Study of the Electronic Interaction between NiO and Short Polythiophene Chains towards Solar Photon Harvesting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Geometry Optimization
2.1.1. Geometry of the 3PTh Systems
2.1.2. Geometry of the 5PTh Systems
2.2. Molecular Bonding Energy
2.2.1. Molecular Bonding Energy of the 3PTh Systems
2.2.2. Molecular Bonding Energy of the 5PTh Systems
2.3. Molecular Orbitals and Band Gap Energies
2.3.1. HOMO–LUMO Orbitals of the 3PTh Systems
2.3.2. HOMO–LUMO Orbitals of the 5PTh Systems
2.4. Global Molecular Reactivity
2.4.1. Molecules Constituted by Three Monomers
2.4.2. Molecules Constituted by Five Monomers
2.5. Molecular Electrostatic Potential (MEP)
2.6. Partial Density of States (PDOS)
3. Materials and Methods
Computational Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, T.H.; Yoon, H. Fundamentals of Conjugated Polymer Nanostructures. In Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications, 1st ed.; Ghosh, S., Ed.; WILEY-VCH GmbH., John Wiley & Sons, Inc.: Weinheim, Germany, 2021; Part I; pp. 1–42. [Google Scholar]
- Namsheer, K.; Chandra Sekhar, R. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Park, Y.; Jung, J.; Chang, M. Research Progress on Conducting Polymer-Based Biomedical Applications. Appl. Sci. 2019, 9, 1070. [Google Scholar] [CrossRef]
- Choi, J.R.; Kim, S.M.; Ryu, R.H.; Kim, S.P.; Sohn, J.W. Implantable Neural Probes for Brain-Machine Interfaces? Current Developments and Future Prospects. Exp. Neurobiol. 2018, 27, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Ozkazanc, H. Novel nanocomposites based on polythiophene and zirconium dioxide. Mater. Res. Bull. 2016, 73, 226–232. [Google Scholar] [CrossRef]
- AL-Refai, H.H.; Ganash, A.A.; Hussein, M.A. Polythiophene and its derivatives –Based nanocomposites in electrochemical sensing: A mini review. Mater. Today Commun. 2021, 26, 101935. [Google Scholar] [CrossRef]
- Pascariu, P.; Tudose, I.V.; Vernardou, D.; Koudoumas, E.; Ionescu, O.N.; Bucur, S.; Suchea, M. SnO2 and Ni doped SnO2/polythiophene nanocomposites for gas sensing applications. Solid State Electron. Lett. 2020, 2, 85–91. [Google Scholar] [CrossRef]
- Pascariu, P.; Vernardou, D.; Suchea, M.P.; Airinei, A.; Ursu, L.; Bucur, S.; Tudose, I.V.; Ionescu, O.V.; Koudoumas, E. Tuning electrical properties of polythiophene/nickel nanocomposites via fabrication. Mater. Des. 2019, 182, 108027. [Google Scholar] [CrossRef]
- Mao, Y.; Kong, Q.; Guo, B.; Shen, L.; Wang, Z.; Chen, L. Polypyrrole–NiO composite as high-performance lithium storage material. Electrochim. Acta. 2013, 105, 162–169. [Google Scholar] [CrossRef]
- Yi, T.F.; Qiu, L.Y.; Mei, J.; Qi, S.Y.; Cui, P.; Luo, S.; Zhu, Y.R.; Xie, Y.; He, Y.B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 2020, 65, 546–556. [Google Scholar] [CrossRef]
- Harraz, F.A.; Faisal, M.; Jalalah, M.; Almadiy, A.A.; Al-Sayari, S.A.; Al-Assiri, M.S. Conducting polythiophene/α-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. 2020, 508, 145226. [Google Scholar] [CrossRef]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Murad, A.R.; Iraqi, A.; Aziz, S.B.; Abdullah, S.N.; Brza, M.A. Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers 2020, 12, 2627. [Google Scholar] [CrossRef] [PubMed]
