Homocysteine and Glaucoma
Abstract
:1. Introduction
2. Homocysteine
3. Hyperhomocysteinemia
4. Manifestations of Hyperhomocysteinemia
4.1. Cardiovascular Associations with Hyperhomocysteinemia
4.2. Neurodegenerative Associations with Hyperhomocysteinemia
5. Eye Structure
6. Glaucoma
7. Risk Factors for Glaucoma
8. The Relationship between Homocysteine and Glaucoma
9. The Pathophysiology of Homocysteine in Primary Open Angle Glaucoma
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butz, L.W.; du Vigneaud, V. The formation of a homologue of cystine by the decomposition of methionine with sulfuric acid. J. Biol. Chem. 1932, 99, 135–142. [Google Scholar] [CrossRef]
- Chiang, P.K.; Gordon, R.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann, P.P. S-Adenosylmethionine and methylation. FASEB J. 1996, 10, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Pushpakumar, S.; Kundu, S.; Sen, U. Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Curr. Med. Chem. 2014, 21, 3662–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.N.; Bostom, A.G.; Selhub, J.; Levey, A.S.; Rosenberg, I.H. The kidney and homocysteine metabolism. J. Am. Soc. Nephrol. 2001, 12, 2181–2189. [Google Scholar] [CrossRef]
- Pisciotta, L.; Cortese, C.; Gnasso, A.; Liberatoscioli, L.; Pastore, A.; Mannucci, L.; Irace, C.; Federici, G.; Bertolini, S. Serum homocysteine, methylenetetrahydrofolate reductase gene polymorphism and cardiovascular disease in heterozygous familial hypercholesterolemia. Atherosclerosis 2005, 179, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Skovby, F. Homocystinuria. Clinical, biochemical and genetic aspects of cystathionine beta-synthase and its deficiency in man. Acta Paediatr. Scand. Suppl. 1985, 321, 1–21. [Google Scholar] [CrossRef]
- Zhang, S.H.; Reddick, R.L.; Piedrahita, J.A.; Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992, 258, 468–471. [Google Scholar] [CrossRef]
- Ho, P.I.; Collins, S.C.; Dhitavat, S.; Ortiz, D.; Ashline, D.; Rogers, E.; Shea, T.B. Homocysteine potentiates beta-amyloid neurotoxicity: Role of oxidative stress. J. Neurochem. 2001, 78, 249–253. [Google Scholar] [CrossRef]
- Silverman, M.D.; Tumuluri, R.J.; Davis, M.; Lopez, G.; Rosenbaum, J.T.; Lelkes, P.I. Homocysteine upregulates vascular cell adhesion molecule-1 expression in cultured human aortic endothelial cells and enhances monocyte adhesion. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Woo, C.W.; Sung, F.L.; Siow, Y.L.; Karmin, O. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: Role of chemokine and adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postea, O.; Krotz, F.; Henger, A.; Keller, C.; Weiss, N. Stereospecific and redox-sensitive increase in monocyte adhesion to endothelial cells by homocysteine. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.S.; Wong, P.W.; Malinow, M.R. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu. Rev. Nutr. 1992, 12, 279–298. [Google Scholar] [CrossRef]
- Ueland, P.M.; Refsum, H.; Stabler, S.P.; Malinow, M.R.; Andersson, A.; Allen, R.H. Total homocysteine in plasma or serum: Methods and clinical applications. Clin. Chem. 1993, 39, 1764–1779. [Google Scholar] [CrossRef]
- Maron, B.A.; Loscalzo, J. The treatment of hyperhomocysteinemia. Annu. Rev. Med. 2009, 60, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agoston-Coldea, L.; Mocan, T.; Gatfosse, M.; Lupu, S.; Dumitrascu, D.L. Plasma homocysteine and the severity of heart failure in patients with previous myocardial infarction. Cardiol. J. 2011, 18, 55–62. [Google Scholar] [PubMed]
- Al Mutairi, F. Hyperhomocysteinemia: Clinical Insights. J. Cent. Nerv. Syst. Dis. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Bagi, Z.; Ungvari, Z.; Szollár, L.; Koller, A. Flow-induced constriction in arterioles of hyperhomocysteinemic rats is due to impaired nitric oxide and enhanced thromboxane A2 mediation. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Vafai, S.B.; Stock, J.B. Protein phosphatase 2A methylation: A link between elevated plasma homocysteine and Alzheimer’s Disease. FEBS Lett. 2002, 518, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sen, U.; Mishra, P.K.; Tyagi, N.; Tyagi, S.C. Homocysteine to hydrogen sulfide or hypertension. Cell Biochem. Biophys. 2010, 57, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shenoy, V.; Mehendale, V.; Prabhu, K.; Shetty, R.; Rao, P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J. Clin. Biochem. 2014, 29, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.S.; Mander, S.; Hussein, K.A.; Elsherbiny, N.M.; Smith, S.B.; Al-Shabrawey, M.; Tawfik, A. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget 2016, 7, 8532–8545. [Google Scholar] [CrossRef] [Green Version]
