Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation?
Abstract
1. Introduction
2. Epidermal Growth Factor Receptor
3. Regulation of Sleep by EGFR Signaling in Invertebrates
4. Regulation of Sleep by EGFR in Vertebrates
5. The Neuronal Cell System of Wakefulness Regulation in Invertebrates
6. The Wakefulness Regulation System in Vertebrates and the Orexin System
6.1. Orexins
6.2. Orexins and Other Regulatory Sleep Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joiner, W.J.; Crocker, A.; White, B.H.; Sehgal, A. sleep in Drosophila is regulated by adult mushroom bodies. Nat. Neurosci. 2006, 9, 1327–1328. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Prober, D.A. Attacking sleep from a new angle: Contributions from zebrafish. Curr. Opin. Neurobiol. 2017, 44, 80–88. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Omond, S.E.T.; Hale, M.W.; Lesku, J.A. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022, 45, zsac053. [Google Scholar] [CrossRef]
- Krueger, J.M.; Rector, D.M.; Churchill, L. Sleep and cytokines. Sleep Med. Clin. 2007, 2, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.Y.; Wiggins, L.M.; von Bartheld, C.S. The locus ceruleus responds to signaling molecules obtained from the CSF by transfer through tanycytes. J. Neurosci. 2011, 31, 9147–9158. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sherin, J.E.; Elmquist, J.K.; Torrealba, F.; Saper, C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 1998, 18, 4705–4721. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krueger, T.; Fort, P.; Eggermann, E.; Cauli, B.; Luppi, P.; Rossier, J.; Audinat, E.; Mühlethaler, M.; Serafin, M. Identification of sleep-promoting neurons in vitro. TINS 2001, 24, 726–731. [Google Scholar] [CrossRef]
- Lee, D.A.; Blackshaw, S. Feed your head: Neurodevelopmental control of feeding and metabolism. Annu. Rev. Physiol. 2014, 76, 197–223. [Google Scholar] [CrossRef][Green Version]
- Cho, J.Y.; Sternberg, P.W. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cell 2014, 156, 249–260. [Google Scholar] [CrossRef][Green Version]
- Appelbaum, L.; Wang, G.; Maro, G.S.; Mori, R.; Tovin, A.; Marin, W.; Yokogawa, T.; Kawakami, K.; Smith, S.J.; Gothilf, Y.; et al. Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish. Proc. Natl. Acad. Sci. USA 2009, 106, 21942–21947. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Semenova, S.; Rozov, S.; Sundvik, M.; Bonkowsky, J.; Panula, P. Novel developmental role for dopaminergic signaling to specify hypothalamic neurotransmitter identity. J. Biol. Chem. 2016, 291, 21880–21892. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mahoney, C.; Cogswell, A.; Koralnik, I.; Scammell, T. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci. 2019, 20, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Konietzka, J.; Fritz, M.; Spiri, S.; McWhirter, R.; Leha, A.; Palumbos, S.; Costa, W.S.; Oranth, A.; Gottschalk, A.; Miller, D.M., 3rd; et al. Epidermal growth factor signaling promotes sleep through a combined series and parallel neural circuit. Curr. Biol. 2020, 30, 1–16.e13. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Buskirk, S.C.; Sternberg, P.W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat. Neurosci. 2007, 10, 1300–1307. [Google Scholar] [CrossRef]
- Coogan, A.; Schutova, B.; Husung, S.; Furczyk, K.; Baune, B.; Kropp, P. The circadian system in Alzheimer’s disease: Disturbances, mechanisms, and opportunities. Biol. Psychiatry 2013, 74, 333–339. [Google Scholar] [CrossRef]