- Lanzi, M.; Salatelli, E.; Giorgini, L.; Marinelli, M.; Pierini, F. Effect of the incorporation of an Ag nanoparticle interlayer on the photovoltaic performance of green bulk heterojunction water-soluble polythiophene solar cells. Polymer 2018, 149, 273–285. [Google Scholar] [CrossRef]
- Li, C.T.; Li, S.R.; Chang, L.Y.; Lee, C.P.; Chen, P.Y.; Sun, S.S.; Lin, J.J.; Vittala, R.; Ho, K.C. Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. J. Mater. Chem. A 2015, 3, 4695–4705. [Google Scholar] [CrossRef]
- Hsieh, H.C.; Hsiow, C.T.; Su, Y.A.; Liu, Y.C.; Chen, W.; Chiu, W.Y.; Shih, Y.C.; Lin, K.F.; Wang, L. Two-dimensional polythiophene homopolymer as promising hole transport material for high-performance perovskite solar cells. J. Power Sources 2019, 426, 55–60. [Google Scholar] [CrossRef]
- Yan, W.; Jiang, D.; Guo, W.; Zhou, F. Efficiency enhancement of solid-state dye-sensitized solar cells by doping polythiophene films photoelectrochemically grown onto TiO2 nanoparticles covered with cis-bis(isothiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II). Electrochim. Acta 2020, 355, 136685. [Google Scholar] [CrossRef]
- Jeong, I.; Jo, J.W.; Bae, S.; Son, H.J.; Ko, M.J. A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells. Dyes Pigm. 2019, 164, 1–6. [Google Scholar] [CrossRef]
- Asok, A.; Naik, A.A.; Arunachalam, S.; Govindaraj, R.; Haribabu, K. Microwave assisted synthesis of polythiophene–molybdenum sulfide counter electrode in dye sensitized solar cell. J. Mater. Sci. Mater. 2019, 30, 13655–13663. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Y.; Li, M.; Ye, L.; Geng, Y. Molecular Engineering and Morphology Control of Polythiophene: Nonfullerene Acceptor Blends for High-Performance Solar Cells. Adv. Energy Mater. 2020, 10, 2002572. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, S.; Hou, J. Low-cost and efficient organic solar cells based on polythiopheneand poly(thiophene vinylene)-related donors. Aggregate 2022, 3, e111. [Google Scholar] [CrossRef]
- Lanzi, M.; Salatellia, E.; Giorginia, L.; Muccib, A.; Pierinic, F.; Di-Nicola, F.P. Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. Eur. Polym. J. 2017, 97, 378–388. [Google Scholar] [CrossRef]
- Jia, X.; Chen, Z.; Duan, C.; Wang, Z.; Yin, Q.; Huang, F.; Cao, Y. Polythiophene derivatives compatible with both fullerene and non-fullerene acceptors for polymer solar cells. J. Mater. Chem. C 2019, 7, 314–323. [Google Scholar] [CrossRef]
- Lanzi, M.; Quadretti, D.; Marinelli, M.; Ziai, Y.; Salatelli, E.; Pierini, F. Influence of the Active Layer Structure on the Photovoltaic Performance of Water-Soluble Polythiophene-Based Solar Cells. Polymers 2021, 13, 1640. [Google Scholar] [CrossRef] [PubMed]
- Shuttle, C.G.; Maurano, A.; Hamilton, R.; O’Regan, B.; de Mello, J.C.; Durrant, J.R. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. Appl. Phys. Lett. 2008, 93, 183501. [Google Scholar] [CrossRef]
- Kate, R.S.; Khalate, S.A.; Deokate, R.J. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. J. Alloys Compd. 2018, 734, 89–111. [Google Scholar] [CrossRef]
- Danjumma, S.G.; Abubakar, Y. Nickel Oxide (NiO) Devices and Applications: A Review. IJERT 2019, 8, 461–467. [Google Scholar]
- Inamuddin; Alamry, K.A. Application of Electrically Conducting Nanocomposite Material Polythiophene@NiO/Frt/GOx as Anode for Enzymatic Biofuel Cells. Materials 2020, 13, 1823. [Google Scholar] [CrossRef]