- Rosenquist, T.H.; Schneider, A.M.; Monogham, D.T. N-methyl-D-aspartate receptor agonists modulate homocysteine-induced developmental abnormalities. FASEB J. 1999, 13, 1523–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinozaki, Y.; Koizumi, S. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma. J. Pharm. Sci. 2021, 145, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, T.; Wang, L.; Pan, Y.H.; Zhang, S. Homocysteine homeostasis and betaine-homocysteine S-methyltransferase expression in the brain of hibernating bats. PLoS ONE 2013, 8, e85632. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.W.; Kraus, J.P. Cystathionine beta-synthase: Structure, function, regulation, and location of homocystinuria-causing mutations. J. Biol. Chem. 2004, 279, 29871–29874. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yuan, G.; Zhang, Z.; Zou, Z.; Li, D. Cardiovascular pathogenesis in hyperhomocysteinemia. Asia Pac. J. Clin. Nutr. 2008, 17, 8–16. [Google Scholar]
- Tyagi, N.; Sedoris, K.C.; Steed, M.; Ovechkin, A.V.; Moshal, K.S.; Tyagi, S.C. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2649–H2656. [Google Scholar] [CrossRef] [Green Version]
- Schöneich, C. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects. Antioxid. Redox Signal. 2017, 26, 388–405. [Google Scholar] [CrossRef]
- Büdy, B.; O’Neill, R.; DiBello, P.M.; Sengupta, S.; Jacobsen, D.W. Homocysteine transport by human aortic endothelial cells: Identification and properties of import systems. Arch. Biochem. Biophys. 2006, 446, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriangkrai, R.; Chareonvit, S.; Iseki, S.; Limwongse, V. Pretreatment Effect of Folic Acid on 13-Cis-RA-Induced Cellular Damage of Developing Midfacial Processes in Cultured Rat Embryos. Open. Dent. J. 2017, 11, 200–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, V.; Zalusky, R. Interrelations of vitamin B12 and folic acid metabolism: Folic acid clearance studies. J. Clin. Investig. 1962, 41, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Romain, M.; Sviri, S.; Linton, D.M.; Stav, I.; van Heerden, P.V. The role of Vitamin B12 in the critically ill—A review. Anaesth. Intensive Care 2016, 44, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieco, A.J. Homocystinuria: Pathogenetic mechanisms. Am. J. Med. Sci. 1977, 273, 120–132. [Google Scholar] [CrossRef]
- Herrmann, M.; Widmann, T.; Herrmann, W. Homocysteine—A newly recognised risk factor for osteoporosis. Clin. Chem. Lab. Med. 2005, 43, 1111–1117. [Google Scholar] [CrossRef]
- Perna, A.F.; Sepe, I.; Lanza, D.; Pollastro, R.M.; De Santo, N.G.; Ingrosso, D. Hyperhomocysteinemia in chronic renal failure: Alternative therapeutic strategies. J. Ren. Nutr. 2012, 22, 191–194. [Google Scholar] [CrossRef]
- Bamashmoos, S.A.; Al-Nuzaily, M.A.; Al-Meeri, A.M.; Ali, F.H. Relationship between total homocysteine, total cholesterol and creatinine levels in overt hypothyroid patients. Springerplus 2013, 2, 423. [Google Scholar] [CrossRef] [Green Version]
- Alsahli, S.; Al Anazi, A.; Al Hatlani, M.M.; Kashgari, A.; Al Sufiani, F.; Alfadhel, M.; Al Mutairi, F. Severe Crohn’s Disease Manifestations in a Child with Cystathionine β-Synthase Deficiency. ACG Case Rep. J. 2018, 5, e93. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.X.; Fang, Y.Y.; Huo, J.N.; Wu, Q.J.; Wang, T.R.; Zhou, Y.M.; Wang, X.X.; Ma, X.X. Hyperhomocysteinemia in polycystic ovary syndrome: Decreased betaine-homocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reprod. Biomed. Online 2018, 37, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Lentz, S.R.; Sobey, C.G.; Piegors, D.J.; Bhopatkar, M.Y.; Faraci, F.M.; Malinow, M.R.; Heistad, D.D. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J. Clin. Investig. 1996, 98, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdes, V.E.; Hovinga, H.A.; ten Cate, H.; Macgillavry, M.R.; Leijte, A.; Reitsma, P.H.; Brandjes, D.P.; Büller, H.R.; Group, A.V.M. Homocysteine and markers of coagulation and endothelial cell activation. J. Thromb. Haemost. 2004, 2, 445–451. [Google Scholar] [CrossRef]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J. Physiol. Pharmacol. 2013, 64, 409–421. [Google Scholar]
