Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review
Abstract
:1. Introduction
1.1. Overview of Major Antidepressants
1.2. Traditional Analytical Techniques and Electrochemical Based (Bio)Sensing Techniques
1.3. Aim
2. Chemically Modified Electrodes (CME) for the Detection of Antidepressants
2.1. Carbon-Based Nanomaterials
2.2. Metal-Based Nanoparticles
2.3. Molecularly Imprinted Polymers
3. Enzyme-Based Electrochemical Biosensors for the Detection of Antidepressants
Platform | Enzyme | Inhibitor (Molecule) | Sample | Detection Method | Linear Range | LOD | References |
---|---|---|---|---|---|---|---|
Au/PANSA/CYPD6 | CYP2D6 | Paroxetine | Pharmaceutical | CV, DPV, SWV | 0.002 µmolL−1 | [78] | |
Au/PANSA/CYPD6 | CYP2D6 | Sertraline | Pharmaceutical | CV, DPV, SWV | 0.2–1.4 µmolL−1 | 0.13 µmolL−1 | [77] |
SPE-CNTs-GO/MAO | MAO | Moclobemide | Pharmaceutical | CV, AMP | 10 nmolL−1–0.1 mmolL−1 | 5.0 nmolL−1 | [84] |
SPE-CNTs-GO/MAO | MAO | Amitriptyline | Pharmaceutical | CV, AMP | 10 nmolL−1–0.1 mmolL−1 | 8.0 nmolL−1 | [69] |
MWCNTs-AgNP-MAO | MAO | Amitriptyline | Pharmaceutical, urine | CV, AMP | 10 nmolL−1–0.1 mmolL−1 | 8.0 nmolL−1 | [88] |
MWCNTs-AgNP-MAO | MAO | Imipramine | Pharmaceutical, urine | CV, AMP | 10 nmolL−1–0.1 mmolL−1 | 7.0 nmolL−1 | [88] |
Pt-SPE/MAO r | MAO | Fluoxetine | Pharmaceutical | CV, AMP | 1.0 nmolL−1–0.1 mmolL−1 | 0.8 nmolL−1 | [86] |
Pt-SPE/MAO r | MAO | Petylyl | Pharmaceutical | CV, AMP | 10 nmolL−1–0.1 mmolL−1 | 8 nmolL−1 | [86] |
Pt-SPE/MAO r | MAO | Pyrazidol | Pharmaceutical | CV, AMP | 0.1 µmolL−1–0.1 mmol L−1 | 0.8 µmolL−1 | [86] |
PT-SPE/PPy/MAO | MAO | Fluoxetine | Pharmaceutical | FIA | 0.674.33 mmolL−1 | 0.1 mmolL−1 | [85] |
SPE/MWCNT/MAO | MAO | Imipramine | Pharmaceutical, urine | CV | 1 × 10−9–1 × 10−4 molL−1 | 0.8 nmolL−1 | [87] |
MnO2/SPE | MAO | Selegeline | Pharmaceuticals | FIA | 0.513.25 µgmL−1 | 0.15 µgmL−1 | [83] |
SPGE/RGO/CoNPs/MAO | MAO | Fluoxetine | Pharmaceutical, urine | CV | 5.0 nmolL−1–0.1 mmolL−1 | 0.8 nmolL−1 | [90] |
SPGE/RGO/CoNPs/MAO | MAO | Thioridazine | Pharmaceutical, urine | CV | 5.0 nmolL−1–0.1 m mmolL−1 | 8.0 nmolL−1 | [90] |
SPGE/RGO/CoNPs/MAO | MAO | Tianeptine | Pharmaceutical, urine | CV | 5.0 nmolL−1–0.1 m mmolL−1 | 7.0 nmolL−1 | [90] |
SPE/MWCNTs/AuNPAgNP/MAO | MAO | Amitryptiline | Pharmaceutical, urine | CV | -- | -- | [89] |
SPE/MWCNTs/AuNPAgNP/MAO | MAO | Moclobemide | Pharmaceutical, urine | CV | 5.0 nmolL−1–0.1 mmolL−1 | 0.8 nmolL−1 | [89] |
SPE/MWCNTs/AuNPAgNP/MAO | MAO | Tianeptine | Pharmaceutical, urine | CV | 10 nmolL−1–0.1 mmolL−1 | 7.0 nmolL−1 | [89] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Orgnaztion. Depression. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 12 October 2022).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington County, VA, USA, 2013. [Google Scholar] [CrossRef]
- Chiriţă, A.L.; Gheorman, V.; Bondari, D.; Rogoveanu, I. Current understanding of the neurobiology of major depressive disorder. Rom. J. Morphol. Embryol. 2015, 56, 651–658. [Google Scholar] [PubMed]