- Carbajal-Franco, G.; Márquez-Quintana, M.F.; Rojas-Chávez, H. Modeling of the electronic interaction in the NiO-thiophene nanocomposite. MRS Adv. 2021, 6, 960–964. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, W.; Zhu, Y. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat 2019, 2, 12007. [Google Scholar] [CrossRef]
- Lipovšek, B.; Smole, F.; Topič, M.; Humar, I.; Sinigoj, A.R. Driving forces and charge-carrier separation in p-n junction solar cells. AIP Adv. 2019, 9, 055026. [Google Scholar] [CrossRef]
- Yao, H.; Cui, Y.; Qian, D.; Ponseca, C.S., Jr.; Honarfar, A.; Xu, Y.; Xin, J.; Chen, Z.; Hong, L.; Gao, B.; et al. 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. J. Am. Chem. Soc. 2019, 141, 7743–7750. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. M11-L: A Local Density Functional that Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. J. Phys. Chem. Lett. 2012, 3, 117–124. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
3PTh | E0 | G298.15 | E298.15 | 5PTh | E0 | G298.15 | E298.15 |
---|---|---|---|---|---|---|---|
A | −2,033,052 | 77.165 | −2,032,975 | A | −2,725,485 | 128.79 | −2,725,356 |
B | −2,033,066 | 77.110 | −2,032,989 | B | −2,725,499 | 130.463 | −2,725,369 |
C | −2,033,038 | 74.584 | −2,032,963 | C | −2,725,473 | 129.148 | −2,725,344 |
D | −2,033,024 | 76.239 | −2,032,948 | D | −2,725,459 | 128.037 | −2,725,331 |
ID | EBonfing | EHOMO | ELUMO | Eg | μ | η | S (×10−2) | ω | ∆Nmax |
---|---|---|---|---|---|---|---|---|---|
3PTh | −113.60 | −55.95 | −57.65 (2.5) | 84.77 | 28.82 | 1.73 | 124.66 | −2.94 | |
A | −23.71 | −107.22 | −80.05 | −27.17 (1.18) | 93.64 | 13.58 | 3.68 | 322.76 | −6.89 |
B | −38.50 | −110.77 | −78.78 | −31.98 (1.39) | 94.77 | 15.99 | 3.13 | 280.86 | −5.93 |
C | −12.36 | −92.43 | −70.11 | −22.32 (0.97) | 81.27 | 11.16 | 4.48 | 295.91 | −7.28 |
D | 3.52 | −107.13 | −97.63 | −9.50 (0.41) | 102.38 | 4.75 | 10.53 | 1103.58 | −21.56 |
ID | EBonding | EHOMO | ELUMO | Eg | μ | η | S (×10−2) | ω | ∆Nmax |
---|---|---|---|---|---|---|---|---|---|
5PTh | −108.32 | −63.48 | −44.84 (1.94) | 85.90 | 22.42 | 2.23 | 164.58 | −3.83 | |
A | −17.29 | −92.83 | −74.90 | −17.93 (0.78) | 83.86 | 8.97 | 5.58 | 392.17 | −9.35 |
B | −41.57 | −109.34 | −82.65 | −26.69 (1.16) | 96.00 | 13.35 | 3.75 | 345.26 | −7.19 |
C | −29.56 | −104.95 | −76.76 | −28.20 (1.22) | 90.85 | 14.10 | 3.55 | 292.75 | −6.44 |
D | −4.13 | −105.87 | −93.04 | −12.83 (0.56) | 99.45 | 6.42 | 7.79 | 770.86 | −15.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbajal-Franco, G.; Márquez-Quintana, M.F.; Rojas-Chávez, H.; Miralrio, A. Study of the Electronic Interaction between NiO and Short Polythiophene Chains towards Solar Photon Harvesting. Int. J. Mol. Sci. 2023, 24, 9109. https://doi.org/10.3390/ijms24119109
Carbajal-Franco G, Márquez-Quintana MF, Rojas-Chávez H, Miralrio A. Study of the Electronic Interaction between NiO and Short Polythiophene Chains towards Solar Photon Harvesting. International Journal of Molecular Sciences. 2023; 24(11):9109. https://doi.org/10.3390/ijms24119109
Chicago/Turabian StyleCarbajal-Franco, Guillermo, María Fernanda Márquez-Quintana, Hugo Rojas-Chávez, and Alan Miralrio. 2023. "Study of the Electronic Interaction between NiO and Short Polythiophene Chains towards Solar Photon Harvesting" International Journal of Molecular Sciences 24, no. 11: 9109. https://doi.org/10.3390/ijms24119109