, D.M.; Dickson, D.W. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011, 122, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Ulugut, H.; Dijkstra, A.A.; Scarioni, M.; Netherlands Brain Bank; Barkhof, F.; Scheltens, P.; Rozemuller, A.J.M.; Pijnenburg, Y.A.L. Right temporal variant frontotemporal dementia is pathologically heterogeneous: A case-series and a systematic review. Acta Neuropathol. Commun. 2021, 9, 131. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Lashley, T.; Schott, J.M.; Warren, J.E.; Mead, S.; Isaacs, A.M.; Beck, J.; Hardy, J.; de Silva, R.; Warrington, E.; et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 2011, 134 Pt 9, 2565–2581. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.B.; Porta, S.; Michael Baer, G.; Xu, Y.; Suh, E.; Kwong, L.K.; Elman, L.; Grossman, M.; Lee, V.M.; Irwin, D.J.; et al. Expansion of the classification of FTLD-TDP: Distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017, 134, 65–78. [Google Scholar] [CrossRef]
- Ulugut Erkoyun, H.; Groot, C.; Heilbron, R.; Nelissen, A.; van Rossum, J.; Jutten, R.; Koene, T.; van der Flier, W.M.; Wattjes, M.P.; Scheltens, P.; et al. A clinical-radiological framework of the right temporal variant of frontotemporal dementia. Brain 2020, 143, 2831–2843. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Tahmasian, M.; Shao, J.; Meng, C.; Grimmer, T.; Diehl-Schmid, J.; Yousefi, B.H.; Förster, S.; Riedl, V.; Drzezga, A.; Sorg, C. Based on the Network Degeneration Hypothesis: Separating Individual Patients with Different Neurodegenerative Syndromes in a Preliminary Hybrid PET/MR Study. J. Nucl. Med. 2016, 57, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Vijverberg, E.G.; Wattjes, M.P.; Dols, A.; Krudop, W.A.; Möller, C.; Peters, A.; Kerssens, C.J.; Gossink, F.; Prins, N.D.; Stek, M.L.; et al. Diagnostic Accuracy of MRI and Additional [18F]FDG-PET for Behavioral Variant Frontotemporal Dementia in Patients with Late Onset Behavioral Changes. J. Alzheimer’s Dis. 2016, 53, 1287–1297. [Google Scholar] [CrossRef]
- Bejanin, A.; Tammewar, G.; Marx, G.; Cobigo, Y.; Iaccarino, L.; Kornak, J.; Staffaroni, A.M.; Dickerson, B.C.; Boeve, B.F.; Knopman, D.S.; et al. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology 2020, 95, e140–e154. [Google Scholar] [CrossRef]
- Narayanan, L.; Murray, A.D. What can imaging tell us about cognitive impairment and dementia? World J. Radiol. 2016, 8, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Möller, C.; Hafkemeijer, A.; Pijnenburg, Y.A.; Rombouts, S.A.; van der Grond, J.; Dopper, E.; van Swieten, J.; Versteeg, A.; Pouwels, P.J.; Barkhof, F.; et al. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study. NeuroImage Clin. 2015, 9, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Basaia, S.; Canu, E.; Imperiale, F.; Meani, A.; Caso, F.; Magnani, G.; Falautano, M.; Comi, G.; Falini, A.; et al. Brain network connectivity differs in early-onset neurodegenerative dementia. Neurology 2017, 89, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Buhour, M.-S.; Doidy, F.; Laisney, M.; Pitel, A.L.; de La Sayette, V.; Viader, F.; Eustache, F.; Desgranges, B. Pathophysiology of the behavioral variant of frontotemporal lobar degeneration: A study combining MRI and FDG-PET. Brain Imaging Behav. 2017, 11, 240–252. [Google Scholar] [CrossRef]
- Ducharme, S.; Dols, A.; Laforce, R.; Devenney, E.; Kumfor, F.; van den Stock, J.; Dallaire-Théroux, C.; Seelaar, H.; Gossink, F.; Vijverberg, E.; et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020, 143, 1632–1650, Erratum in Brain 2020, 143, e62. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Martin, P.R.; Botha, H.; Schwarz, C.G.; Duffy, J.R.; Clark, H.M.; Machulda, M.M.; Graff- Radford, J.; Weigand, S.D.; Senjem, M.L.; et al. [18 F]AV-1451 tau-PET and primary progressive aphasia. Ann. Neurol. 2018, 83, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Guerreiro, R.; Vandrovcova, J.; Uphill, J.; Reiman, D.; Beck, J.; Isaacs, A.M.; Authier, A.; Ferrari, R.; Fox, N.C.; et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009, 73, 1451–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, K.M.; Nicholas, J.; Grossman, M.; McMillan, C.T.; Irwin, D.J.; Massimo, L.; Van Deerlin, V.M.; Warren, J.D.; Fox, N.C.; Rossor, M.N.; et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: An international retrospective cohort study. Lancet Neurol. 2020, 19, 145–156, Erratum in Lancet Neurol. 2020, 19, e2. [Google Scholar] [CrossRef] [Green Version]