- Lopez-Munoz, F.; Alamo, C. Monoaminergic Neurotransmission: The History of the Discovery of Antidepressants from 1950s Until Today. Curr. Pharm. Des. 2009, 15, 1563–1586. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, L.; Lapidus, K.A.B.; Iosifescu, D.V. Diagnosis and Treatment of Major Depressive Disorder. Neurol. Clin. 2011, 29, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Zajecka, J.M. Clinical issues in long-term treatment with antidepressants. J. Clin. Psychiatry 2000, 61 (Suppl. 2), 20–25. [Google Scholar]
- Dunbar, G.C.; Claghorn, J.L.; Kiev, A.; Rickels, K.; Smith, W.T. A comparison of paroxetine and placebo in depressed outpatients. Acta Psychiatr. Scand. 1993, 87, 302–305. [Google Scholar] [CrossRef]
- Khawam, E.A.; Laurencic, G.; Malone, D.A. Side effects of antidepressants: An overview. Cleve. Clin. J. Med. 2006, 73, 351–361. [Google Scholar] [CrossRef]
- Shelton, R.C.; Tollefson, G.D.; Tohen, M.; Stahl, S.; Gannon, K.S.; Jacobs, T.G.; Buras, W.R.; Bymaster, F.P.; Zhang, W.; Spencer, K.A.; et al. A novel augmentation strategy for treating resistant major depression. Am. J. Psychiatry 2001, 158, 131–134. [Google Scholar] [CrossRef]
- Roszkowska, A.; Plenis, A.; Kowalski, P.; Bączek, T.; Olędzka, I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. TrAC-Trends Anal. Chem. 2022, 152, 116609. [Google Scholar] [CrossRef]
- Montenarh, D.; Wernet, M.P.; Hopf, M.; Maurer, H.H.; Schmidt, P.H.; Ewald, A.H. Quantification of 33 antidepressants by LC-MS/MS-Comparative validation in whole blood, plasma, and serum. Anal. Bioanal. Chem. 2014, 406, 5939–5953. [Google Scholar] [CrossRef]
- Manousi, N.; Samanidou, V.F. Recent Advances in the HPLC Analysis of Tricyclic Antidepressants in Bio-Samples. Mini-Rev. Med. Chem. 2019, 20, 24–38. [Google Scholar] [CrossRef]
- Truta, L.; Castro, A.L.; Tarelho, S.; Costa, P.; Sales, M.G.F.; Teixeira, H.M. Antidepressants detection and quantification in whole blood samples by GC–MS/MS, for forensic purposes. J. Pharm. Biomed. Anal. 2016, 128, 496–503. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Orazio, P.D. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Pänke, O.; Balkenhohl, T.; Kafka, J.; Schäfer, D.; Lisdat, F. Impedance spectroscopy and biosensing. Adv. Biochem. Eng. Biotechnol. 2007, 109, 195–237. [Google Scholar]
- Lima, H.R.S.; da Silva, J.S.; de Oliveira Farias, E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron. 2018, 108, 27–37. [Google Scholar] [CrossRef]
- Qian, L.; Thiruppathi, A.R.; Elmahdy, R.; van der Zalm, J.; Chen, A. Graphene-oxide-based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen. Sensors 2020, 20, 1252. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, X.; Guo, Q.; Wang, Y.; Lu, Z.; Ou, H.; Luo, Z.; Lou, X. Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine. Sens. Actuators B Chem. 2017, 253, 1129–1136. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Seetharamappa, J.; Prashanth, S.N. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode. Colloids Surf. B Biointerfaces 2010, 78, 217–221. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Maj, D.; Grzybek, G.; Kruczała, K.; Kotarba, A. Functionalization of Graphite with Oxidative Plasma. Int. J. Mol. Sci. 2022, 23, 9650. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Kalusulingam, R.; Mikhailova, T.S. Sol-Gel Materials for Electrochemical Applications: Recent Advances. Coatings 2022, 12, 1625. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca stress simulation of metal-on-metal total hip arthroplasty during normal walking activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Soto, R.J.; Hall, J.R.; Brown, M.D.; Taylor, J.B.; Schoenfisch, M.H. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal. Chem. 2017, 89, 276–299. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, M.A.T.; Hart, J.P. Sensing with chemically and biologically modified carbon electrodes: A review. Analyst 1995, 120, 1029–1045. [Google Scholar] [CrossRef]
