mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues
Abstract
:1. Introduction
2. Current Regulation of Anti-COVID-19 mRNAs
2.1. The Mode of Action of mRNA Anti-COVID-19 Defines Them as GTP and Their Destiny as Vaccines
2.2. mRNAs as Vaccines against Infectious Disease Have Been Excluded from GTP Regulation by US and EU Regulations
2.3. It Is Necessary to Underline the Contradictions of the Legislation
2.4. Why Are mRNA Vaccines Excluded from the Regulation of Gene Products?
2.5. Required Controls for mRNAs Considered as Vaccines
2.6. Controls Required as a Pro-Drug
2.7. Additional Controls Based on GTP Regulations
3. Controls Required by GTP Regulations to Which Anti-COVID-19 mRNAs Were Not Subjected
3.1. Product Quality
3.2. Pharmacokinetics
3.3. Controls on Biological Drugs Not Carried Out
3.4. Clinical Studies
3.5. Vaccinovigilance
4. Discussion
4.1. Controls Required for a Pro-Drug That Have Not Been Carried Out
4.2. The Results of Certain Tests Required for Vaccines in General Are Not Satisfactory
4.2.1. Drug Substance Purity
4.2.2. Drug Substance Impurities
4.2.3. Problem Posed by the Presence of Antibiotic Resistance Genes
4.3. Controls Required for GTP That Were Not Performed: Safety Issues Arising from mRNA Pharmacokinetics
4.3.1. Pharmacokinetics of Anti-COVID-19 mRNAs
4.3.2. This Broad Biodistribution Should Have Made the Carrying Out of Controls Required for GTP Essential
Germline Integration
Genotoxicity
Reproductive and Developmental Toxicity
Pharmacokinetics of Nanomedicine According to the FDA
4.4. Clinical Studies
4.5. Vaccinovigilance
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polykretis, P.; McCullough, P.A. Rational harm-benefit assessments by age group are required for continued COVID-19 vaccination. Scand. J. Immunol. 2022, 98, e13242. [Google Scholar] [CrossRef]
- Verbeke, R.; Lentacker, I.; De Smedt, S.C.; Dewitte, H. The dawn of mRNA vaccines: The COVID-19 case. J. Control. Release 2021, 333, 511–520. [Google Scholar] [CrossRef]
- Shukla, V.; Seoane-Vazquez, E.; Fawaz, S.; Brown, L.; Rodriguez-Monguio, R. The Landscape of Cellular and Gene Therapy Products: Authorization, Discontinuations, and Cost. Hum. Gene Ther. Clin. Dev. 2020, 30, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Guerriaud, M.; Kohli, E. RNA-based drugs and regulation: Toward a necessary evolution of the definitions issued from the European union legislation. Front. Med. 2022, 9, 1012497. [Google Scholar] [CrossRef]
- Vervaeke, P.; Borgos, S.E.; Sanders, N.N.; Combes, F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv. Drug Deliv. Rev. 2022, 184, 114236. [Google Scholar] [CrossRef] [PubMed]
- Marinus, R.; Mofid, S.; Mpandzou, M.; Kühler, T.C. Rolling Reviews During COVID-19: The European Union Experience in a Global Context. Clin. Ther. 2022, 44, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Sanofi. Sanofi and Translate Bio Initiate Phase 1 Clinical Trial of mRNA Influenza Vaccine. 22 June 2021. Available online: https://www.sanofi.com/en/media-room/press-releases/2021/2021-06-22-05-00-00-2250633 (accessed on 14 June 2023).
- Moderna. mRNA Pipeline. Available online: https://www.modernatx.com/research/product-pipeline (accessed on 15 February 2023).
- NIH. A Study to Evaluate Safety and Immunogenicity of a Single Dose of H1ssF-3928 mRNA-LNP in Healthy Adults. Available online: https://clinicaltrials.gov/ct2/show/NCT05755620 (accessed on 29 May 2023).
- Moderna and Merck Announce Mrna-4157/V940, an Investigational Personalized mRNACancer Vaccine, in Combination with Keytruda(R) (Pembrolizumab), Met Primary Efficacy Endpoint in Phase 2b Keynote-942 Trial. 13 December 2022. Available online: https://investors.modernatx.com/news/news-details/2022/Moderna-and-Merck-Announce-mRNA-4157V940-an-Investigational-Personalized-mRNA-Cancer-Vaccine-in-Combination-with-KEYTRUDAR-pembrolizumab-Met-Primary-Efficacy-Endpoint-in-Phase-2b-KEYNOTE-942-Trial/default.aspx (accessed on 26 February 2023).
- EMA/707383/2020 Corr.1 *1 Committee for Medicinal Products for Human Use (CHMP) Assessment Report Comirnaty Common Name: COVID-19 mRNA Vaccine (Nucleoside-Modified) Procedure No. EMEA/H/C/005735/0000. 19 February 2021. Available online: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf (accessed on 13 June 2023).