- Rohrer, J.D.; Nicholas, J.M.; Cash, D.M.; van Swieten, J.; Dopper, E.; Jiskoot, L.; van Minkelen, R.; Rombouts, S.A.; Cardoso, M.J.; Clegg, S.; et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A cross-sectional analysis. Lancet Neurol. 2015, 14, 253–262, Erratum in Lancet Neurol. 2015, 14, 1151. [Google Scholar] [CrossRef]
- Panman, J.L.; Jiskoot, L.C.; Bouts, M.J.R.J.; Meeter, L.H.H.; van der Ende, E.L.; Poos, J.M.; Feis, R.A.; Kievit, A.J.A.; Van Minkelen, R.; Dopper, E.G.; et al. Gray and white matter changes in presymptomatic genetic frontotemporal dementia: A longitudinal MRI study. Neurobiol. Aging 2019, 76, 115–124. [Google Scholar] [CrossRef]
- Zetterberg, H.; Van Swieten, J.C.; Boxer, A.L.; Rohrer, J.D. Review: Fluid biomarkers for frontotemporal dementias. Neuropathol. Appl. Neurobiol. 2019, 45, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Doroszkiewicz, J.; Groblewska, M.; Mroczko, B. Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 4610. [Google Scholar] [CrossRef]
- Yoshimura, T.; Fujita, K.; Kawakami, S.; Takeda, K.; Chan, S.; Beligere, G.; Dowell, B. Stability of Pro-Gastrin-Releasing Peptide in Serum versus Plasma. Tumor Biol. 2008, 29, 224–230. [Google Scholar] [CrossRef]
- Bolstad, N.; Warren, D.J.; Nustad, K. Heterophilic antibody interference in immunometric assays. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Apweiler, R.; Aslanidis, C.; Deufel, T.; Gerstner, A.; Hansen, J.; Hochstrasser, D.; Kellner, R.; Kubicek, M.; Lottspeich, F.; Maser, E.; et al. Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clin. Chem. Lab. Med. 2009, 47, 724–744. [Google Scholar] [CrossRef]
- Zetterberg, H.; Blennow, K. From Cerebrospinal Fluid to Blood: The Third Wave of Fluid Biomarkers for Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, S271–S279. [Google Scholar] [CrossRef] [Green Version]
- Verde, F.; Otto, M.; Silani, V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef] [Green Version]
- Barry, D.M.; Stevenson, W.; Bober, B.G.; Wiese, P.J.; Dale, J.M.; Barry, G.S.; Byers, N.S.; Strope, J.D.; Chang, R.; Schulz, D.J.; et al. Expansion of Neurofilament Medium C Terminus Increases Axonal Diameter Independent of Increases in Conduction Velocity or Myelin Thickness. J. Neurosci. 2012, 32, 6209–6219. [Google Scholar] [CrossRef] [Green Version]
- Gentil, B.J.; Tibshirani, M.; Durham, H.D. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res. 2015, 360, 609–620. [Google Scholar] [CrossRef]
- Bocquet, A.; Berges, R.; Frank, R.; Robert, P.; Peterson, A.C.; Eyer, J. Neurofilaments Bind Tubulin and Modulate Its Polymerization. J. Neurosci. 2009, 29, 11043–11054. [Google Scholar] [CrossRef] [Green Version]
- Yuan, A.; Veeranna; Sershen, H.; Basavarajappa, B.S.; Smiley, J.F.; Hashim, A.; Bleiwas, C.; Berg, M.; Guifoyle, D.N.; Subbanna, S.; et al. Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors. Transl. Psychiatry 2018, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Niikado, M.; Chrem-Méndez, P.; Itzcovich, T.; Barbieri-Kennedy, M.; Calandri, I.; Martinetto, H.; Serra, M.; Calvar, J.; Campos, J.; Russo, M.J.; et al. Evaluation of Cerebrospinal Fluid Neurofilament Light Chain as a Routine Biomarker in a Memory Clinic. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Skillbäck, T.; Mattsson, N.; Blennow, K.; Zetterberg, H. Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungqvist, J.; Zetterberg, H.; Mitsis, M.; Blennow, K.; Skoglund, T.; Wirsching, A.; Chen, Z.; Bevilacqua, Z.W.; Huibregtse, M.E.; Kawata, K.; et al. Serum Neurofilament Light Protein as a Marker for Diffuse Axonal Injury: Results from a Case Series Study. J. Neurotrauma 2017, 34, 1124–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeter, L.H.; Dopper, E.G.; Jiskoot, L.C.; Sanchez-Valle, R.; Graff, C.; Benussi, L.; Ghidoni, R.; Pijnenburg, Y.A.; Borroni, B.; Galimberti, D.; et al. Neurofilament light chain: A biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 2016, 3, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Scherling, C.S.; Hall, T.; Berisha, F.; Klepac, K.; Karydas, A.; Coppola, G.; Kramer, J.H.; Rabinovici, G.; Ahlijanian, M.; Miller, B.L.; et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 2014, 75, 116–126. [Google Scholar] [CrossRef]
- Meeter, L.H.H.; Gendron, T.F.; Sias, A.C.; Jiskoot, L.C.; Russo, S.P.; Donker Kaat, L.; Papma, J.M.; Panman, J.L.; van der Ende, E.L.; Dopper, E.G.; et al. Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann. Clin. Transl. Neurol. 2018, 5, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Meeter, L.H.H.; Vijverberg, E.G.; Del Campo, M.; Rozemuller, A.J.M.; Donker Kaat, L.; de Jong, F.J.; van der Flier, W.M.; Teunissen, C.E.; van Swieten, J.C.; Pijnenburg, Y.A. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology 2018, 90, e1231–e1239. [Google Scholar] [CrossRef] [Green Version]
- de Jong, D.; Jansen, R.W.; Pijnenburg, Y.A.; van Geel, W.J.; Borm, G.F.; Kremer, H.P.; Verbeek, M.M. CSF neurofilament proteins in the differential diagnosis of dementia. J. Neurol. Neurosurg. Psychiatry 2007, 78, 936–938. [Google Scholar] [CrossRef] [Green Version]
- Skillbäck, T.; Farahmand, B.; Bartlett, J.W.; Rosén, C.; Mattsson, N.; Nägga, K.; Kilander, L.; Religa, D.; Wimo, A.; Winblad, B.; et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 2014, 83, 1945–1953. [Google Scholar] [CrossRef]
- Olsson, B.; Portelius, E.; Cullen, N.C.; Sandelius, A.; Zetterberg, H.; Andreasson, U.; Höglund, K.; Irwin, D.J.; Grossman, M.; Weintraub, D.; et al. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels with Cognition in Patients with Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol. 2019, 76, 318–325. [Google Scholar] [CrossRef]
- Benussi, A.; Karikari, T.K.; Ashton, N.; Gazzina, S.; Premi, E.; Benussi, L.; Ghidoni, R.; Rodriguez, J.L.; Emeršič, A.; Simrén, J.; et al. Diagnostic and prognostic value of serum NfL and p-Tau181in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 2020, 91, 960–967. [Google Scholar] [CrossRef]
- Steinacker, P.; Anderl-Straub, S.; Diehl-Schmid, J.; Semler, E.; Uttner, I.; Von Arnim, C.A.F.; Barthel, H.; Danek, A.; Fassbender, K.; Fliessbach, K.; et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 2018, 91, e1390–e1401. [Google Scholar] [CrossRef]
- Wilke, C.; Preische, O.; Deuschle, C.; Roeben, B.; Apel, A.; Barro, C.; Maia, L.; Maetzler, W.; Kuhle, J.; Synofzik, M. Neurofilament light chain in FTD is elevated not only in cerebrospinal fluid, but also in serum. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1270–1272. [Google Scholar] [CrossRef]
- Katisko, K.; Cajanus, A.; Jääskeläinen, O.; Kontkanen, A.; Hartikainen, P.; Korhonen, V.E.; Helisalmi, S.; Haapasalo, A.; Koivumaa-Honkanen, H.; Herukka, S.K.; et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J. Neurol. 2019, 267, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Ljubenkov, P.A.; Staffaroni, A.M.; Rojas, J.C.; Allen, I.E.; Wang, P.; Heuer, H.; Karydas, A.; Kornak, J.; Cobigo, Y.; Seeley, W.W.; et al. Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann. Clin. Transl. Neurol. 2018, 5, 1250–1263. [Google Scholar] [CrossRef]
- Illán-Gala, I.; Alcolea, D.; Montal, V.; Dols-Icardo, O.; Muñoz, L.; de Luna, N.; Turón-Sans, J.; Cortés-Vicente, E.; Sánchez-Saudinós, M.B.; Subirana, A.; et al. CSF sAPPβ, YKL-40, and NfL along the ALS-FTD spectrum. Neurology 2018, 91, e1619–e1628. [Google Scholar] [CrossRef]