- Robinson, K.; Mayer, E.L.; Miller, D.P.; Green, R.; van Lente, F.; Gupta, A.; Kottke-Marchant, K.; Savon, S.R.; Selhub, J.; Nissen, S.E. Hyperhomocysteinemia and low pyridoxal phosphate. Common and independent reversible risk factors for coronary artery disease. Circulation 1995, 92, 2825–2830. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, N.; Kucuksu, M.; Kaman, D.; Ozbay, Y. The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch. Med. Res. 2008, 39, 125–130. [Google Scholar] [CrossRef]
- Axer-Siegel, R.; Bourla, D.; Ehrlich, R.; Dotan, G.; Benjamini, Y.; Gavendo, S.; Weinberger, D.; Sela, B.A. Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am. J. Ophthalmol. 2004, 137, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; McCaddon, A.; Herrmann, W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin. Chem. Lab. Med. 2007, 45, 1590–1606. [Google Scholar] [CrossRef]
- Sharma, M.; Tiwari, M.; Tiwari, R.K. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin. Pharmacol. Toxicol. 2015, 117, 287–296. [Google Scholar] [CrossRef]
- Brown, B.A.; Marx, J.L.; Ward, T.P.; Hollifield, R.D.; Dick, J.S.; Brozetti, J.J.; Howard, R.S.; Thach, A.B. Homocysteine: A risk factor for retinal venous occlusive disease. Ophthalmology 2002, 109, 287–290. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kang, S.W.; Yang, J.I.; Choi, Y.M.; Sheen, D.; Lee, E.B.; Choi, S.W.; Song, Y.W. Coagulation parameters and plasma total homocysteine levels in Behcet’s disease. Thromb. Res. 2002, 106, 19–24. [Google Scholar] [CrossRef]
- Coral, K.; Angayarkanni, N.; Gomathy, N.; Bharathselvi, M.; Pukhraj, R.; Rupak, R. Homocysteine levels in the vitreous of proliferative diabetic retinopathy and rhegmatogenous retinal detachment: Its modulating role on lysyl oxidase. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3607–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, M.T.; Naderi, A.; Saremi, L.; Sayad, A.; Irani, S.; Ahani, A. Methionine synthase A2756G variation is associated with the risk of retinoblastoma in Iranian children. Cancer Epidemiol. 2015, 39, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Arikan, S.; Türkön, H. Plasma homocysteine levels in patients with keratoconus. Clin. Exp. Optom. 2020, 103, 804–807. [Google Scholar] [CrossRef]
- Tan, A.G.; Mitchell, P.; Rochtchina, E.; Flood, V.M.; Cumming, R.G.; Wang, J.J. Serum homocysteine, vitamin B12, and folate, and the prevalence and incidence of posterior subcapsular cataract. Investig. Ophthalmol. Vis. Sci. 2014, 56, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, X.; Zeng, G.; Zhang, Y.; Li, Q.; Zhang, J.; Bai, Z.; Yang, K. Association between homocysteine level and the risk of diabetic retinopathy: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 61. [Google Scholar] [CrossRef]
- Cruysberg, J.R.; Boers, G.H.; Trijbels, J.M.; Deutman, A.F. Delay in diagnosis of homocystinuria: Retrospective study of consecutive patients. BMJ 1996, 313, 1037–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazionis, L.; Rowley, K.; Itsiopoulos, C.; Harper, C.A.; O’Dea, K. Homocysteine and diabetic retinopathy. Diabetes Care 2008, 31, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.K.; Pukazhvanthen, P.; Abraham, R. Plasma Homocysteine, Folate and Vitamin B12 levels in senile cataract. Indian. J. Clin. Biochem. 2008, 23, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Saw, S.M.; Katz, J.; Schein, O.D.; Chew, S.J.; Chan, T.K. Epidemiology of myopia. Epidemiol. Rev. 1996, 18, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Rada, J.A.; Shelton, S.; Norton, T.T. The sclera and myopia. Exp. Eye Res. 2006, 82, 185–200. [Google Scholar] [CrossRef]
- Tan, A.G.; Kifley, A.; Mitchell, P.; Rochtchina, E.; Flood, V.M.; Cumming, R.G.; Jun, G.; Holliday, E.G.; Scott, R.J.; Teo, Y.Y.; et al. Associations Between Methylenetetrahydrofolate Reductase Polymorphisms, Serum Homocysteine Levels, and Incident Cortical Cataract. JAMA Ophthalmol. 2016, 134, 522–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, C.E.; Ponzin, D.; Ferrari, S.; Lobo, A.; Landau, K.; Omidi, Y. Anatomy and physiology of the human eye: Effects of mucopolysaccharidoses disease on structure and function—A review. Clin. Exp. Ophthalmol. 2010, 38, 2–11. [Google Scholar] [CrossRef]
- Sunderland, D.K.; Sapra, A. Physiology, Aqueous Humor Circulation; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- DeLuise, V.P.; Anderson, D.R. Primary infantile glaucoma (congenital glaucoma). Surv. Ophthalmol. 1983, 28, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.W.; Cai, J.P.; Wei, R.L. Meta-analysis of medical intervention for normal tension glaucoma. Ophthalmology 2009, 116, 1243–1249. [Google Scholar] [CrossRef]