- Durst, R.A.; Bäumner, A.J.; Murray, R.W.; Buck, R.P.; Andrieux, C.P. Chemically modified electrodes: Recommended terminology and definitions. Pure Appl. Chem. 1997, 69, 1317–1323. [Google Scholar] [CrossRef]
- McClure, E.W.; Daniels, R.N. Classics in Chemical Neuroscience: Amitriptyline. ACS Chem. Neurosci. 2021, 12, 354–362. [Google Scholar] [CrossRef]
- Henrique Duarte, E.; Dos Santos, W.P.; Fantinato Hudari, F.; Bott Neto, J.L.; Romão Sartori, E.; Dallantonia, L.H.; César Pereira, A.; Teixeira Tarley, C.R. A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. Talanta 2014, 127, 26–32. [Google Scholar] [CrossRef]
- Jat, M.S.; Meena, K.; Jhankal, K.K.; Sharma, D.K. Sensitive electro-chemical determination of antidepressant drug clomipramine at f-mwcnts nano clusters modified glassy carbon electrode. J. Pharm. Sci. Res. 2019, 11, 700–707. [Google Scholar]
- Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; Dewi, D.M.M.; Putri, I.Z.D.; Savitri, I.N.I. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022, 27, 7578. [Google Scholar] [CrossRef]
- Pastoor, D.; Gobburu, J. Clinical pharmacology review of escitalopram for the treatment of depression. Expert Opin. Drug Metab. Toxicol. 2014, 10, 121–128. [Google Scholar] [CrossRef]
- Adjei, K.; Adunlin, G.; Ali, A.A. Impact of Sertraline, Fluoxetine, and Escitalopram on Psychological Distress among United States Adult Outpatients with a Major Depressive Disorder. Healthcare 2023, 11, 740. [Google Scholar] [CrossRef]
- Baccarin, M.; Cervini, P.; Cavalheiro, E.T.G. Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with graphene and carbon nanotubes in the electrochemical determination of escitalopram. Talanta 2018, 178, 1024–1032. [Google Scholar] [CrossRef]
- dos Santos Neto, A.G.; de Sousa, C.S.; da Silva Freires, A.; Silva, S.M.; Zanin, H.; Damos, F.S.; de Cássia Silva Luz, R. Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: Application in psychotropic drugs and urine samples. J. Solid State Electrochem. 2018, 22, 1385–1394. [Google Scholar] [CrossRef]
- De Vane, C.L.; Liston, H.L.; Markowitz, J.S. Clinical pharmacokinetics of sertraline. Clin. Pharmacokinet. 2002, 41, 1247–1266. [Google Scholar] [CrossRef]
- Atty, S.A.; Ibrahim, A.H.; Ibrahim, H.; Abdelzaher, A.M.; Abdel-Raoof, A.M.; Fouad, F.A. Simultaneous voltammetric detection of anti-depressant drug, sertraline HCl and paracetamol in biological fluid at CNT-cesium modified electrode in micellar media. Microchem. J. 2020, 159, 105524. [Google Scholar] [CrossRef]
- Berger, M.; Gastpar, M. Trimipramine: A challenge to current concepts on antidepressives. Eur. Arch. Psychiatry Clin. Neurosci. 1996, 246, 235–239. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Rabiei, S.; Rezaei, B.; Jafari-Asl, M. Combined microporous membrane-based liquid-liquid-liquid microextraction and in situ differential pulse voltammetry for highly sensitive detection of trimipramine. Anal. Methods 2013, 5, 4027–4033. [Google Scholar] [CrossRef]