- Goossens, J.; Bjerke, M.; Van Mossevelde, S.; Van den Bossche, T.; Goeman, J.; De Vil, B.; Sieben, A.; Martin, J.J.; Cras, P.; De Deyn, P.P.; et al. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimer’s Res. Ther. 2018, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Cajanus, A.; Katisko, K.; Kontkanen, A.; Jääskeläinen, O.; Hartikainen, P.; Haapasalo, A.; Herukka, S.K.; Vanninen, R.; Solje, E.; Hall, A.; et al. Serum neurofilament light chain in FTLD: Association with C9orf72, clinical phenotype, and prognosis. Ann. Clin. Transl. Neurol. 2020, 7, 903–910. [Google Scholar] [CrossRef]
- Illán-Gala, I.; Lleo, A.; Karydas, A.; Staffaroni, A.M.; Zetterberg, H.; Sivasankaran, R.; Grinberg, L.T.; Spina, S.; Kramer, J.H.; Ramos, E.M.; et al. Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease. Neurology 2021, 96, e671–e683. [Google Scholar] [CrossRef]
- Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; et al. Neurofilaments: Neurobiological foundations for biomarker applications. Brain 2020, 143, 1975–1998. [Google Scholar] [CrossRef]
- Yuan, A.; Sershen, H.; Veeranna; Basavarajappa, B.S.; Kumar, A.; Hashim, A.; Berg, M.; Lee, J.H.; Sato, Y.; Rao, M.V.; et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol. Psychiatry 2015, 20, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albargothy, N.J.; Johnston, D.A.; MacGregor-Sharp, M.; Weller, R.O.; Verma, A.; Hawkes, C.A.; Carare, R.O. Convective influx/glymphatic system: Tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018, 136, 139–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brettschneider, J.; Del Tredici, K.; Irwin, D.J.; Grossman, M.; Robinson, J.L.; Toledo, J.B.; Fang, L.; Van Deerlin, V.M.; Ludolph, A.C.; Lee, V.M.-Y.; et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 2014, 127, 423–439, Erratum in Acta Neuropathol. 2015, 129, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, M.; Lee, S.; Jeon, Y.M.; Kim, S.; Kwon, Y.; Kim, H.J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med. 2020, 52, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Arai, T.; Nonaka, T.; Kametani, F.; Yoshida, M.; Hashizume, Y.; Beach, T.G.; Buratti, E.; Baralle, F.; Morita, M.; et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 2008, 64, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feneberg, E.; Steinacker, P.; Lehnert, S.; Schneider, A.; Walther, P.; Thal, D.R.; Linsenmeier, M.; Ludolph, A.C.; Otto, M. Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 351–356. [Google Scholar] [CrossRef]
- Suárez-Calvet, M.; Kleinberger, G.; Araque Caballero, M.; Brendel, M.; Rominger, A.; Alcolea, D.; Fortea, J.; Lleó, A.; Blesa, R.; Gispert, J.D.; et al. sTREM 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol. Med. 2016, 8, 466–476. [Google Scholar] [CrossRef]
- Scialò, C.; Tran, T.H.; Salzano, G.; Novi, G.; Caponnetto, C.; Chiò, A.; Calvo, A.; Canosa, A.; Moda, F.; Caroppo, P.; et al. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun. 2020, 2, fcaa142. [Google Scholar] [CrossRef]
- Jamerlan, A.M.; Shim, K.H.; Youn, Y.C.; Teunissen, C.; An, S.S.A.; Scheltens, P.; Kim, S. Increased oligomeric TDP-43 in the plasma of Korean frontotemporal dementia patients with semantic dementia. Alzheimer’s Dement. 2023, 1–8. [Google Scholar] [CrossRef]
- Doke, A.A.; Jha, S.K. Shapeshifter TDP-43: Molecular mechanism of structural polymorphism, aggregation, phase separation and their modulators. Biophys. Chem. 2023, 295, 106972. [Google Scholar] [CrossRef]
- Petkau, T.L.; Leavitt, B.R. Progranulin in neurodegenerative disease. Trends Neurosci. 2014, 37, 388–398. [Google Scholar] [CrossRef]
- Petkau, T.L.; Neal, S.J.; Milnerwood, A.; Mew, A.; Hill, A.M.; Orban, P.; Gregg, J.; Lu, G.; Feldman, H.H.; Mackenzie, I.R.; et al. Synaptic dysfunction in progranulin-deficient mice. Neurobiol. Dis. 2012, 45, 711–722. [Google Scholar] [CrossRef]
- Petkau, T.L.; Zhu, S.; Lu, G.; Fernando, S.; Cynader, M.; Leavitt, B.R. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice. Neurobiol. Aging 2013, 34, 2548–2550. [Google Scholar] [CrossRef]