- Wright, C.; Tawfik, M.A.; Waisbourd, M.; Katz, L.J. Primary angle-closure glaucoma: An update. Acta Ophthalmol. 2016, 94, 217–225. [Google Scholar] [CrossRef]
- Vesti, E.; Kivelä, T. Exfoliation syndrome and exfoliation glaucoma. Prog. Retin. Eye Res. 2000, 19, 345–368. [Google Scholar] [CrossRef]
- Anderson, M.G.; Libby, R.T.; Mao, M.; Cosma, I.M.; Wilson, L.A.; Smith, R.S.; John, S.W. Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol. 2006, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Maruyama, K.; Yokoyama, Y.; Tsuda, S.; Ryu, M.; Nakazawa, T. Characteristics of uveitic glaucoma and evaluation of its surgical treatment. Clin. Ophthalmol. 2014, 8, 2383–2389. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.B.; Abe, R.Y.; Zangalli, C.; Sodre, S.L.; Donini, F.A.; Costa, D.C.; Leite, A.; Felix, J.P.; Torigoe, M.; Diniz-Filho, A.; et al. Neovascular glaucoma: A review. Int. J. Retin. Vitr. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R. The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans. Am. Ophthalmol. Soc. 1981, 79, 458–485. [Google Scholar]
- Bouhenni, R.A.; Dunmire, J.; Sewell, A.; Edward, D.P. Animal models of glaucoma. J. Biomed. Biotechnol. 2012, 2012, 692609. [Google Scholar] [CrossRef] [Green Version]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Konieczka, K.; Fränkl, S.; Todorova, M.G.; Henrich, P.B. Unstable oxygen supply and glaucoma. Klin. Monbl Augenheilkd. 2014, 231, 121–126. [Google Scholar] [CrossRef]
- Choi, J.; Kook, M.S. Systemic and Ocular Hemodynamic Risk Factors in Glaucoma. Biomed. Res. Int. 2015, 2015, 141905. [Google Scholar] [CrossRef] [Green Version]
- Verdecchia, P.; Schillaci, G.; Porcellati, C. Dippers versus non-dippers. J. Hypertens. Suppl. 1991, 9, S42–S44. [Google Scholar]
- Collignon, N.; Dewe, W.; Guillaume, S.; Collignon-Brach, J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int. Ophthalmol. 1998, 22, 19–25. [Google Scholar] [CrossRef]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flammer, J.; Mozaffarieh, M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv. Ophthalmol. 2007, 52 (Suppl. 2), S162–S173. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.L.; Miglior, S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.; Gong, B.; et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Gharahkhani, P.; Burdon, K.P.; Fogarty, R.; Sharma, S.; Hewitt, A.W.; Martin, S.; Law, M.H.; Cremin, K.; Bailey, J.N.C.; Loomis, S.J.; et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat. Genet. 2014, 46, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Allingham, R.R.; Nakano, M.; Jia, L.; Chen, Y.; Ikeda, Y.; Mani, B.; Chen, L.J.; Kee, C.; Garway-Heath, D.F.; et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 2015, 24, 3880–3892. [Google Scholar] [CrossRef] [PubMed]
- Springelkamp, H.; Iglesias, A.I.; Cuellar-Partida, G.; Amin, N.; Burdon, K.P.; van Leeuwen, E.M.; Gharahkhani, P.; Mishra, A.; van der Lee, S.J.; Hewitt, A.W.; et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 2015, 24, 2689–2699. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.N.; Loomis, S.J.; Kang, J.H.; Allingham, R.R.; Gharahkhani, P.; Khor, C.C.; Burdon, K.P.; Aschard, H.; Chasman, D.I.; Igo, R.P.; et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat. Genet. 2016, 48, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, C.F.; Morrison, J.C. The anatomy and pathophysiology of the optic nerve head in glaucoma. J. Glaucoma 2001, 10 (Suppl. 1), S16–S18. [Google Scholar] [CrossRef]
- Lesk, M.R.; Hafez, A.S.; Descovich, D. Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension. Arch. Ophthalmol. 2006, 124, 1568–1572. [Google Scholar] [CrossRef] [Green Version]
- Le, A.; Mukesh, B.N.; McCarty, C.A.; Taylor, H.R. Risk factors associated with the incidence of open-angle glaucoma: The visual impairment project. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3783–3789. [Google Scholar] [CrossRef] [Green Version]
- Soltau, J.B.; Rothman, R.F.; Budenz, D.L.; Greenfield, D.S.; Feuer, W.; Liebmann, J.M.; Ritch, R. Risk factors for glaucoma filtering bleb infections. Arch. Ophthalmol. 2000, 118, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Topouzis, F.; Coleman, A.L.; Harris, A.; Jonescu-Cuypers, C.; Yu, F.; Mavroudis, L.; Anastasopoulos, E.; Pappas, T.; Koskosas, A.; Wilson, M.R. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: The Thessaloniki eye study. Am. J. Ophthalmol. 2006, 142, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.H.; Wilson, M.E.; Golub, R.L. Incidence and risk factors for glaucoma after pediatric cataract surgery with and without intraocular lens implantation. J. AAPOS 2006, 10, 117–123. [Google Scholar] [CrossRef]