- FDA Guidance for Human Somatic Cell Therapy and Gene Therapy, CBER March 1998, Current Content as of 21 April 2021. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-human-somatic-cell-therapy-and-gene-therapy (accessed on 13 June 2023).
- COMMISSION DIRECTIVE 2009/120/EC of 14 September 2009 Amending Directive 2001/83/EC of the European Parliament and of the Council on the Community Code Relating to Medicinal Products for Human Use as Regards Advanced Therapy Medicinal Products. Available online: https://eur-lex.europa.eu/eli/dir/2009/120/oj (accessed on 13 June 2023).
- WHO Guidelines on Non-Clinical Evaluation of Vaccines, Annex 1, TRS No 927, 1 January 2005, Meeting Report. Available online: https://www.who.int/publications/m/item/nonclinical-evaluation-of-vaccines-annex-1-trs-no-927 (accessed on 14 June 2023).
- ANSM (Agence Nationale de Sécurité du Médicament et des Produits de Santé), «Les Vaccins». Available online: https://ansm.sante.fr/qui-sommes-nous/notre-perimetre/les-vaccins/p/les-vaccins-2 (accessed on 26 February 2023).
- CDC Immunization: The Basics. Available online: https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm#:~:text=Vaccine%3A%20A%20preparation%20that%20is,body%27s%20immune%20response%20against%20diseases (accessed on 9 May 2023).
- EMA. 2001 Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating to Medicinal Products for Human Use. Updated on 16.11.2012. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32001L0083 (accessed on 14 June 2023).
- Wu, K.-M. A New Classification of Prodrugs: Regulatory Perspectives. Pharmaceuticals 2009, 2, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. 2007 Guidance for Industry Considerations for Plasmid DNA Vaccines for Infectious Disease Indications. November 2007. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-plasmid-dna-vaccines-infectious-disease-indications (accessed on 14 June 2023).
- FDA. Guidance for Industry Preclinical Assessment of Investigational Cellular and Gene Therapy Products. November 2013. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/preclinical-assessment-investigational-cellular-and-gene-therapy-products (accessed on 14 June 2023).
- FDA. 61 FR 68269—Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications. 20 December 1996. Available online: https://www.govinfo.gov/app/details/FR-1996-12-27/96-32930 (accessed on 14 June 2023).
- EMA. Reflection Paper on Classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010 Rev.1; European Medicines Agency: Amsterdam, The Netherlands, 2015; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-classification-advanced-therapy-medicinal-products_en-0.pdf (accessed on 14 June 2023).
- EMA 2006, Committee for Medicinal Products for Human Use CHMP Guideline on Clinical Evaluation of New Vaccines London. EMEA/CHMP/VWP/164653/2005. 18 October 2006. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-evaluation-new-vaccines_en.pdf (accessed on 14 June 2023).
- EMA. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on Advanced Therapy Medicinal Products and Amending Directive 2001/83/EC and Regulation (EC) No 726/2004. 2007. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:324:0121:0137:en:PDF (accessed on 14 June 2023).
- Liu, M.A.; Zhou, T.; Sheets, R.L.; Meyer, H.; Knezevic, I. WHO informal consultation on regulatory considerations for evaluation of the quality, safety and efficacy of RNA-based prophylactic vaccines for infectious diseases, 20–22 April 2021. Emerg. Microbes Infect. 2022, 11, 384–391. [Google Scholar] [CrossRef]
- Moderna. Quarterly Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 for the Quarterly Period Ended 30 June 2020. 6 August 2020. Available online: https://www.sec.gov/Archives/edgar/data/1682852/000168285220000017/mrna-20200630.htm (accessed on 22 July 2021).
- Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- EMA/CHMP/SWP/242917/2016 Questions and Answers on the Withdrawal of the CPMP Note for Guidance on Preclinical Pharmacological and Toxicological Testing of Vaccines (CPMP/SWP/465). 21 July 2016. Available online: https://www.ema.europa.eu/en/documents/other/questions-answers-withdrawal-cpmp-note-guidance-preclinical-pharmacological-toxicological-testing/swp/465_en.pdf (accessed on 14 June 2023).
- EMA. Scientific Recommendation on Classification of Advanced Therapy Medicinal Products. Live Recombinant Lentiviral Vectors Encoding HIV Epitopes to Be Used for Therapeutic HIV Vaccination of HIV-1 Infected Patients; European Medicines Agency: Amsterdam, The Netherlands, 2011; Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/advanced-therapy-classification/scientific-recommendations-classification-advanced-therapy-medicinal-products (accessed on 14 June 2023).
- EMA Committees. The Scientific Advisory Group on Vaccines (SAG-V). Available online: https://www.ema.europa.eu/en/committees/working-parties-other-groups/chmp/scientific-advisory-group-vaccines (accessed on 6 June 2023).