- Musiek, E.S.; Lim, M.M.; Yang, G.; Bauer, A.Q.; Qi, L.; Lee, Y.; Jee, H.; Roh, J.H.; Ortiz-Gonzalez, X.; Dearborn, J.T.; et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 2013, 123, 5389–5400. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peter-Derex, L.; Yammine, P.; Bastuji, H.; Croisile, B. Sleep and Alzheimer’s disease. Sleep Med. Rev. 2015, 19, 29–38. [Google Scholar] [CrossRef]
- Stenberg, D. Neuroanatomy and neurochemistry of sleep. Cell Mol. Life Sci. 2007, 64, 1187–1204. [Google Scholar] [CrossRef]
- Landolt, H.P. Sleep homeostasis: A role for adenosine in humans? Biochem. Pharmacol. 2008, 75, 2070–2079. [Google Scholar] [CrossRef]
- Romano, R.; Bucci, C. Role of EGFR in the Nervous System. Cells 2020, 9, 1887. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schlessinger, J. Ligand-Induced, Receptor-Mediated dimerization and activation of EGF receptor. Cell 2002, 110, 669–672. [Google Scholar] [CrossRef][Green Version]
- Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Curr. Oncol. Rep. 2008, 10, 125–131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carpenter, G.; King, L., Jr.; Cohen, S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 1978, 276, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.R.; Wolf, E. The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 2009, 218, 460–466. [Google Scholar] [CrossRef]
- Knudsen, S.L.J.; Mac, A.S.; Henriksen, L.; van Deurs, B.; Grøvdal, L.M. egfr signaling patterns are regulated by its different ligands. Growth Factors 2014, 32, 155–163. [Google Scholar] [CrossRef]
- Black, L.E.; Longo, J.F.; Carroll, S.L. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am. J. Clin. Pathol. 2019, 189, 1898–1912. [Google Scholar] [CrossRef][Green Version]
- Lee, D.C.; Fenton, S.E.; Berkowitz, E.A.; Hissong, M.A. Transforming growth factor alpha: Expression, regulation, and biological activities. Pharmacol. Rev. 1995, 47, 51–85. [Google Scholar]
- Barnard, J.A.; Beauchamp, R.D.; Russell, W.E.; Dubois, R.N.; Coffey, R.J. Epidermal growth factor-related peptides. Biochim. Biophys. Acta Rev. Cancer 1995, 1242, 177–202. [Google Scholar]
- Janigro, D. Cell Cycle in the Central Nervous System; Humana Press: Totowa, NJ, USA, 2006. [Google Scholar]
- Klapper, L.N.; Kirschbaum, M.H.; Sela, M.; Yarden, Y. Biochemical and clinical implications of the erbb/her signaling network of growth factor receptors. Adv. Cancer Res. 2000, 77, 25–79. [Google Scholar] [CrossRef]
- Novak, U.; Walker, F.; Kaye, A.J. Expression of EGFR-family proteins in the brain: Role in development, health and disease. J. Clin. Neurosci. 2001, 8, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, F. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem. 2020, 99, 103811. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, R.; Shilo, B.Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 1997, 13, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Sibilia, M.; Kroismayr, R.; Lichtenberger, B.M.; Natarajan, A.; Hecking, M.; Holcmann, M. The epidermal growth factor receptor: From development to tumorigenesis. Differentiation 2007, 75, 770–787. [Google Scholar] [CrossRef]
- Barberán, S.; Fraguas, S.; Cebrià, F. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development 2016, 143, 2089–2102. [Google Scholar] [CrossRef][Green Version]
- Harris, R.C.; Chung, E.; Coffey, R.J. EGF receptor ligands. Exp. Cell Res. 2003, 284, 2–13. [Google Scholar] [CrossRef]
- Hill, R.; Sternberg, P. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 1992, 358, 470–476. [Google Scholar] [CrossRef]
- Freeman, M. Complexity of EGF receptor signalling revealed in Drosophila. Curr. Opin. Genet. Dev. 1998, 8, 407–411. [Google Scholar] [CrossRef]
- Aroian, R.V.; Koga, M.; Mendel, J.E.; Ohshima, Y.; Sternberg, P.W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 1990, 348, 693–699. [Google Scholar] [CrossRef]