- Topouzis, F.; Wilson, M.R.; Harris, A.; Founti, P.; Yu, F.; Anastasopoulos, E.; Pappas, T.; Koskosas, A.; Salonikiou, A.; Coleman, A.L. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am. J. Ophthalmol. 2013, 155, 843–851. [Google Scholar] [CrossRef]
- Bleich, S.; Roedl, J.; Von Ahsen, N.; Schlötzer-Schrehardt, U.; Reulbach, U.; Beck, G.; Kruse, F.E.; Naumann, G.O.; Kornhuber, J.; Jünemann, A.G. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am. J. Ophthalmol. 2004, 138, 162–164. [Google Scholar] [CrossRef]
- Puustjärvi, T.; Blomster, H.; Kontkanen, M.; Punnonen, K.; Teräsvirta, M. Plasma and aqueous humour levels of homocysteine in exfoliation syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Micheal, S.; Qamar, R.; Akhtar, F.; Khan, M.I.; Khan, W.A.; Ahmed, A. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma. Mol. Vis. 2009, 15, 2268–2278. [Google Scholar] [PubMed]
- Yücel, I.; Yücel, G.; Müftüoglu, F. Plasma homocysteine levels in noninsulin-dependent diabetes mellitus with retinopathy and neovascular glaucoma. Int. Ophthalmol. 2004, 25, 201–205. [Google Scholar] [CrossRef]
- Roedl, J.B.; Bleich, S.; Reulbach, U.; von Ahsen, N.; Schlötzer-Schrehardt, U.; Rejdak, R.; Naumann, G.O.; Kruse, F.E.; Kornhuber, J.; Jünemann, A.G. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J. Neural Transm. 2007, 114, 445–450. [Google Scholar] [CrossRef]
- Koc, H.; Kaya, F. Relationship between homocysteine levels, anterior chamber depth, and pseudoexfoliation glaucoma in patients with pseudoexfoliation. Int. Ophthalmol. 2020, 40, 1731–1737. [Google Scholar] [CrossRef]
- Cumurcu, T.; Sahin, S.; Aydin, E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 2006, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- You, Z.P.; Zhang, Y.Z.; Zhang, Y.L.; Shi, L.; Shi, K. Homocysteine induces oxidative stress to damage trabecular meshwork cells. Exp. Ther.Med. 2018, 15, 4379–4385. [Google Scholar] [CrossRef] [Green Version]
- López-Riquelme, N.; Villalba, C.; Tormo, C.; Belmonte, A.; Fernandez, C.; Torralba, G.; Hernández, F. Endothelin-1 levels and biomarkers of oxidative stress in glaucoma patients. Int. Ophthalmol. 2015, 35, 527–532. [Google Scholar] [CrossRef]
- Tranchina, L.; Centofanti, M.; Oddone, F.; Tanga, L.; Roberti, G.; Liberatoscioli, L.; Cortese, C.; Manni, G. Levels of plasma homocysteine in pseudoexfoliation glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, C.I.; Goldberg, I.; Healey, P.R.; Graham, S.L. Plasma homocysteine, MTHFR gene mutation, and open-angle glaucoma. J. Glaucoma 2009, 18, 73–78. [Google Scholar] [CrossRef]
- Wang, G.; Medeiros, F.A.; Barshop, B.A.; Weinreb, R.N. Total plasma homocysteine and primary open-angle glaucoma. Am. J. Ophthalmol. 2004, 137, 401–406. [Google Scholar] [CrossRef]
- Türkcü, F.M.; Köz, O.G.; Yarangümeli, A.; Oner, V.; Kural, G. Plasma homocysteine, folic acid, and vitamin B₁₂ levels in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and normotensive glaucoma. Medicina 2013, 49, 214–218. [Google Scholar] [CrossRef]
- Roedl, J.B.; Bleich, S.; Reulbach, U.; Rejdak, R.; Naumann, G.O.; Kruse, F.E.; Schlötzer-Schrehardt, U.; Kornhuber, J.; Jünemann, A.G. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J. Neural Transm. 2007, 114, 571–575. [Google Scholar] [CrossRef]
- Visontai, Z.; Merisch, B.; Kollai, M.; Holló, G. Increase of carotid artery stiffness and decrease of baroreflex sensitivity in exfoliation syndrome and glaucoma. Br. J. Ophthalmol. 2006, 90, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Vessani, R.M.; Ritch, R.; Liebmann, J.M.; Jofe, M. Plasma homocysteine is elevated in patients with exfoliation syndrome. Am. J. Ophthalmol. 2003, 136, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Rössler, C.W.; Baleanu, D.; Reulbach, U.; Lewczuk, P.; Bleich, S.; Kruse, F.E.; Kornhuber, J.; Schlötzer-Schrehardt, U.; Juenemann, A.G. Plasma homocysteine levels in patients with normal tension glaucoma. J. Glaucoma 2010, 19, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, J.M.; Kim, I.T.; Yoo, C.K.; Won, Y.S.; Kim, J.H.; Kwon, H.S.; Park, K.H. Relationship between Plasma Homocysteine Level and Glaucomatous Retinal Nerve Fiber Layer Defect. Curr. Eye Res. 2017, 42, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Lamparter, J.; Schmidtmann, I.; Schuster, A.K.; Siouli, A.; Wasielica-Poslednik, J.; Mirshahi, A.; Höhn, R.; Unterrainer, J.; Wild, P.S.; Binder, H.; et al. Association of ocular, cardiovascular, morphometric and lifestyle parameters with retinal nerve fibre layer thickness. PLoS ONE 2018, 13, e0197682. [Google Scholar] [CrossRef] [PubMed]