- EMA Committee. Vaccines Working Party. Available online: https://www.ema.europa.eu/en/committees/working-parties-other-groups/chmp/vaccines-working-party (accessed on 6 June 2023).
- EMA-EPAR-Moderna 11 March 2021 EMA/15689/2021 Corr.1*1 Committee for Medicinal Products for Human Use (CHMP) Assessment Report COVID-19 Vaccine Moderna Procedure No. EMEA/H/C/005791/0000. 11 March 2021. Available online: https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf (accessed on 14 June 2023).
- EMEA/H/C/005735/RR. Rapporteur Rolling Review Critical Assessment Report: Quality Aspects. European Medicines Agency, 2020 Obtained by FOIA. Available online: https://covidvaccinereactions.com/ema-pfizer-leak/ (accessed on 13 June 2023).
- EMA EMEA/H/C/005735/RR. Rapporteur’s Rolling Review Critical Assessment Report: Overview and List of Questions. (CHMP); European Medicines Agency: Obtained by FOIA. 2020. Available online: https://covidvaccinereactions.com/ema-pfizer-leak/downloads (accessed on 14 June 2023).
- EMA/CHMP/448917/2021 Type II Group of Variations Assessment Report Procedure EMEA/H/C/005735/II/0056/G Comirnaty Obtained by FOIA. Available online: https://files.catbox.moe/sg745z.pdf (accessed on 13 June 2023).
- TGA Batch Release Assessment of COVID-19 Vaccines Australian Government Dept of Health and Aged Care Therapeutic Goods Administration. Available online: https://www.tga.gov.au/batch-release-assessment-covid-19-vaccines (accessed on 21 May 2023).
- EMEA/CHMP/GTWP/125459/2006 Guideline on the Non-Clinical Studies Required before First Clinical Use of GTMP London. 30 May 2008. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-studies-required-first-clinical-use-gene-therapy-medicinal-products_en.pdf (accessed on 14 June 2023).
- EMA GTP 2018 CAT/80183/2014 Adoption by CHMP 22 March 2018 Guideline on the Quality, Non-Clinical and Clinical Aspects of Gene Therapy Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-gene-therapy-medicinal-products_en.pdf (accessed on 14 June 2023).
- FDA Cellular & Gene Therapy Guidances. Available online: https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances (accessed on 14 June 2023).
- EMA/CPMP/ICH/286/1995 ICH Guideline M3(R2) on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals Step. 5 December 2009. Available online: https://www.ema.europa.eu/en/ich-m3-r2-non-clinical-safety-studies-conduct-human-clinical-trials-pharmaceuticals-scientific#current-effective-version-section (accessed on 14 June 2023).
- EMA Committee for Advanced Therapies. Minutes of the Meeting of 15–17 July 2020. EMA/CAT/510852/2020; European Medicines Agency: Amsterdam, The Netherlands, 2020; Available online: https://www.ema.europa.eu/en/events/committee-advanced-therapies-cat-15-17-july-2020 (accessed on 14 June 2023).
- FDA. Long Term Follow-Up after Administration of Human Gene Therapy Products Center for Biologics Evaluation and Research January 2020. Available online: https://www.fda.gov/media/113768/download (accessed on 14 June 2023).
- The Brighton Collaboration. Available online: https://brightoncollaboration.us/about/ (accessed on 7 June 2023).
- Brighton Collaboration Publications. Available online: https://docs.google.com/spreadsheets/d/1QgF35nYcsaFN3DZTOtV_lP0TYqQzsDMUQBAd5M9brrM/edit#gid=0 (accessed on 7 June 2023).
- Wong, H.-L.; Tworkoski, E.; Zhou, C.K.; Hu, M.; Thompson, D.; Lufkin, B.; Do, R.; Feinberg, L.; Chillarige, Y.; Dimova, R.; et al. Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older. Vaccine 2023, 41, 532–539. [Google Scholar] [CrossRef]
- EMA/896245/2022 Assessment Report Spikevax Procedure No. EMEA/H/C/005791/II/0075/G. Available online: https://www.ema.europa.eu/en/documents/variation-report/spikevax-previously-covid-19-vaccine-moderna-h-c-005791-ii-0075-g-epar-assessment-report-variation_en.pdf (accessed on 14 June 2023).
- EU Official Control Authority Batch Release Human Vaccines Guideline for Pandemic COVID-19 Vaccine (mRNA). Available online: https://www.edqm.eu/fr/ocabr-activities-related-to-covid-19-vaccines (accessed on 14 June 2023).
- Schmeling, M.; Manniche, V.; Hansen, P.R. Batch-dependent safety of the BNT162b2 mRNA COVID-19 vaccine. Eur. J. Clin. Investig. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- WHO. Informal Consultation on the Application of Molecular Methods to Assure the Quality, Safety and Efficacy of Vaccines. 2005. Available online: https://www.who.int/docs/default-source/biologicals/vaccine-quality/69-molecular-methods-final-mtg-report-april2005.pdf (accessed on 14 June 2023).