- Shilo, B.Z. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. 2002, 284, 140–149. [Google Scholar] [CrossRef]
- Kushikata, T.; Fang, J.; Chen, Z.; Wang, Y.; Krueger, J.M. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R509–R514. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Yang, F.C.; Snodgrass, P.; Li, X.; Scammell, T.E.; Davis, F.C.; Weitz, C.J. Regulation of Daily Locomotor Activity and sleep by hypothalamic EGF receptor signaling. Science 2001, 294, 2511–2515. [Google Scholar] [CrossRef] [PubMed]
- Foltenyi, K.; Greenspan, R.J.; Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 2007, 10, 1160–1167. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Davis, F.C. Behavioral effects of systemic transforming growth factor-alpha in syrian hamsters. Behav. Brain Res. 2009, 198, 440–448. [Google Scholar] [CrossRef][Green Version]
- Donlea, J.M.; Ramanan, N.; Shaw, P.J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 2009, 324, 105–108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Harbison, S.T.; Serrano Negron, Y.L.; Hansen, N.F.; Lobell, A.S. selection for long and short sleep duration in drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep. PLoS Genet. 2017, 13, e1007098. [Google Scholar] [CrossRef][Green Version]
- Hill, A.J.; Mansfield, R.; Lopez, J.N.M.G.; Raizen, D.M.; Van Buskirk, C. Cellular stress induces a protective sleep-like state in C. elegans. Curr. Biol. 2014, 20, 2399–2405. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nelson, M.D.; Lee, K.H.; Churgin, M.A.; Hill, A.J.; Van Buskirk, C.; Fang-Yen, C.; Raizen, D.M. FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr. Biol. 2014, 24, 2406–2410. [Google Scholar] [CrossRef][Green Version]
- Nath, R.D.; Chow, E.S.; Wang, H.; Schwarz, E.M.; Sternberg, P.W.C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Curr. Biol. 2016, 26, 2446–2455. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Harbison, S.T.; McCoy, J.L.; Mackay, T.F.C. Genome-wide association study of sleep in Dosophila melanogaster. BMC Genom. 2013, 14, 281. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lenz, O.; Xiong, J.; Nelson, M.D.; Raizen, D.M.; Williams, J.A. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 2015, 47, 141–148. [Google Scholar] [CrossRef][Green Version]
- Lee, D.A.; Liu, J.; Hong, Y.; Lane, J.M.; Hill, A.J.; Hou, S.L.; Wang, H.; Oikonomou, G.; Pham, U.; Engle, J.; et al. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci. Adv. 2019, 5, eaax4249. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bringmann, H. Sleep-active neurons: Conserved motors of sleep. Genetics 2018, 208, 1279–1289. [Google Scholar] [CrossRef][Green Version]
- Rich, T.; Zhao, F.; Cruciani, R.A.; Cella, D.; Manola, J.; Fisch, M.J. Association of fatigue and depression with circulating levels of proinflammatory cytokines and epidermal growth factor receptor ligands: A correlative study of a placebo-controlled fatigue Trial. Int. J. Mol. Sci. 2015, 16, 16943–16955. [Google Scholar] [CrossRef][Green Version]
- Mikhail, C.; Vaucher, A.; Jimenez, S.; Tafti, M. ERK signaling pathway regulates sleep duration through activi-ty-induced gene expression during wakefulness. Sci. Signal. 2017, 10, eaa9219. [Google Scholar] [CrossRef][Green Version]
- Weber, F.; Dan, Y. Circuit-based interrogation of sleep control. Nature 2016, 538, 51–59. [Google Scholar] [CrossRef][Green Version]
- Ma, Y.J.; Hill, D.F.; Junier, M.P.; Costa, M.E.; Felder, S.E.; Ojeda, S.R. Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. Mol. Cell. Neurosci. 1994, 5, 246–262. [Google Scholar] [CrossRef]