- Jemmeih, S.; Malik, S.; Okashah, S.; Zayed, H. Genetic Epidemiology of Primary Congenital Glaucoma in the 22 Arab Countries: A Systematic Review. Ophthalmic Epidemiol. 2022, 29, 1–12. [Google Scholar] [CrossRef]
- Ajith, T.A.; Ranimenon. Homocysteine in ocular diseases. Clin. Chim. Acta 2015, 450, 316–321. [Google Scholar] [CrossRef]
- Ritch, R. Ocular and systemic manifestations of exfoliation syndrome. J. Glaucoma 2014, 23 (Suppl. 1), S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Zacharaki, F.; Hadjigeorgiou, G.M.; Koliakos, G.G.; Morrison, M.A.; Tsezou, A.; Chatzoulis, D.Z.; Almpanidou, P.; Topouridou, K.; Karabatsas, C.H.; Pefkianaki, M.; et al. Plasma homocysteine and genetic variants of homocysteine metabolism enzymes in patients from central Greece with primary open-angle glaucoma and pseudoexfoliation glaucoma. Clin. Ophthalmol. 2014, 8, 1819–1825. [Google Scholar] [CrossRef] [Green Version]
- Mossbock, G.; Weger, M.; Faschinger, C.; Steinbrugger, I.; Temmel, W.; Schmut, O.; Renner, W.; Hufnagel, C.; Stanger, O. Methylenetetrahydrofolatereductase (MTHFR) 677C>T polymorphism and open angle glaucoma. Mol. Vis. 2006, 12, 356–359. [Google Scholar] [PubMed]
- Fan, B.J.; Chen, T.; Grosskreutz, C.; Pasquale, L.; Rhee, D.; DelBono, E.; Haines, J.L.; Wiggs, J.L. Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Mol. Vis. 2008, 14, 2484–2491. [Google Scholar]
- Trabetti, E. Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J. Appl. Genet. 2008, 49, 267–282. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, X.; Zeng, S.M.; Li, L.; Zhong, H.B.; Li, M. Homocysteine, B vitamins, methylenetetrahydrofolate reductase gene, and risk of primary open-angle glaucoma: A meta-analysis. Ophthalmology 2012, 119, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Altintaş, O.; Maral, H.; Yüksel, N.; Karabaş, V.L.; Dillioğlugil, M.O.; Cağlar, Y. Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 243, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, F.; Ying-Lai, M.; Chung, J.; Azen, S.P.; Varma, R.; Group, L.A.L.E.S. Blood pressure, perfusion pressure, and open-angle glaucoma: The Los Angeles Latino Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.D. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemost. 2000, 26, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.D.; Martin, J.J. Homocysteine. Int. J. Biochem. Cell. Biol. 2000, 32, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Markand, S.; Saul, A.; Roon, P.; Prasad, P.; Martin, P.; Rozen, R.; Ganapathy, V.; Smith, S.B. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2684–2695. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Zou, H.; Lang, M.; Ji, S.X.; Yin, X.L.; Zheng, Z.; Liu, W.; Chen, C.L.; Yuan, R.D.; Ye, J. Association between MTHFR C677T polymorphism and primary open-angle glaucoma: A meta-analysis. Gene 2013, 512, 179–184. [Google Scholar] [CrossRef]
- Gohari, M.; Mirjalili, S.A.; Akbarian-Bafghi, M.J.; Jarahzadeh, M.H.; Zare-Shehneh, M.; Neamatzadeh, H. Association of MTHFR C677T and A1298C Polymorphisms with Glaucoma Risk: A Systematic Review Meta-Analysis based 42 Case-Control Studies. Rom. J. Ophthalmol. 2019, 63, 107–118. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, B. Correlation between MTHFR polymorphisms and glaucoma: A meta-analysis. Mol. Genet. Genom. Med. 2019, 7, e00538. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.M.; Liu, Y.P.; Li, D.Y.; Yu, M.; Gong, B.; Wang, L.; Shuai, P. Association of MTHFR C677T polymorphism with primary open angle glaucoma: A Meta-analysis based on 18 case-control studies. Int. J. Ophthalmol. 2021, 14, 896–902. [Google Scholar] [CrossRef]
- Tribble, J.R.; Otmani, A.; Kokkali, E.; Lardner, E.; Morgan, J.E.; Williams, P.A. Retinal Ganglion Cell Degeneration in a Rat Magnetic Bead Model of Ocular Hypertensive Glaucoma. Transl. Vis. Sci. Technol. 2021, 10, 21. [Google Scholar] [CrossRef]
- Tribble, J.R.; Otmani, A.; Sun, S.; Ellis, S.A.; Cimaglia, G.; Vohra, R.; Jöe, M.; Lardner, E.; Venkataraman, A.P.; Domínguez-Vicent, A.; et al. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol. 2021, 43, 101988. [Google Scholar] [CrossRef] [PubMed]