- Colombrita, C.; Onesto, E.; Megiorni, F.; Pizzuti, A.; Baralle, F.E.; Buratti, E.; Silani, V.; Ratti, A. TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells. J. Biol. Chem. 2012, 287, 15635–15647. [Google Scholar] [CrossRef] [Green Version]
- Petoukhov, E.; Fernando, S.; Mills, F.; Shivji, F.; Hunter, D.; Krieger, C.; Silverman, M.A.; Bamji, S.X. Activity-dependent secretion of progranulin from synapses. J. Cell Sci. 2013, 126 Pt 23, 5412–5421. [Google Scholar] [CrossRef] [Green Version]
- Körtvelyessy, P.; Heinze, H.J.; Prudlo, J.; Bittner, D. CSF Biomarkers of Neurodegeneration in Progressive Non-fluent Aphasia and Other Forms of Frontotemporal Dementia: Clues for Pathomechanisms? Front. Neurol. 2018, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Wilke, C.; Gillardon, F.; Deuschle, C.; Dubois, E.; Hobert, M.A.; Müller vom Hagen, J.; Krüger, S.; Biskup, S.; Blauwendraat, C.; Hruscha, M.; et al. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease. Curr. Alzheimer Res. 2016, 13, 654–662. [Google Scholar] [CrossRef]
- Ghidoni, R.; Benussi, L.; Glionna, M.; Franzoni, M.; Binetti, G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 2008, 71, 1235–1239. [Google Scholar] [CrossRef]
- Lui, H.; Zhang, J.; Makinson, S.R.; Cahill, M.K.; Kelley, K.W.; Huang, H.Y.; Shang, Y.; Oldham, M.C.; Martens, L.H.; Gao, F.; et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016, 165, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Shi, Z.; Fu, L.P.; Zhang, N.; Zhao, X.; Liu, S.; Zuo, C.; Cai, L.; Wang, Y.; Gao, S.; Ai, L.; et al. Amyloid PET in Dementia Syndromes: A Chinese Multicenter Study. J. Nucl. Med. 2020, 61, 1814–1819, Erratum in J. Nucl. Med. 2022, 63, 100–1000. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, S.; Frings, L.; Bormann, T.; Vach, W.; Buchert, R.; Meyer, P.T. Amyloid imaging for differential diagnosis of dementia: Incremental value compared to clinical diagnosis and [18F]FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Struyfs, H.; Van Broeck, B.; Timmers, M.; Fransen, E.; Sleegers, K.; Van Broeckhoven, C.; De Deyn, P.P.; Streffer, J.R.; Mercken, M.; Engelborghs, S. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-β Isoforms for Early and Differential Dementia Diagnosis. J. Alzheimer’s Dis. 2015, 45, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Di Lorenzo, F.; Belli, L.; Sancesario, G.; Toniolo, S.; Sallustio, F.; Sancesario, G.M.; Koch, G. Cerebrospinal Fluid Aβ42 Levels: When Physiological Become Pathological State. CNS Neurosci. Ther. 2015, 21, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Alcolea, D.; Vilaplana, E.; Suárez-Calvet, M.; Illán-Gala, I.; Blesa, R.; Clarimón, J.; Lladó, A.; Sánchez-Valle, R.; Molinuevo, J.L.; García-Ribas, G.; et al. CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 2017, 89, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Skillbäck, T.; Farahmand, B.Y.; Rosén, C.; Mattsson, N.; Nägga, K.; Kilander, L.; Religa, D.; Wimo, A.; Winblad, B.; Schott, J.M.; et al. Cerebrospinal fluid tau and amyloid-β1-42in patients with dementia. Brain 2015, 138 Pt 9, 2716–2731. [Google Scholar] [CrossRef] [Green Version]
- Foiani, M.S.; Woollacott, I.O.; Heller, C.; Bocchetta, M.; Heslegrave, A.; Dick, K.M.; Russell, L.L.; Marshall, C.R.; Mead, S.; Schott, J.M.; et al. Plasma tau is increased in frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 2018, 89, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Ntymenou, S.; Tsantzali, I.; Kalamatianos, T.; Voumvourakis, K.I.; Kapaki, E.; Tsivgoulis, G.; Stranjalis, G.; Paraskevas, G.P. Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sci. 2021, 11, 244. [Google Scholar] [CrossRef]
- Thijssen, E.H.; Verberk, I.M.W.; Stoops, E.; Boxer, A.L.; Teunissen, C.E. Amyloid, pTau, NfL, and GFAP as biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, e038179. [Google Scholar] [CrossRef]
- Pereira, J.B.; Janelidze, S.; Smith, R.; Mattsson-Carlgren, N.; Palmqvist, S.; Teunissen, C.E.; Zetterberg, H.; Stomrud, E.; Ashton, N.J.; Blennow, K.; et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 2021, 144, 3505–3516. [Google Scholar] [CrossRef]