- Ma, Y.J.; Junier, M.P.; Costa, M.E.; Ojeda, S.R. Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 1992, 9, 657–670. [Google Scholar] [CrossRef]
- Li, X.; Sankrithi, N.; Davis, F.C. Transforming Growth Factor-Alpha Is Expressed in Astrocytes of the Suprachiasmatic Nucleus in hamster: Role of glial cells in circadian clocks. Neuroreport 2002, 13, 2143–2147. [Google Scholar] [CrossRef] [PubMed]
- Tiraboschi, P.; Hansen, L.A.; Thal, L.J.; Corey-Bloom, J. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 2004, 62, 1984–1989. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.A.; Andreev, A.; Truong, T.V.; Chen, A.; Hill, A.J.; Oikonomou, G.; Pham, U.; Hong, Y.K.; Tran, S.; Glass, L.; et al. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 2017, 6, e25727. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lane, J.M.; Jones, S.E.; Dashti, H.S.; Ollila, H.M.; Wood, A.R.; van Hees, V.T.; Brumpton, B.; Winsvold, B.S.; Kantojärvi, K.; et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 2019, 10, 3503. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef][Green Version]
- Jones, S.E.; van Hees, V.T.; Mazzotti, D.R.; Marques-Vidal, P.; Sabia, S.; van der Spek, A.; Dashti, H.S.; Engmann, J.; Kocevska, D.; Tyrrell, J.; et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behavior. Nat. Commun. 2019, 10, 1585. [Google Scholar] [CrossRef][Green Version]
- Lane, J.M.; Jones, S.E.; Dashti, H.S.; Wood, A.R.; Aragam, K.G.; van Hees, V.T.; Strand, L.B.; Winsvold, B.S.; Wang, H.; Bowden, J.; et al. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 2019, 51, 387–393. [Google Scholar] [CrossRef][Green Version]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef][Green Version]
- Dhawan, N.D.; Scopton, A.P.; Dar, A.C. Small Molecule Stabilization of the KSR Inactive State Antagonizes Oncogenic Ras Signalling. Nature 2016, 537, 112–116. [Google Scholar] [CrossRef][Green Version]
- Cohen, B.D.; Green, J.M.; Foy, L.; Fell, H.P. HER4-mediated biological and biochemical properties in NIH 3T3 cells. Evidence for HER1-HER4 heterodimers. J. Biol. Chem. 1996, 271, 4813–4818. [Google Scholar] [CrossRef][Green Version]
- Haynes, P.R.; Christmann, B.L.; Griffith, L.C. A Single Pair of Neurons Links Sleep to Memory Consolidation in Drosophila melanogaster. eLife 2015, 4, e03868. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Kodama, L.; Driscoll, M.R.; Wu, M.N. Two Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila. Curr. Biol. 2012, 22, 2114–2123. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Donlea, J.M.; Pimentel, D.; Miesenböck, G. Neuronal machinery of sleep homeostasis in Drosophila. Neuron 2014, 81, 860–872. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pimentel, D.; Donlea, J.M.; Talbot, C.B.; Song, S.M.; Thurston, A.J.F.; Miesenböck, G. Operation of a homeostat by feedback control of H2O2 cytotoxicity. Cell 2012, 148, 156. [Google Scholar] [CrossRef][Green Version]
- Jin, Y.; Jorgensen, E.; Hartwieg, E.; Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 1999, 19, 539–548. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Turek, M.; Lewandrowski, I.; Bringmann, H. An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr. Biol. 2013, 23, 2215–2223. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Trojanowski, N.F.; Nelson, M.D.; Flavell, S.W.; Fang-Yen, C.; Raizen, D.M. distinct mechanisms underlie quiescence during two Caenorhabditis elegans sleep-like states. J. Neurosci. 2015, 35, 14571–14584. [Google Scholar] [CrossRef][Green Version]
- Grubbs, J.J.; Lopes, L.E.; van der Linden, A.M.; Raizen, D.M. A salt-induced kinase (sik) is required for the metabolic regulation of sleep. bioRxiv 2019. [Google Scholar] [CrossRef][Green Version]