- Fertig, T.E.; Chitoiu, L.; Marta, D.S.; Ionescu, V.-S.; Cismasiu, V.B.; Radu, E.; Angheluta, G.; Dobre, M.; Serbanescu, A.; Hinescu, M.E.; et al. Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines 2022, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Röltgen, K.; Nielsen, S.C.; Silva, O.; Younes, S.F.; Zaslavsky, M.; Costales, C.; Yang, F.; Wirz, O.F.; Solis, D.; Hoh, R.A.; et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022, 185, 1025–1040.e14. [Google Scholar] [CrossRef] [PubMed]
- Magen, E.; Mukherjee, S.; Bhattacharya, M.; Detroja, R.; Merzon, E.; Blum, I.; Livoff, A.; Shlapobersky, M.; Baum, G.; Talisman, R.; et al. Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis. Vaccines 2022, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
- Yonker, L.M.; Swank, Z.; Bartsch, Y.C.; Burns, M.D.; Kane, A.; Boribong, B.P.; Davis, J.P.; Loiselle, M.; Novak, T.; Senussi, Y.; et al. Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis. Circulation 2023, 147, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Ogata, A.F.; Cheng, C.-A.; Desjardins, M.; Senussi, Y.; Sherman, A.C.; Powell, M.; Novack, L.; Von, S.; Li, X.; Baden, L.R.; et al. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin. Infect. Dis. 2022, 74, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Cognetti, J.S.; Miller, B.L. Monitoring Serum Spike Protein with Disposable Photonic Biosensors Following SARS-CoV-2 Vaccination. Sensors 2021, 21, 5857. [Google Scholar] [CrossRef]
- Patterson, B.K.; Francisco, E.B.; Yogendra, R. SARS-CoV-2 S1 protein persistence in SARS-CoV-2 negative post-vaccination individuals with long COVID/PASC-like symptoms. Res. Sq. 2022. preprint. [Google Scholar] [CrossRef]
- Mörz, M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines 2022, 10, 1651. [Google Scholar] [CrossRef]
- Sano, H.; Kase, M.; Aoyama, Y.; Sano, S. A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA vaccination is possibly associated with the intralesional spike protein expressed by vascular endothelial cells and eccrine glands in the deep dermis. J. Dermatol. 2023, in press. [Google Scholar] [CrossRef]
- Ogata, A.F.; Maley, A.; Wu, C.; Gilboa, T.; Norman, M.; Lazarovits, R.; Mao, C.-P.; Newton, G.; Chang, M.; Nguyen, K.; et al. Ultra-Sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease. Clin. Chem. 2020, 66, 1562–1572. [Google Scholar] [CrossRef]
- EMEA/273974/2005 Note for Guidance CPMP/BWP/3088/99, Annex on Non-Clinical Testing for Inadvertent Germline Transmission of Gene Transfer Vectors. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-testing-inadvertent-germline-transmission-gene-transfer-vectors_en.pdf (accessed on 14 June 2023).
- Zhang, L.; Richards, A.; Barrasa, M.I.; Hughes, S.H.; Young, R.A.; Jaenisch, R. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc. Natl. Acad. Sci. USA 2021, 118, e2105968118. [Google Scholar] [CrossRef]
- Aldén, M.; Olofsson Falla, F.; Yang, D.; Barghouth, M.; Luan, C.; Rasmussen, M.; De Marinis, Y. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 2022, 44, 1115–1126. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E.; Berkhout, B. Integration of SARS-CoV-2 RNA in infected human cells by retrotransposons: An unlikely hypothesis and old viral relationships. Retrovirology 2021, 18, 34. [Google Scholar] [CrossRef]
- Sattar, S.; Kabat, J.; Jerome, K.; Feldmann, F.; Bailey, K.; Mehedi, M. Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2. Front. Microbiol. 2023, 14, 1073789. [Google Scholar] [CrossRef]
- ModernaTX, Inc. 2.4 Nonclinical Overview FDA-CBER-2021-4379-0001131 Obtained by FOIA by Judicial Watch, Inc. Available online: https://www.judicialwatch.org/wp-content/uploads/2022/12/JW-v-HHS-Biodistribution-Prod-4-02418-pgs-671-701.pdf (accessed on 14 June 2023).
- TGA Australian Government Dept of Health and Aged Care Therapeutic Goods Administration Nonclinical Evaluation Report BNT162b2 [mRNA] COVID-19 Vaccine (COMIRNATYTM) Submission No: PM-2020-05461-1-2 Sponsor: Pfizer Australia Pty Ltd. January 2021. Available online: https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf (accessed on 14 June 2023).