- Navneet, S.; Zhao, J.; Wang, J.; Mysona, B.; Barwick, S.; Ammal Kaidery, N.; Saul, A.; Kaddour-Djebbar, I.; Bollag, W.B.; Thomas, B.; et al. Hyperhomocysteinemia-induced death of retinal ganglion cells: The role of Müller glial cells and NRF2. Redox Biol. 2019, 24, 101199. [Google Scholar] [CrossRef] [PubMed]
- Navneet, S.; Cui, X.; Zhao, J.; Wang, J.; Kaidery, N.A.; Thomas, B.; Bollinger, K.E.; Yoon, Y.; Smith, S.B. Excess homocysteine upregulates the NRF2-antioxidant pathway in retinal Müller glial cells. Exp. Eye Res. 2019, 178, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, P.S.; Perry, R.L.; Tawfik, A.; Smith, R.M.; Perry, E.; Roon, P.; Bozard, B.R.; Ha, Y.; Smith, S.B. Homocysteine-mediated modulation of mitochondrial dynamics in retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5551–5558. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; Smith, S.B. Increased ER stress as a mechanism of retinal neurovasculopathy in mice with severe hyperhomocysteinemia. Austin J. Clin. Ophthalmol. 2014, 1, 1023. [Google Scholar]
- Ganapathy, P.S.; White, R.E.; Ha, Y.; Bozard, B.R.; McNeil, P.L.; Caldwell, R.W.; Kumar, S.; Black, S.M.; Smith, S.B. The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5515–5524. [Google Scholar] [CrossRef]
Studies | Glaucoma Type | Location (Race) | Controls *1 (Gender, Age (a)) Test Group (Gender, Age (a)) | Hcy Level in Controls | Hcy Level in Test Group | Significance (p Value) | Sample Types | Lab Technique | Surgical Eligibility |
---|---|---|---|---|---|---|---|---|---|
[105] | POAG | Nanchang, China (N/A) | 53 controls (30 m + 23 f, a-62) 41 in test group (22 m + 19 f, a-59) | 10.82 μmol/L | 14.44 μmol/L | p < 0.01 | P | AU | Inclusions: N/A Exclusions: N/A |
[105] | POAG | Nanchang, China (N/A) | 53 controls (30 m + 23 f, a-62) 41 in test group (22 m + 19 f, a-59) | 0.69 μmol/L | 1.60 μmol/L | p < 0.01 | AH | AU | Inclusions: N/A Exclusions: N/A |
[106] | POAG | Alicante, Spanish (N/A) | 75 controls (17 m + 58 f, a-44) 48 in test group (23 m + 25 f, a-50) | 2.6 μmol/L | 7.6 μmol/L | p = 0.002 | P | CCEI | Inclusions: N/A Exclusions: N/A |
[107] | POAG | Rome, Italy (N/A) | 40 controls (21 m +19 f, a-69) 40 in test group (22 m + 18 f, a-69) | 13.12 μmol/L | 13.91 μmol/L | p = 0.56 | P | CCEI | Inclusions: N/A Exclusions: intraocular surgery within 12 months, laser surgery within 3 months |
[108] | POAG | Sydney, Australia (Caucasian) | 42 controls (16 m + 26 f, a-70) 39 in test group (17 m + 22 f, a-72) | 9.82 μmol/L | 11.21 μmol/L | p < 0.01 | P | FPIA | Inclusions: laser trabeculoplasty, glaucoma filtration surgery Exclusions: N/A |
[104] | POAG | Nuremberg, Germany (Caucasian) | 39 controls (18 m + 21 f, a-71) 39 in test group (17 m + 18 f, a-69) | 1.12 μmol/L | 1.76 μmol/L | p < 0.001 | AH | HPLC | Inclusions: N/A Exclusions: prior ocular surgery |
[104] | POAG | Nuremberg, Germany (Caucasian) | 39 controls (18 m + 21 f, a-71) 39 in test group (17 m + 18 f, a-69) | 10.46 μmol/L | 13.93 μmol/L | p < 0.001 | P | HPLC | Inclusions: N/A Exclusions: prior ocular surgery |
[104] | POAG | Erlangen-Nuremberg, Germany (Caucasian) | 39 controls (18 m + 21 f, a-71) 39 in test group (17 m + 18 f, a-69) | 1.12 μmol/L | 1.76 μmol/L | p < 0.001 | AH | HPLC | Inclusions: N/A Exclusions: prior ocular surgery |
[101] | POAG | Tokat, Turkey (N/A) | 19 controls (5 m + 14 f, a-57) 25 in test group (7 m + 18 f, a-56) | 8.40 μmol/L | 9.22 μmol/L | p > 0.05 | S | CCEI | Inclusions: undergoing ocular surgery Exclusions: N/A |
[102] | POAG | Pakistan (Punjabis/Pathans) | 143 controls (73 m + 70 f, a-49) 122 in test group (88 m + 34 f, a-50) | 10.00 μmol/L | 20.48 μmol/L | p < 0.05 | S | ELISA | Inclusions: N/A Exclusions: N/A |
[109] | POAG | California, United States (N/A) | 39 controls (5 m + 34 f, a-73) 55 in test group (33 m + 22 f, a-75) | 14.81 μmol/L | 14.90 μmol/L | p = 0.93 | P | HPLC | Inclusions: undergoing ocular surgery Exclusions: N/A |
Studies | Glaucoma Type | Location (Race) | Controls *1 (Gender, Age (a)) Test Group (Gender, Age (a)) | Hcy Level in Controls | Hcy Level in Test Group | Significance (p Value) | Sample Types | Lab Technique | Surgical Eligibility |
---|---|---|---|---|---|---|---|---|---|
[110] | PEXG | Batman, Turkey (N/A) | 35 controls (18 m + 17 f, a-67) 24 in test group (10 m + 14 f, a-67) | 9.9 μmol/L | 15.4 μmol/L | p < 0.001 | P | HPLC | Inclusions: N/A Exclusions: N/A |