- De Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–332. [Google Scholar] [CrossRef][Green Version]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richarson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and Orexin Receptors: A family of hypothalamic neuropeptides and g protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef][Green Version]
- Colten, H.; Altevogt, M. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Hu, Y.; Shmygelska, A.; Tran, D.; Eriksson, N.; Tung, J.Y.; Hinds, D.A. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 2016, 7, 10448. [Google Scholar] [CrossRef][Green Version]
- Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The orexin/receptor system: Molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci. 2018, 11, 220. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Toor, B.; Ray, L.B.; Pozzobon, A.; Fogel, S.M. Sleep, orexin and cognition. The orexin system. Basic Sci. Role Sleep Pathol. 2021, 45, 38–51. [Google Scholar] [CrossRef]
- Trivedi, P.; Yu, H.; MacNeil, D.J.; Van der Ploeg, L.H.T.; Guan, X.M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998, 438, 71–75. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lu, X.; Bagnol, D.; Burke, S.; Akil, H.; Watson, S. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm. Behav. 2000, 37, 335–344. [Google Scholar] [CrossRef]
- Marcus, J.; Aschkenasi, C.; Lee, C.; Chemelli, R.; Saper, C.; Yanagisawa, M.; Elmquist, J. differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001, 435, 6–25. [Google Scholar] [CrossRef]
- Mieda, M.; Hasegawa, E.; Kisanuki, Y.Y.; Sinton, C.M.; Yanagisawa, M.; Sakurai, T. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J. Neurosci. 2011, 31, 6518–6526. [Google Scholar] [CrossRef][Green Version]
- Chou, T.; Lee, C.; Lu, J.; Elmquist, J.; Hara, J.; Willie, J.; Beuckmann, C.; Chemelli, R.; Sakurai, T.; Yanagisawa, M.; et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. Res. 2001, 21, 168. [Google Scholar] [CrossRef][Green Version]
- Barson, J.; Chang, Q.; Poon, K.; Morganstern, I.; Leibowitz, S. Galanin and the orexin 2 receptor as possible regulators of enkephalin in the PVN: Relation to dietary fat. Neuroscience 2011, 193, 10–20. [Google Scholar] [CrossRef][Green Version]
- Yamamoto, T.; Suzuki, H.; Uemura, H.; Yamamoto, K.; Kikuyama, S. localization of orexin-a-like immunoreactivity in prolactin cells in the bullfrog (Rana catesbeiana) pituitary. Gen. Comp. Endocrinol. 2004, 135, 186–192. [Google Scholar] [CrossRef]
- Reti, I.M.; Reddy, R.; Worley, P.F.; Baraban, J.M. Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J. Neurochem. 2002, 82, 1561–1565. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abrahamson, E.E.; Leak, R.; Moore, R. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport 2001, 12, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Rosin, D.L.; Weston, M.C.; Sevigny, C.P.; Stornetta, R.L. hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J. Comp. Neurol. 2003, 465, 593–603. [Google Scholar] [CrossRef]
- Torrealba, F.; Yanagisawa, M.; Saper, C.B. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 2003, 119, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Schöne, C.; Cao, Z.F.H.; Apergis-Schoute, J.; Adamantidis, A.; Sakurai, T.; Burdakov, D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J. Neurosci. 2012, 32, 12437–12443. [Google Scholar] [CrossRef][Green Version]
- Lu, J.; Bjorkum, A.; Xu, M.; Gaus, S.; Shiromani, S.; Saper, C. Selective activation of the extended ventrolateral pre-optic nucleus during rapid eye movement sleep. J. Neurosci. 2002, 22, 4568–4576. [Google Scholar] [CrossRef]