- Japan, Report on the Deliberation Results February 12, 2021 Pharmaceutical Evaluation Division, Pharmaceutical Safety and Environmental Health Bureau Ministry of Health, Labour and Welfare, Comirnaty Intramuscular Injection_Pfizer Japan Inc._Report on Special Approval for Emergency Japan Inc. 18 December 2020. Available online: https://www.pmda.go.jp/files/000243206.pdf (accessed on 14 June 2023).
- Hemmrich, E.; McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 2023. [Google Scholar] [CrossRef]
- Yeo, K.T.; Chia, W.N.; Tan, C.W.; Ong, C.; Yeo, J.G.; Zhang, J.; Poh, S.L.; Lim, A.J.M.; Sim, K.H.Z.; Sutamam, N.; et al. Neutralizing Activity and SARS-CoV-2 Vaccine mRNA Persistence in Serum and Breastmilk After BNT162b2 Vaccination in Lactating Women. Front. Immunol. 2022, 12, 783975. [Google Scholar] [CrossRef]
- Low, J.M.; Gu, Y.; Ng, M.S.F.; Amin, Z.; Lee, L.Y.; Ng, Y.P.M.; Shunmuganathan, B.D.; Niu, Y.; Gupta, R.; Tambyah, P.A.; et al. Codominant IgG and IgA expression with minimal vaccine mRNA in milk of BNT162b2 vaccinees. NPJ Vaccines 2021, 6, 105. [Google Scholar] [CrossRef]
- Hanna, N.; Heffes-Doon, A.; Lin, X.; De Mejia, C.M.; Botros, B.; Gurzenda, E.; Nayak, A. Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk. JAMA Pediatr. 2022, 176, 1268–1270. [Google Scholar] [CrossRef]
- Golan, Y.; Prahl, M.; Cassidy, A.G.; Gay, C.; Wu, A.H.B.; Jigmeddagva, U.; Lin, C.Y.; Gonzalez, V.J.; Basilio, E.; Chidboy, M.A.; et al. COVID-19 mRNA Vaccination in Lactation: Assessment of Adverse Events and Vaccine-Related Antibodies in Mother-Infant Dyads. Front. Immunol. 2021, 12, 777103. [Google Scholar] [CrossRef]
- COVID-19 Vaccine-Safety Review for PLLR Label Update BNT162b2 Cumulative Review from Pharmacovigilance Database Pregnancy and Lactation Cumulative Review 20 April 2021 FDA-CBER-2021-5683-0779752. Available online: https://phmpt.org/wp-content/uploads/2023/04/125742_S2_M1_pllr-cumulative-review.pdf (accessed on 14 June 2023).
- Swingle, K.L.; Safford, H.C.; Geisler, H.C.; Hamilton, A.G.; Thatte, A.S.; Billingsley, M.M.; Joseph, R.A.; Mrksich, K.; Padilla, M.S.; Ghalsasi, A.A.; et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J. Am. Chem. Soc. 2023, 145, 4691–4706. [Google Scholar] [CrossRef]
- Irrgang, P.; Gerling, J.; Kocher, K.; Lapuente, D.; Steininger, P.; Habenicht, K.; Wytopil, M.; Beileke, S.; Schäfer, S.; Zhong, J.; et al. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci. Immunol. 2023, 8, eade2798. [Google Scholar] [CrossRef]
- Gao, F.X.; Wu, R.X.; Shen, M.Y.; Huang, J.J.; Li, T.T.; Hu, C.; Luo, F.Y.; Song, S.Y.; Mu, S.; Hao, Y.N.; et al. Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice. iScience 2022, 25, 105479. [Google Scholar] [CrossRef]
- Singh, N.; Bharara Singh, A. S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: An in silico study. Transl. Oncol. 2020, 13, 100814. [Google Scholar] [CrossRef]
- Kyriakopoulos, A.M.; Nigh, G.; McCullough, P.A.; Seneff, S. Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity. Cureus 2022, 14, e32361. [Google Scholar] [CrossRef]
- Goldman, S.; Bron, D.; Tousseyn, T.; Vierasu, I.; Dewispelaere, L.; Heimann, P.; Cogan, E.; Goldman, M. Rapid Progression of Angioimmunoblastic T Cell Lymphoma Following BNT162b2 mRNA Vaccine Booster Shot: A Case Report. Front. Med. 2021, 8, 798095. [Google Scholar] [CrossRef]
- Bae, E.; Bae, S.; Vays, M.; Abdelwahed, M.; Sarkar, K.; Bae, S.; Vaysblat, M. Development of High-Grade Sarcoma After Second Dose of Moderna Vaccine. Cureus 2023, 15, e37612. [Google Scholar] [CrossRef]
- Revenga-Porcel, L.; Peñate, Y.; Granados-Pacheco, F. Anaplastic large cell lymphoma at the SARS-CoV2 vaccine injection site. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e32–e34. [Google Scholar] [CrossRef] [PubMed]
- Zamfir, M.-A.; Moraru, L.; Dobrea, C.; Scheau, A.-E.; Iacob, S.; Moldovan, C.; Scheau, C.; Caruntu, C.; Caruntu, A. Hematologic Malignancies Diagnosed in the Context of the mRNA COVID-19 Vaccination Campaign: A Report of Two Cases. Medicina 2022, 58, 874. [Google Scholar] [CrossRef]