- Scott, M.A.; Shelton, P.S.; Gattis, W. Therapeutic options for treating major depression, and the role of venlafaxine. Pharmacotherapy 1996, 16, 352–365. [Google Scholar]
- Ding, L.; Li, L.; You, W.; Gao, Z.N.; Yang, T.L. Electrocatalytic oxidation of venlafaxine at a multiwall carbon nanotubes-ionic liquid gel modified glassy carbon electrode and its electrochemical determination. Croat. Chem. Acta 2015, 88, 81–87. [Google Scholar] [CrossRef]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- De Toledo, R.A.; Santos, M.C.; Honório, K.M.; Da Silva, A.B.F.; Cavalheiro, E.T.G.; Mazo, L.H. Use of graphite polyurethane composite electrode for imipramine oxidation-Mechanism proposal and electroanalytical determination. Anal. Lett. 2006, 39, 507–520. [Google Scholar] [CrossRef]
- Oghli, A.H.; Soleymanpour, A. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater. Sci. Eng. C 2020, 108, 110407. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.F.B.; El-Zahry, M.R. A comparative study of different electrodeposited NiCo2O4 microspheres anchored on a reduced graphene oxide platform: Electrochemical sensor for anti-depressant drug venlafaxine. RSC Adv. 2019, 9, 31609–31620. [Google Scholar] [CrossRef]
- Deahl, M. Pharmacological treatment of depression: The role of paroxetine. Hosp. Med. 2001, 62, 38–42. [Google Scholar] [CrossRef]
- Jani, H.; Ritala, M.; Leskela, M. Atomic Layer Deposition of Noble Metals and Their Oxides Jani. Chem. Mater. 2014, 26, 786–801. [Google Scholar]
- Phetsang, S.; Kidkhunthod, P.; Chanlek, N.; Jakmunee, J. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Sci. Rep. 2021, 11, 9302. [Google Scholar] [CrossRef]
- Mazaheri, M.; Aashuri, H.; Simchi, A. Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens. Actuators B. Chem. 2017, 251, 462–471. [Google Scholar] [CrossRef]
- Hwang, J.; Wang, X.; Zhao, D.; Rex, M.M.; Cho, H.J.; Hyoung, W. Electrochimica Acta A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim. Acta 2019, 298, 440–448. [Google Scholar] [CrossRef]
- Keabadile, O.P.; Aremu, A.O.; Elugoke, S.E.; Fayemi, O.E. Green and traditional synthesis of copper oxide nanoparticles—Comparative study. Nanomaterials 2020, 10, 2502. [Google Scholar] [CrossRef]
- Nooranian, S.; Mohammadinejad, A.; Mohajeri, T.; Aleyaghoob, G.; Kazemi Oskuee, R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol. Appl. Biochem. 2022, 69, 1517–1534. [Google Scholar] [CrossRef]
- Vandebriel, R.J.; De Jong, W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 2012, 5, 61–71. [Google Scholar] [CrossRef]
- Tajik, S.; Safaei, M.; Beitollahi, H. A sensitive voltammetric sertraline nanosensor based on ZnFe2O4 nanoparticles modified screen printed electrode. Meas. J. Int. Meas. Confed. 2019, 143, 51–57. [Google Scholar] [CrossRef]
- Sultan, S.; Shah, A.; Firdous, N.; Nisar, J.; Ashiq, M.N.; Shah, I. A Novel Electrochemical Sensing Platform for the Detection of the Antidepressant Drug, Venlafaxine, in Water and Biological Specimens. Chemosensors 2022, 10, 400. [Google Scholar] [CrossRef]