- Liblau, R.; Vassalli, A.; Seifinejad, A.; Tafti, M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol. 2015, 14, 318–328. [Google Scholar] [CrossRef]
- Tsujino, H.; Sakurai, T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 2013, 7, 28. [Google Scholar] [CrossRef][Green Version]
- Xie, X.; Crowder, T.; Yamanaka, A.; Morairty, S.; LeWinter, R.; Sakurai, T.; Kilduff, T.S. GABAB receptor-mediated modulation of hypocretin/orexin neurons in mouse hypothalamus. J. Physiol. 2009, 587, 399–414. [Google Scholar] [CrossRef][Green Version]
- Matsuki, T.; Sakurai, T. Orexins and orexin receptors: From molecules to integrative physiology. Results. Probl. Cell Differ. 2008, 46, 27–55. [Google Scholar] [CrossRef]
- Hondo, M.; Furutani, N.; Yamasaki, M.; Watanabe, M.; Sakurai, T. Orexin neurons receive glycinergic innervations. PLoS ONE 2011, 6, e25076. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Karnani, M.; Apergis-Schoute, J.; Adamantidis, A.; Jensen, L.; de Lecea, L.; Fugger, L.; Burdakov, D. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 2011, 72, 616–629. [Google Scholar] [CrossRef][Green Version]
- Karnani, M.; Venner, A.; Jensen, L.; Fugger, L.; Burdakov, D. Direct and indirect control of orexin/hypocretin neurons by glycine receptors. J. Physiol. 2011, 589, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hermes, G. Neural plasticity in hypocretin neurons: The basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front. Syst. Neurosci. 2015, 9, 142. [Google Scholar] [CrossRef][Green Version]
- Yamanaka, A.; Muraki, Y.; Tsujino, N.; Goto, K.; Sakurai, T. Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem. Biophys. Res. Commun. 2003, 303, 120–129. [Google Scholar] [CrossRef]
- Yamanaka, A.; Muraki, Y.; Ichiki, K.; Tsujino, N.; Kilduff, T. Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J. Neurophysiol. 2006, 96, 284–298. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, S.; Blache, D.; Vercoe, P.E.; Adam, C.L.; Blackberry, M.A.; Eidne, K.A.; Martin, G.B.; Patricia, A. Expression of orexin receptors in the brain and peripheral tissues of the male sheep. Regul. Pept. 2005, 124, 81–87. [Google Scholar] [CrossRef]
- Mikkelsen, J.D.; Hauser, F.; DeLecea, L.; Sutcliffe, J.G.; Kilduff, T.; Calgari, C.; Pevet, P.; Simonneaux, V. Hypocretin (orexin) in the rat pineal gland: A central transmitter with effects on noradrenaline-induced release of melatonin. Eur. J. Neurosci. 2001, 14, 419–425. [Google Scholar] [CrossRef]
- Fabris, C.; Cozzi, B.; Hay-Schmidt, A.; Naver, B.; Møller, M. Demonstration of an orexinergic central innervation of the pineal gland of the pig. J. Comp. Neurol. 2004, 471, 113–127. [Google Scholar] [CrossRef]
- Schöne, C.; Apergis-Schoute, J.; Sakurai, T.; Adamantidis, A.; Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 2014, 7, 697–704. [Google Scholar] [CrossRef][Green Version]
- Blanco-Centurion, C.; Bendell, E.; Zou, B.; Sun, Y.; Shiromani, P.J.; Liu, M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep. 2018, 12, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Pizza, F.; Magnani, M.; Indrio, C.; Plazzi, G. the hypocretin system and psychiatric disorders. Curr. Psychiatry Rep. 2014, 16, 433. [Google Scholar] [CrossRef] [PubMed]
- Tsunematsu, T.; Fu, L.Y.; Yamanaka, A.; Ichiki, K.; Tanoue, K.; Sakurai, T.; van den Pol, A.N. Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: Implications for water homeostasis. J. Neurosci. Res. 2008, 86, 228–238. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yamanaka, A.; Tabuchi, S.; Tsunematsu, T.; Fukazawa, Y.; Tominaga, M. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 2010, 30, 12642–12652. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.; Gao, X. Adenosine Inhibits Activity of hypocretin/orexin neurons by the a1 receptor in the lateral hypothalamus: A possible sleep-promoting effect. J. Neurophysiol. 2007, 97, 837–848. [Google Scholar] [CrossRef][Green Version]