- Mizutani, M.; Mitsui, H.; Amano, T.; Ogawa, Y.; Deguchi, N.; Shimada, S.; Miwa, A.; Kawamura, T.; Ogido, Y. Two cases of axillary lymphadenopathy diagnosed as diffuse large B-cell lymphoma developed shortly after BNT162b2 COVID-19 vaccination. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e613–e615. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, L.; Grassi, S.O.; Ruffini, L.; Michieletti, E.; Carella, E.; Palli, D.; Zangrandi, A.; Inzerilli, N.; Bernuzzi, P.; Di Nunzio, C.; et al. Non-Hodgkin Lymphoma Developed Shortly after mRNA COVID-19 Vaccination: Report of a Case and Review of the Literature. Medicina 2023, 59, 157. [Google Scholar] [CrossRef] [PubMed]
- Panou, E.; Nikolaou, V.; Marinos, L.; Kallambou, S.; Sidiropoulou, P.; Gerochristou, M.; Stratigos, A. Recurrence of cutaneous T-cell lymphoma post viral vector COVID-19 vaccination. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e91–e93. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, A.; Hashimoto, K.; Kobayashi, S.; Kozono, S.; Kobayashi, T.; Kawamura, Y.; Kimata, M.; Fujita, N.; Ono, Y.; Obuchi, Y.; et al. Rapid progression of marginal zone B-cell lymphoma after COVID-19 vaccination (BNT162b2): A case report. Front. Med. 2022, 9, 963393. [Google Scholar] [CrossRef]
- Doshi, P. Covid-19 vaccines: In the rush for regulatory approval, do we need more data? BMJ 2021, 373, n1244. [Google Scholar] [CrossRef]
- Montes-Galindo, D.A.; Espiritu-Mojarro, A.C.; Melnikov, V.; Moy-López, N.A.; Soriano-Hernandez, A.D.; Galvan-Salazar, H.R.; Guzman-Muñiz, J.; Guzman-Esquivel, J.; Martinez-Fierro, M.L.; Rodriguez-Sanchez, I.P.; et al. Adenovirus 5 produces obesity and adverse metabolic, morphological, and functional changes in the long term in animals fed a balanced diet or a high-fat diet: A study on hamsters. Arch. Virol. 2019, 164, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Muscogiuri, G.; Dalamaga, M. Use of adenovirus type-5 vector vaccines in COVID-19: Potential implications for metabolic health? Minerva Endocrinol. 2022, 47, 264–269. [Google Scholar] [CrossRef]
- Shastri, T.; Randhawa, N.; Aly, R.; Ghouse, M. Bone Marrow Suppression Secondary to the COVID-19 Booster Vaccine: A Case Report. J. Blood Med. 2022, 13, 69–74. [Google Scholar] [CrossRef]
- Cecchi, N.; Giannotta, J.A.; Barcellini, W.; Fattizzo, B. A case of severe aplastic anaemia after SARS-CoV-2 vaccination. Br. J. Haematol. 2022, 196, 1334–1336. [Google Scholar] [CrossRef]
- Walter, A.; Kraemer, M. A neurologist’s rhombencephalitis after comirnaty vaccination. A change of perspective. Neurol. Res. Pract. 2021, 3, 56. [Google Scholar] [CrossRef]
- Khayat-Khoei, M.; Bhattacharyya, S.; Katz, J.; Harrison, D.; Tauhid, S.; Bruso, P.; Houtchens, M.K.; Edwards, K.R.; Bakshi, R. COVID-19 mRNA vaccination leading to CNS inflammation: A case series. J. Neurol. 2022, 269, 1093–1106. [Google Scholar] [CrossRef]
- Carubbi, F.; Alunno, A.; Santilli, J.; Natali, L.; Mancini, B.; Di Gregorio, N.; Del Pinto, R.; Viscido, A.; Grassi, D.; Ferri, C. Immune-mediated inflammatory diseases after anti-SARS-CoV-2 vaccines: New diagnoses and disease flares. RMD Open 2022, 8, e002460. [Google Scholar] [CrossRef] [PubMed]
- Nahra, V.; Makandura, M.; Anthony, D.D.; Mattar, M. A Case Series on the COVID-19 Vaccines and Possible Immune-Related Adverse Events: A New Challenge for the Rheumatologists. Cureus 2022, 14, e29660. [Google Scholar] [CrossRef] [PubMed]
- Safary, A.; Esalatmanesh, K.; Eftekharsadat, A.T.; Jafari Nakjavani, M.R.; Khabbazi, A. Autoimmune inflammatory rheumatic diseases post-COVID-19 vaccination. Int. Immunopharmacol. 2022, 110, 109061. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.-Y.; Toh, T.-H.; Toh, Y.-F.; Wong, K.-T.; Shahrizaila, N.; Goh, K.-J. A temporal association between COVID-19 vaccination and immune-mediated necrotizing myopathy. Muscle Nerve 2022, 65, E24–E26. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, E.K.; Chochua, S.; Moline, H.L.; Hall, M.; Hersh, A.L.; Shah, S.S.; Britton, A.; Hawkins, P.A.; Xing, W.; Onukwube Okaro, J.; et al. Pediatric Brain Abscesses, Epidural Empyemas, and Subdural Empyemas Associated with Streptococcus Species—United States, January 2016–August 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Kim, S.Y.; Park, M.S.; Jeong, S.H.; Park, S.W.; Lee, H.L.; Lee, H.K.; Yang, S.H.; Jegal, Y.; Yoo, J.W.; et al. COVID-19 Vaccine-Associated Pneumonitis in the Republic of Korea: A Nationwide Multicenter Survey. J. Korean Med. Sci. 2023, 38, e106. [Google Scholar] [CrossRef]