[107] | PEXG | Rome, Italy (N/A) | 40 controls (21 m + 19 f, a-69) 36 in test group (25 m +11 f, a-70) | 13.12 μmol/L | 16.55 μmol/L | p < 0.0007 | P | CCEI | Inclusions: N/A Exclusions: intraocular surgery within 12 months, laser surgery within 3 months |
[108] | PEXG | Sydney, Australia (Caucasian) | 42 controls (16 m +26 f, a-70) 48 in test group (17 m + 31 f, a-74) | 9.82 μmol/L | 11.77 μmol/L | p < 0.05 | P | FPIA | Inclusions: laser trabeculoplasty, glaucoma filtration surgery Exclusions: N/A |
[111] | PEXG | Nuremberg, Germany (N/A) | 70 controls. (33 m +37 f, a-68) 70 in test group (32 m + 38 f, a-70) | 10.45 μmol/L | 13.77 μmol/L | p < 0.001 | P | HPLC | Inclusions: undergoing glaucoma or cataract surgery Exclusions: N/A |
[101] | PEXG | Tokat, Turkey (N/A) | 19 controls (5 m + 14 f, a-57) 24 in test group (10 m + 14 f, a-62) | 8.40 μmol/L | 14.88 μmol/L | p < 0.001 | S | CCEI | Inclusions: undergoing ocular surgery Exclusions: N/A |
[112] | PEXG | Budapest, Hungary (N/A) | 18 controls (5 m + 13 f, a-65) 30 in test group (9 m + 21 f, a-69) | 9.14 μmol/L | 11.95 μmol/L | p = 0.023 | P | FPIA | Inclusions: cataract surgery, argon laser trabeculoplasty, trabeculectomy Exclusions: N/A |
[98] | PEXG | Nuremberg, Erlangen, Germany (N/A) | 31 controls (13 m + 18 f, a-72) 29 in test group (13 m + 17 f, a-73) | 11.82 μmol/L | 15.53 μmol/L | p = 0.012 | P | ELISA | Inclusions: N/A Exclusions: N/A |
[98] | PEXG | Nuremberg, Erlangen, Germany (N/A) | 31 controls (13 m + 18 f, a-72) 29 in test group (13 m + 17 f, a-73) | 1.26 μmol/L | 2.51 μmol/L | p < 0.0001 | AH | ELISA | Inclusions: N/A Exclusions: N/A |
[113] | PEXG | New York, United States (Caucasian, black) | 24 controls (10 m + 10 f, a-70) 25 in test group (9 m + 16 f, a-71) | 8.3 μmol/L | 10.1 μmol/L | p = 0.009 | P | FPIA | Inclusions: N/A Exclusions: N/A |
Studies | Glaucoma Type | Location (Race) | Controls *1 (Gender, Age (a)) Test Group (Gender, Age (a)) | Hcy Level in Controls | Hcy Level in Test Group | Significance (p Value) | Sample Types | Lab Technique | Surgical Eligibility |
---|---|---|---|---|---|---|---|---|---|
[106] | NTG | Alicante, Spain (N/A) | 75 controls (17 m + 58 f, a-44) 15 in test group (3 m + 12 f, a-45) | 5.9 μmol/L | 6.4 μmol/L | p = 0.002 | P | CCEI | Inclusions: N/A Exclusions: N/A |
[110] | PEXG + NTG *2 | Middle Eastern (N/A) | 35 controls (18 m + 17 f, a-67) 18 in test group (10 m + 8 f, a-68) | 9.9 μmol/L | 19.8 μmol/L | p < 0.001 | P | HPLC | Inclusions: N/A Exclusions: N/A |
[108] | NTG | Sydney, Australia (White) | 42 controls (16 m + 26 f, a-70) 34 in test group (9 m + 25 f, a-73) | 9.82 μmol/L | 11.74 μmol/L | p < 0.05 | P | FPIA | Inclusions: laser trabeculoplasty, glaucoma filtration surgery Exclusions: N/A |
[101] | NTG | Middle Eastern Turkish (N/A) | 19 controls (5 m + 14 f, a-57) 18 in test group (6 m + 12 f, a-58) | 8.40 μmol/L | 10.39 μmol/L | p > 0.05 | S | CCEI | Inclusions: undergoing ocular surgery Exclusions: N/A |
[113] | NTG | European American (white, Hispanic, Asian) | 24 controls (10 m + 10 f, a-70) 25 in test group (11 m + 11 f, a-70) | 8.3 μmol/L | 9.1 μmol/L | p = 0.2 | P | FPIA | Inclusions: undergoing ocular surgery Exclusions: N/A |
[114] | NTG | Erlangen, Germany (Caucasian) | 42 controls (15 m + 27 f, a-63) 42 in test group (15 m + 27 f, a-66) | 11.29 μmol/L | 10.95 μmol/L | p = 0.639 | P | FPIA | Inclusions: N/A Exclusions: N/A |
Studies | Glaucoma Type | Location (Race) | Controls *1 (Gender, Age (a)) Test Group (Gender, Age (a)) | Hcy level in Controls | Hcy Level in Test Group | Significance (p Value) | Sample Types | Lab Technique | Surgical Eligibility |
---|---|---|---|---|---|---|---|---|---|
[100] | Neovascular Glaucoma | Antalya, Turkey (N/A) | 30 controls (N/A-mf, a-55 +) 20 in test group (N/A-mf, a-55 +) | 10.55 μmol/L | 14.99 μmol/L | p < 0.0001 | P | FPIA | Inclusions: N/A Exclusions: N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washington, J.; Ritch, R.; Liu, Y. Homocysteine and Glaucoma. Int. J. Mol. Sci. 2023, 24, 10790. https://doi.org/10.3390/ijms241310790
Washington J, Ritch R, Liu Y. Homocysteine and Glaucoma. International Journal of Molecular Sciences. 2023; 24(13):10790. https://doi.org/10.3390/ijms241310790
Chicago/Turabian StyleWashington, Joshua, Robert Ritch, and Yutao Liu. 2023. "Homocysteine and Glaucoma" International Journal of Molecular Sciences 24, no. 13: 10790. https://doi.org/10.3390/ijms241310790
APA StyleWashington, J., Ritch, R., & Liu, Y. (2023). Homocysteine and Glaucoma. International Journal of Molecular Sciences, 24(13), 10790. https://doi.org/10.3390/ijms241310790