- Arendt, J.; Deacon, S.; English, J.; Hampton, S.; Morgan, L. Melatonin and adjustment to phase shift. J. Sleep Res. 1995, 4, 74–79. [Google Scholar] [CrossRef]
- Klein, D.; Coon, S.; Roseboom, P.; Weller, J.; Bernard, M.; Gastel, J.; Zatz, M.; Iuvone, P.; Rodriguez, I.; Bégay, V.; et al. The melatonin rhythm-generating enzyme: Molecular regulation of serotonin n-acetyltransferase in the pineal gland. Recent Prog. Horm. Res. 1997, 52, 307–358. [Google Scholar]
- Richter, C.P.; Woods, I.G.; Schier, A.F. Neuropeptidergic control of sleep and wakefulness. Annu. Rev. Neurosci. 2014, 37, 503–531. [Google Scholar] [CrossRef]
- Carskadon, M.; Dement, W. Normal human sleep: An overview. In Principles and Practice of Sleep Medicine, 4th ed.; Kryger, M.H., Roth, T., Dement, W.C., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2005; pp. 13–23. [Google Scholar]
- Casciola, A.A.; Takahashi, A.C.M.; de Carvalho, R.R.; Mello, F.M.; Balbo, V.L. A deep learning strategy for automatic sleep staging based on two-channel EEG headband data. Sensors 2021, 21, 3598. [Google Scholar] [CrossRef]
- Rahman, M.M.; Bhuiyan, M.I.H.; Hassan, A.R. Sleep stage classification using single-channel EOG. Comput. Biol. Med. 2018, 102, 211–220. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Chu, C.-H.; Kang, M.-S. IoT-Based Unobtrusive Sensing for Sleep Quality Monitoring and Assessment. IEEE Sens. J. 2021, 21, 3799–3809. [Google Scholar] [CrossRef]
- Li, F.; Valero, M.; Clemente, J.; Tse, Z.; Song, W. Smart sleep monitoring system via passively sensing human vibration signals. IEEE Sens. J. 2021, 21, 14466–14473. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, E.; Kim, J.; Park, P.; Cho, S. A sleep apnea monitoring IC for respiration, heart-rate, SpO2 and pulse-transit time measurement using thermistor, PPG and body-channel communication. IEEE Sens. J. 2020, 20, 1997–2007. [Google Scholar] [CrossRef]
- Jain, R.; Ganesan, R.A. Reliable sleep staging of unseen subjects with fusion of multiple EEG features and boost. Biomed. Signal Process. Control 2021, 70, 102896. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, X.; Pan, W.; Shen, X.; Wang, Y.; Li, J.; Wei, G. Sleep staging using plausibility score: A novel feature selection method based on metric learning. IEEE J. Biomed. Health Informat. 2021, 25, 577–590. [Google Scholar] [CrossRef]
- An, P.; Yuan, Z.; Zhao, J. Unsupervised multi-subepoch feature learning and hierarchical classification for EEG-based sleep staging. Sensors 2019, 19, 2027. [Google Scholar] [CrossRef]
- Shahbakhti, M.; Beiramvand, M.; Eigirdas, T.; Solé-Casals, J.; Wierzchon, M.; Broniec-Wojcik, A.; Vu, T.; Janusek, D.; Marozas, V. Discrimination of wakefulness from sleep stageI using nonlinear features of a single frontal EEG channel. IEEE Sens. J. 2022, 22, 6975–6984. [Google Scholar] [CrossRef]
- Blazejova, K.; Illnerova, H.; Hajek, I.; Nevsimalova, S. Circadian rhythm in salivary melatonin in narcoleptic patients. Neurosci. Lett. 2008, 437, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Pandi-Perumal, S.R.; Trahkt, I.; Spence, W.D.; Poeggeler, B.; Hardeland, R.; Cardinali, D.P. Melatonin and melatonergic drugs on sleep: Possible mechanisms of action. Int. J. Neurosci. 2009, 119, 821–846. [Google Scholar] [CrossRef]