- To Evaluate the Safety, Tolerability, and Immunogenicity of BNT162b2 against COVID-19 in Healthy Pregnant Women 18 Years of Age and Older. Identifier: NCT04754594. Available online: https://clinicaltrials.gov/ct2/show/record/NCT04754594 (accessed on 9 June 2023).
- Cao, Z.; Wu, Y.; Faucon, E.; Sabatier, J.M. SARS-CoV-2 & Covid-19: Key-Roles of the ‘Renin-Angiotensin’ System/Vitamin D Impacting Drug and Vaccine Developments. Infect. Disord. Drug Targets 2020, 20, 348–349. [Google Scholar] [CrossRef] [PubMed]
- El-Arif, G.; Farhat, A.; Khazaal, S.; Annweiler, C.; Kovacic, H.; Wu, Y.; Cao, Z.; Fajloun, Z.; Khattar, Z.A.; Sabatier, J.M. The Renin-Angiotensin System: A Key Role in SARS-CoV-2-Induced COVID-19. Molecules 2021, 26, 6945. [Google Scholar] [CrossRef]
- El-Arif, G.; Khazaal, S.; Farhat, A.; Harb, J.; Annweiler, C.; Wu, Y.; Cao, Z.; Kovacic, H.; Abi Khattar, Z.; Fajloun, Z.; et al. Angiotensin II Type I Receptor (AT1R): The Gate towards COVID-19-Associated Diseases. Molecules 2022, 27, 2048. [Google Scholar] [CrossRef]
- Wang, S.; Guo, F.; Liu, K.; Wang, H.; Rao, S.; Yang, P.; Jiang, C. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res. 2008, 136, 8–15. [Google Scholar] [CrossRef]
- Moghaddar, M.; Radman, R.; Macreadie, I. Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19. Microorganisms 2021, 9, 2167. [Google Scholar] [CrossRef]
- Almehdi, A.M.; Khoder, G.; Alchakee, A.S.; Alsayyid, A.T.; Sarg, N.H.; Soliman, S.S. SARS-CoV-2 spike protein: Pathogenesis, vaccines, and potential therapies. Infection 2021, 49, 855–876. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, J.; Schiavon, C.R.; He, M.; Chen, L.; Shen, H.; Zhang, Y.; Yin, Q.; Cho, Y.; Andrade, L.; et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ. Res. 2021, 128, 1323–1326. [Google Scholar] [CrossRef]
- Letarov, A.V.; Babenko, V.V.; Kulikov, E.E. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. Biochem. Mosc. 2021, 86, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Hui, A.M. The paradigm shift in treatment from COVID-19 to oncology with mRNA vaccines. Cancer Treat. Rev. 2022, 107, 102405. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022, 23, e450–e458. [Google Scholar] [CrossRef]
- Sebastian, M.; Schröder, A.; Scheel, B.; Hong, H.S.; Muth, A.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother. 2019, 68, 799–812. [Google Scholar] [CrossRef]
- Stenzl, A.; Feyerabend, S.; Syndikus, I.; Sarosiek, T.; Kübler, H.; Heidenreich, A.; Cathomas, R.; Grüllich, C.; Loriot, Y.; Perez Gracia, S.L.; et al. 1149P—Results of the randomized, placebo-controlled phase I/IIB trial of CV9104, an mRNA-based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2017, 28 (Suppl. S5), v408–v409. [Google Scholar] [CrossRef]
- Aldrich, C.; Leroux-Roels, I.; Huang, K.B.; Bica, M.A.; Loeliger, E.; Schoenborn-Kellenberger, O.; Walz, L.; Leroux-Roels, G.; von Sonnenburg, F.; Oostvogels, L. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine 2021, 39, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Bahl, K.; Senn, J.J.; Yuzhakov, O.; Bulychev, A.; Brito, L.A.; Hassett, K.J.; Laska, M.E.; Smith, M.; Almarsson, Ö.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gulck, E.; Vlieghe, E.; Vekemans, M.; Van Tendeloo, V.F.; Van De Velde, A.; Smits, E.; Anguille, S.; Cools, N.; Goossens, H.; Mertens, L.; et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 2012, 26, F1–F12. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Kwon, D.S.; Macklin, E.A.; Shopis, J.R.; McLean, A.P.; McBrine, N.; Flynn, T.; Peter, L.; Sbrolla, A.; Kaufmann, D.E.; et al. Immunization of HIV-1-Infected Persons with Autologous Dendritic Cells Transfected with mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial. J. Acquir. Immune Defic. Syndr. 2016, 71, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. 5 May 2023. Available online: https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 14 June 2023).