- Carmona, S.; Zahs, K.; Wu, E.; Dakin, K.; Bras, J.; Guerreiro, R. The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol. 2018, 17, 721–730. [Google Scholar] [CrossRef]
- Woollacott, I.O.C.; Nicholas, J.M.; Heslegrave, A.; Heller, C.; Foiani, M.S.; Dick, K.M.; Russell, L.L.; Paterson, R.W.; Keshavan, A.; Fox, N.C.; et al. Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimer’s Res. Ther. 2018, 10, 79. [Google Scholar] [CrossRef]
- Tan, Y.J.; Siow, I.; Saffari, S.E.; Ting, S.K.S.; Li, Z.; Kandiah, N.; Tan, L.C.S.; Tan, E.K.; Ng, A.S.L. Plasma Soluble ST2 Levels Are Higher in Neurodegenerative Disorders and Associated with Poorer Cognition. J. Alzheimer’s Dis. 2023, 92, 573–580. [Google Scholar] [CrossRef]
- Foiani, M.S.; Cicognola, C.; Ermann, N.; Woollacott, I.O.C.; Heller, C.; Heslegrave, A.J.; Keshavan, A.; Paterson, R.W.; Ye, K.; Kornhuber, J.; et al. Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: An elusive quest. J. Neurol. Neurosurg. Psychiatry 2019, 90, 740–746. [Google Scholar] [CrossRef] [Green Version]
- Bridel, C.; van Gils, J.H.M.; Miedema, S.S.M.; Hoozemans, J.J.M.; Pijnenburg, Y.A.L.; Smit, A.B.; Rozemuller, A.J.M.; Abeln, S.; Teunissen, C.E. Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration. Alzheimer’s Res. Ther. 2023, 15, 59. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Oliviero, A.; Guerra, A.; Fried, P.J. Editorial: Non-invasive Brain Stimulation for Neurodegenerative Disorders: From Investigation to Therapeutic Application. Front. Neurol. 2022, 13, 820942. [Google Scholar] [CrossRef]
- Casula, E.P.; Borghi, I.; Maiella, M.; Pellicciari, M.C.; Bonnì, S.; Mencarelli, L.; Assogna, M.; D’Acunto, A.; Di Lorenzo, F.; Spampinato, D.A.; et al. Regional Precuneus Cortical Hyperexcitability in Alzheimer’s Disease Patients. Ann. Neurol. 2023, 93, 371–383. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Bonnì, S.; Picazio, S.; Motta, C.; Caltagirone, C.; Martorana, A.; Koch, G. Effects of Cerebellar Theta Burst Stimulation on Contralateral Motor Cortex Excitability in Patients with Alzheimer’s Disease. Brain Topogr. 2020, 33, 613–617. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Koch, G. Synaptic impairment: The new battlefield of Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, 314–315. [Google Scholar] [CrossRef]
- Murley, A.G.; Rowe, J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018, 141, 1263–1285. [Google Scholar] [CrossRef]
- Murley, A.G.; Rouse, M.A.; Jones, P.S.; Ye, R.; Hezemans, F.H.; O’Callaghan, C.; Frangou, P.; Kourtzi, Z.; Rua, C.; Carpenter, T.A.; et al. GABA and glutamate deficits from frontotemporal lobar degeneration are associated with disinhibition. Brain 2020, 143, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Pierantozzi, M.; Panella, M.; Palmieri, M.G.; Koch, G.; Giordano, A.; Marciani, M.G.; Bernardi, G.; Stanzione, P.; Stefani, A. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin. Neurophysiol. 2004, 115, 2410–2418. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Saturno, E.; Oliviero, A.; Marra, C.; Daniele, A.; Ranieri, F.; Gainotti, G.; Tonali, P.A. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 2006, 66, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Alberici, A.; Bonato, C.; Calabria, M.; Agosti, C.; Zanetti, O.; Miniussi, C.; Padovani, A.; Rossini, P.M.; Borroni, B. The contribution of TMS to frontotemporal dementia variants. Acta Neurol. Scand. 2008, 118, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrell, J.R.; Kiernan, M.C.; Vucic, S.; Hodges, J.R. Motor Neuron dysfunction in frontotemporal dementia. Brain 2011, 134 Pt 9, 2582–2594. [Google Scholar] [CrossRef] [Green Version]
- Benussi, A.; Di Lorenzo, F.; Dell’Era, V.; Cosseddu, M.; Alberici, A.; Caratozzolo, S.; Cotelli, M.S.; Micheli, A.; Rozzini, L.; Depari, A.; et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology 2017, 89, 665–672. [Google Scholar] [CrossRef]