- Madrakian, T.; Soleimani, M.; Afkhami, A. Electrochemical determination of fluvoxamine on mercury nanoparticle multi-walled carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem. 2015, 210, 259–266. [Google Scholar] [CrossRef]
- Shoja, Y.; Rafati, A.A.; Ghodsi, J. Electropolymerization of Ni-LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum. Electrochim. Acta 2016, 203, 281–291. [Google Scholar] [CrossRef]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Seguro, I.; Rebelo, P.; Pacheco, J.G.; Delerue-Matos, C. Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors 2022, 22, 2819. [Google Scholar] [CrossRef]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Seguro, I.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection. Molecules 2022, 27, 3315. [Google Scholar] [CrossRef]
- Rebelo, P.; Pacheco, J.G.; Voroshylova, I.V.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Development of a molecular imprinted electrochemiluminescence sensor for amitriptyline detection: From MD simulations to experimental implementation. Electrochim. Acta 2021, 397, 139273. [Google Scholar] [CrossRef]
- Branger, C.; Brisset, H. Advanced Electrochemical Molecularly Imprinted Polymer as Sensor Interfaces. Multidiscip. Digit. Publ. Inst. Proc. 2019, 15, 22. [Google Scholar]
- Hossain, M.F.; Heo, J.S.; Nelson, J.; Kim, I. Paper-based flexible electrode using chemically-modified graphene and functionalized multiwalled carbon nanotube composites for electrophysiological signal sensing. Information 2019, 10, 325. [Google Scholar] [CrossRef]
- Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: A case history of its discovery and preclinical development. Expert Opin. Drug Discov. 2014, 9, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron. 2016, 81, 198–206. [Google Scholar] [CrossRef]
- Khosrokhavar, R.; Motaharian, A.; Milani Hosseini, M.R.; Mohammadsadegh, S. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem. J. 2020, 159, 105348. [Google Scholar] [CrossRef]
- Akhoundian, M.; Alizadeh, T.; Ganjali, M.R.; Rafiei, F. A new carbon paste electrode modified with MWCNTs and nano-structured molecularly imprinted polymer for ultratrace determination of trimipramine: The crucial effect of electrode components mixing on its performance. Biosens. Bioelectron. 2018, 111, 27–33. [Google Scholar] [CrossRef]
- Aminikhah, M.; Babaei, A.; Taheri, A. A novel electrochemical sensor based on molecularly imprinted polymer nanocomposite platform for sensitive and ultra-selective determination of citalopram. J. Electroanal. Chem. 2022, 918, 116493. [Google Scholar] [CrossRef]
- Zhang, S.; Wright, G.; Yang, Y. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 2000, 15, 273–282. [Google Scholar] [CrossRef]
- Rogers, K.R.; Mascini, M. Biosensors for Field Analytical Monitoring. Field Anal. Chem. Technol. 1998, 2, 317–331. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical enzymatic biosensors. Biosens. Bioelectron. 2017, 92, 294–304. [Google Scholar] [CrossRef]
- Poulos, T.L. Cytochrome P450. Curr. Opin. Struct. Biol. 1995, 5, 767–774. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Bistolas, N.; Wollenberger, U.; Jung, C.; Scheller, F.W. Cytochrome P450 biosensors—A review. Biosens. Bioelectron. 2005, 20, 2408–2423. [Google Scholar] [CrossRef]