- EMEA/CHMP/VWP164653/05 Rev.1Date for Coming into Operation. 1 August 2023. Available online: https://www.ema.europa.eu/en/clinical-evaluation-new-vaccines-scientific-guideline (accessed on 14 June 2023).
- Knezevic, I.; Liu, M.A.; Peden, K.; Zhou, T.; Kang, H.-N. Development of mRNA Vaccines: Scientific and Regulatory Issues. Vaccines 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
Year | Regulatory Agency | Rule | Comment |
---|---|---|---|
1996 | FDA [13] Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications | Plasmid DNA vaccines are defined as purified preparations of plasmid DNA, designed to contain a gene or genes for the intended vaccine antigen, as well as genes incorporated into the construct that allow for production in a suitable host system | No mention of RNA because RNA-based gene therapy was not yet envisaged |
1998 | FDA [12] content current as of 2021 Guidance for human cell therapy and gene therapy | Virus or DNA preparations used as preventive vaccines are not covered by this document, though there is some overlap in the issues | No mention of RNA because RNA-based gene therapy was not yet envisaged |
2003 | European Union Directive 2001/83/EC which regulates medicinal products for human use, amended in June 2003 Part IV relating to Advanced Medicinal Products (ATMPs) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32003L0063&qid=1686154511801, accessed on 8 June 2023 | Gene Therapy Medicinal Products (GTMPs) are defined as: “a product obtained through a set of manufacturing processes aimed at the transfer, to be performed either in vivo or ex vivo, of a prophylactic, diagnostic or therapeutic gene (i.e., a piece of nucleic acid), to human/animal cells and its subsequent expression in vivo” | Specific GTMPs included “naked nucleic acid” This definition would include mRNA vaccines |
2005 | WHO [23] | WHO grant nucleic-acid-based vaccines the status of vaccines | Vaccines must comply with GMP In case of new formulations: distribution studies and toxicology studies for new additives are required |
2007 | FDA [20] | Manufacturing issues and preclinical required studies for DNA plasmids as vaccine to prevent infectious diseases | DNA plasmids are subject to controls inspired by those for GTP |
2009 | European Union Directive 2001/83/EC Part IV on ATMPs amended 14 September 2009 [13] | A GTP (a) contains an active substance which contains or consists of a recombinant nucleic acid used in or administered to human beings with a view to regulating, repairing, replacing, adding or deleting a genetic sequence; and (b) its therapeutic, prophylactic or diagnostic effect relates directly to the recombinant nucleic acid sequence it contains, or to the product of genetic expression of this sequence. Gene therapy medicinal products shall not include vaccines against infectious diseases. | Vaccines against infectious diseases are excluded from the GTP regulations No ethical or scientific justification is provided |
2013 | FDA [21] | Regulation of gene therapy products did not apply to vaccines against infectious diseases | Apply to DNA plasmids |
2015 | EMA [24] Reflection Paper on Classification of Advanced Therapy Medicinal Products | EMA confirms that vaccines against infectious diseases are not classified as gene therapy products | No ethical or scientific justification is provided |
2016 | EMA [25] | EMA specifies, in this document, that the non-clinical specific aspects of nucleic acid vaccines must be studied in light of GTP regulations | Does not include mRNAs but the definition provided is not exhaustive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banoun, H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int. J. Mol. Sci. 2023, 24, 10514. https://doi.org/10.3390/ijms241310514
Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. International Journal of Molecular Sciences. 2023; 24(13):10514. https://doi.org/10.3390/ijms241310514
Chicago/Turabian StyleBanoun, Helene. 2023. "mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues" International Journal of Molecular Sciences 24, no. 13: 10514. https://doi.org/10.3390/ijms241310514