- De Leersnyder, H.; Bresson, J.L.; de Blois, M.C.; Souberbielle, J.C.; Mogenet, A.; Delhotal-Landes, B.; Salefranque, F.; Munnich, A. Beta 1-adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, smith-magenis syndrome. J. Med. Genet. 2003, 40, 74–78. [Google Scholar] [CrossRef][Green Version]
- Palma-Chavez, A.; Konar-Nié, M.; Órdenes, P.; Maurelia, F.; Elizondo-Vega, R.; Oyarce, K.; López, S.; Rojas, J.; Steinberg, X.; García-Robles, M.A.; et al. Glucose increase DAGLα levels in tanycytes and its inhibition alters orexigenic and anorexigenic neuropeptides expression in response to glucose. Biomolecules 2020, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.Z.; Naidu, Y.; Reddy, P.; Chaudhuriy, K.R. Narcolepsy in Parkinson’s disease. Expert Rev. Neurother. 2010, 10, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Ziv, I.; Barzilai, A.; Offen, D.; Nardi, N.; Melamed, E. Nigrostriatal neuronal death in Parkinson’s disease—A passive or an active genetically-controlled process? J. Neural. Transm. 1997, 49, 69–76. [Google Scholar] [CrossRef]
- Lim, M.; Szymusiak, R. Neurobiology of Arousal and Sleep: Updates and insights into neurological disorders. Curr. Sleep Med. Rep. 2015, 1, 91–100. [Google Scholar] [CrossRef][Green Version]
- Panula, P. Hypocretin/orexin in fish physiology with emphasis on zebrafish. Acta Physiol. 2010, 198, 381–386. [Google Scholar] [CrossRef]
- Kaslin, J.; Nystedt, J.; Ostergard, M.; Peitsaro, N.; Panula, P. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J. Neurosci. Res. 2004, 76, 2678–2689. [Google Scholar] [CrossRef][Green Version]
- Prober, D.; Rihel, J.; Onah, A.A.; Sung, R.J.; Schier, A. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci. 2006, 26, 13400–13410. [Google Scholar] [CrossRef][Green Version]
- Faraco, J.; Appelbaum, L.; Marin, W.; Gaus, S.; Mourrain, P.; Mignot, E. Regulation of hypocretin (orexin) expression in embryonic zebrafish. J. Biol. Chem. 2006, 281, 29753–29761. [Google Scholar] [CrossRef][Green Version]
- Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998, 18, 9996–10015. [Google Scholar] [CrossRef][Green Version]
- Van den Pol, A.N. Hypothalamic hypocretin (orexin): Robust innervation of the spinal cord. J. Neurosci. 1999, 19, 3171–3182. [Google Scholar] [CrossRef][Green Version]
- Zhdanova, I.V.; Wang, S.Y.; Leclair, O.U.; Danilova, N.P. Melatonin Promotes Sleep-Like State in Zebrafish. Brain Res. 2001, 903, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Falcon, J. Cellular circadian clocks in the pineal. Prog. Neurobiol. 1999, 58, 121–162. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, E.E.; Anzulovich, A.; Baler, R.; Gothilf, Y. Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J. Biol. Chem. 2005, 280, 11544–11551. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Snodgrass-Belt, P.; Gilbert, J.L.; Davis, F.C. Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain Res. 2005, 1038, 171–182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kniazkina, M.; Dyachuk, V. Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation? Int. J. Mol. Sci. 2023, 24, 9505. https://doi.org/10.3390/ijms24119505
Kniazkina M, Dyachuk V. Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation? International Journal of Molecular Sciences. 2023; 24(11):9505. https://doi.org/10.3390/ijms24119505
Chicago/Turabian StyleKniazkina, Marina, and Vyacheslav Dyachuk. 2023. "Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation?" International Journal of Molecular Sciences 24, no. 11: 9505. https://doi.org/10.3390/ijms24119505
APA StyleKniazkina, M., & Dyachuk, V. (2023). Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation? International Journal of Molecular Sciences, 24(11), 9505. https://doi.org/10.3390/ijms24119505