- Bae, J.S.; Ferguson, M.; Tan, R.; Mioshi, E.; Simon, N.; Burrell, J.; Vucic, S.; Hodges, J.R.; Kiernan, M.C.; Hornberger, M. Dissociation of Structural and Functional Integrities of the Motor System in Amyotrophic Lateral Sclerosis and Behavioral-Variant Frontotemporal Dementia. J. Clin. Neurol. 2016, 12, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Martorana, A.; Di Lorenzo, F.; Manenti, G.; Semprini, R.; Koch, G. Homotaurine Induces Measurable Changes of Short Latency Afferent Inhibition in a Group of Mild Cognitive Impairment Individuals. Front. Aging Neurosci. 2014, 6, 254. [Google Scholar] [CrossRef]
- Bonnì, S.; Ponzo, V.; Di Lorenzo, F.; Caltagirone, C.; Koch, G. Real-time activation of central cholinergic circuits during recognition memory. Eur. J. Neurosci. 2017, 45, 1485–1489. [Google Scholar] [CrossRef]
- Benussi, A.; Dell’Era, V.; Cosseddu, M.; Cantoni, V.; Cotelli, M.S.; Cotelli, M.; Manenti, R.; Benussi, L.; Brattini, C.; Alberici, A.; et al. Transcranial stimulation in frontotemporal dementia: A randomized, double-blind, sham-controlled trial. Alzheimer’s Dement. 2020, 6, e12033. [Google Scholar] [CrossRef]
- Benussi, A.; Ashton, N.J.; Karikari, T.K.; Alberici, A.; Saraceno, C.; Ghidoni, R.; Benussi, L.; Zetterberg, H.; Blennow, K.; Borroni, B. Prodromal frontotemporal dementia: Clinical features and predictors of progression. Alzheimer’s Res. Ther. 2021, 13, 188. [Google Scholar] [CrossRef]
- Boxer, A.L.; Gold, M.; Huey, E.; Gao, F.B.; Burton, E.A.; Chow, T.; Kao, A.; Leavitt, B.R.; Lamb, B.; Grether, M.; et al. Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer’s Dement. 2013, 9, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Brandt, R.; Gergou, A.; Wacker, I.; Fath, T.; Hutter, H. A Caenorhabditis elegans model of tau hyperphosphorylation: Induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol. Aging 2009, 30, 22–33. [Google Scholar] [CrossRef]
- Loewen, C.A.; Feany, M.B. The Unfolded Protein Response Protects from Tau Neurotoxicity In Vivo. PLoS ONE 2010, 5, e13084. [Google Scholar] [CrossRef]
- Sager, J.J.; Bai, Q.; Burton, E.A. Transgenic zebrafish models of neurodegenerative diseases. Brain Struct. Funct. 2010, 214, 285–302. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Irish, M.; van Eersel, J.; Ittner, A.; Ke, Y.D.; Volkerling, A.; van der Hoven, J.; Tanaka, K.; Karl, T.; Kassiou, M.; et al. Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neurosci. Biobehav. Rev. 2017, 74 Pt A, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Noble, W.; Hanger, D.P.; Gallo, J.M. Transgenic Mouse Models of Tauopathy in Drug Discovery. CNS Neurol. Disord. Drug Targets 2010, 9, 403–428. [Google Scholar] [CrossRef]
- Xu, Y.F.; Gendron, T.F.; Zhang, Y.J.; Lin, W.L.; D’Alton, S.; Sheng, H.; Casey, M.C.; Tong, J.; Knight, J.; Yu, X.; et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J. Neurosci. 2010, 30, 10851–10859. [Google Scholar] [CrossRef] [Green Version]
- Kayasuga, Y.; Chiba, S.; Suzuki, M.; Kikusui, T.; Matsuwaki, T.; Yamanouchi, K.; Kotaki, H.; Horai, R.; Iwakura, Y.; Nishihara, M. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav. Brain Res. 2007, 185, 110–118. [Google Scholar] [CrossRef]
- Chew, J.; Gendron, T.F.; Prudencio, M.; Sasaguri, H.; Zhang, Y.J.; Castanedes-Casey, M.; Lee, C.W.; Jansen-West, K.; Kurti, A.; Murray, M.E.; et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015, 348, 1151–1154. [Google Scholar] [CrossRef] [Green Version]
- McCauley, M.E.; Baloh, R.H. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol. 2019, 137, 715–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zhao, L.; Blackman, B.; Parmar, M.; Wong, M.Y.; Woo, T.; Yu, F.; Chiuchiolo, M.J.; Sondhi, D.; Kaminsky, S.M.; et al. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J. Neurosci. 2016, 36, 12425–12435, Erratum in J. Neurosci. 2017, 37, 3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhinn, H.; Tatton, N.; McCaughey, S.; Kurnellas, M.; Rosenthal, A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol. Sci. 2022, 43, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Moazami, M.P.; Yang, H.; McKenna-Yasek, D.; Douthwright, C.L.; Pinto, C.; Metterville, J.; Shin, M.; Sanil, N.; Dooley, C.; et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat. Med. 2022, 28, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Antczak, J.; Kowalska, K.; Klimkowicz-Mrowiec, A.; Wach, B.; Kasprzyk, K.; Banach, M.; Rzeźnicka-Brzegowy, K.; Kubica, J.; Słowik, A. Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: An open-label pilot study. Neuropsychiatr. Dis. Treat. 2018, 14, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Assogna, M.; Sprugnoli, G.; Press, D.; Dickerson, B.; Macone, J.; Bonnì, S.; Borghi, I.; Connor, A.; Hoffman, M.; Grover, N.; et al. Gamma-induction in frontotemporal dementia (GIFTeD) randomized placebo-controlled trial: Rationale, noninvasive brain stimulation protocol, and study design. Alzheimer’s Dement. 2022, 7, e12219. [Google Scholar] [CrossRef]
- Assogna, M.; Di Lorenzo, F.; Martorana, A.; Koch, G. Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022, 12, 1161. [Google Scholar] [CrossRef]
- Assogna, M.; Casula, E.P.; Borghi, I.; Bonnì, S.; Samà, D.; Motta, C.; Di Lorenzo, F.; D’acunto, A.; Porrazzini, F.; Minei, M.; et al. Effects of Palmitoylethanolamide Combined with Luteoline on Frontal Lobe Functions, High Frequency Oscillations, and GABAergic Transmission in Patients with Frontotemporal Dementia. J. Alzheimer’s Dis. 2020, 76, 1297–1308. [Google Scholar] [CrossRef]
- Shinagawa, S.; Nakajima, S.; Plitman, E.; Graff-Guerrero, A.; Mimura, M.; Nakayama, K.; Miller, B.L. Non-Pharmacological Management for Patients with Frontotemporal Dementia: A Systematic Review. J. Alzheimer’s Dis. 2015, 45, 283–293. [Google Scholar] [CrossRef]
- Wylie, M.A.; Shnall, A.; Onyike, C.U.; Huey, E.D. Management of frontotemporal dementia in mental health and multidisciplinary settings. Int. Rev. Psychiatry 2013, 25, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Boxer, A.L.; Boeve, B.F. Frontotemporal Dementia Treatment: Current Symptomatic Therapies and Implications of Recent Genetic, Biochemical, and Neuroimaging Studies. Alzheimer Dis. Assoc. Disord. 2007, 21, S79–S87. [Google Scholar] [CrossRef]
- Huey, E.D.; Putnam, K.T.; Grafman, J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 2006, 66, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Gambogi, L.B.; Guimarães, H.C.; de Souza, L.C.; Caramelli, P. Treatment of the behavioral variant of frontotemporal dementia: A narrative review. Dement. Neuropsychol. 2021, 15, 331–338. [Google Scholar] [CrossRef]
- Moretti, R.; Torre, P.; Antonello, R.M.; Cazzato, G.; Griggio, S.; Bava, A. Olanzapine as a treatment of neuropsychiatric disorders of Alzheimer’s disease and other dementias: A 24-month follow-up of 68 patients. Am. J. Alzheimer’s Dis. Other Dementiasr 2003, 18, 205–214. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Motta, C.; Caltagirone, C.; Koch, G.; Mercuri, N.B.; Martorana, A. Lacosamide in the Management of Behavioral Symptoms in Frontotemporal Dementia: A 2-Case Report. Alzheimer Dis. Assoc. Disord. 2018, 32, 364–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonioni, A.; Raho, E.M.; Lopriore, P.; Pace, A.P.; Latino, R.R.; Assogna, M.; Mancuso, M.; Gragnaniello, D.; Granieri, E.; Pugliatti, M.; et al. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int. J. Mol. Sci. 2023, 24, 11732. https://doi.org/10.3390/ijms241411732
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, et al. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. International Journal of Molecular Sciences. 2023; 24(14):11732. https://doi.org/10.3390/ijms241411732
Chicago/Turabian StyleAntonioni, Annibale, Emanuela Maria Raho, Piervito Lopriore, Antonia Pia Pace, Raffaela Rita Latino, Martina Assogna, Michelangelo Mancuso, Daniela Gragnaniello, Enrico Granieri, Maura Pugliatti, and et al. 2023. "Frontotemporal Dementia, Where Do We Stand? A Narrative Review" International Journal of Molecular Sciences 24, no. 14: 11732. https://doi.org/10.3390/ijms241411732