- Iwuoha, E.; Ngece, R.; Klink, M.; Baker, P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: A selective serotonin reuptake inhibitor. IET Nanobiotechnol. 2007, 1, 62–67. [Google Scholar] [CrossRef]
- Ajayi, R.F.; Nxusani, E.; Douman, S.F.; Jonnas, A.; Baker, P.G.L.; Iwuoha, E.I. An amperometric cytochrome P450-2D6 biosensor system for the detection of the selective serotonin reuptake inhibitors (SSRIs) paroxetine and fluvoxamine. J. Nano Res. 2016, 44, 208–228. [Google Scholar] [CrossRef]
- Jones, D.N.; Raghanti, M.A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat. 2021, 114, 101957. [Google Scholar] [CrossRef]
- Pitsillou, E.; Bresnehan, S.M.; Kagarakis, E.A.; Wijoyo, S.J.; Liang, J.; Hung, A.; Karagiannis, T.C. The cellular and molecular basis of major depressive disorder: Towards a unified model for understanding clinical depression. Mol. Biol. Rep. 2020, 47, 753–770. [Google Scholar] [CrossRef]
- Werner, F.M.; Coveñas, R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int. J. Neurosci. 2010, 120, 455–470. [Google Scholar] [CrossRef]
- Ishikawa, T.; Okano, M.; Minami, A.; Tsunekawa, H.; Satoyoshi, H.; Tsukamoto, Y.; Takahata, K.; Muraoka, S. Selegiline ameliorates depression-like behaviors in rodents and modulates hippocampal dopaminergic transmission and synaptic plasticity. Behav. Brain Res. 2019, 359, 353–361. [Google Scholar] [CrossRef]
- Aigner, M.; Preissegger, P.; Kalcher, K.; Mehmeti, E.; Macheroux, P.; Edmondson, D.; Ortner, A. Biosensor for the characterisation of hMAO B inhibitors and the quantification of selegiline. Talanta 2017, 174, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Brusnitsyn, D.V.; Medyantseva, E.P.; Varlamova, R.M.; Sitdikova, R.R.; Fattakhova, A.N.; Konovalova, O.A.; Budnikov, G.K. Carbon nanomaterials as electrode surface modifiers in development of amperometric monoamino oxidase biosensors. Inorg. Mater. 2016, 52, 1413–1419. [Google Scholar] [CrossRef]
- Vela, M.H.; De Jesus, D.S.; Couto, C.M.C.M.; Araújo, A.N.; Montenegro, M.C.B.S.M. Electroimmobilization of MAO into a polypyrrole film and its utilization for amperometric flow detection of antidepressant drugs. Electroanalysis 2003, 15, 133–138. [Google Scholar] [CrossRef]
- Medyantseva, E.P.; Varlamova, R.M.; Gimaletdinova, D.A.; Fattakhova, A.N.; Budnikov, G.K. An amperometric monoamine oxidase biosensor for determining some antidepressants. J. Anal. Chem. 2008, 63, 275–279. [Google Scholar] [CrossRef]
- Medyantseva, E.P.; Brusnitsyn, D.V.; Varlamova, R.M.; Beshevets, M.A.; Budnikov, H.C.; Fattakhova, A.N. Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants. J. Anal. Chem. 2015, 70, 535–539. [Google Scholar] [CrossRef]
- Medyantseva, E.P.; Brusnitsyn, D.V.; Varlamova, R.M.; Maksimov, A.A.; Fattakhova, A.N.; Konovalova, O.A.; Budnikov, G.K. Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors. Russ. J. Appl. Chem. 2015, 88, 40–49. [Google Scholar] [CrossRef]
- Medyantseva, E.P.; Brusnitsyn, D.V.; Varlamova, R.M.; Maksimov, A.A.; Konovalova, O.A.; Budnikov, H.C. Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants. J. Anal. Chem. 2017, 72, 362–370. [Google Scholar] [CrossRef]
- Medyantseva, E.P.; Brusnitsyn, D.V.; Varlamova, R.M.; Konovalova, O.A.; Budnikov, H.K. Nanostructured Composites Based on Graphene and Cobalt Nanoparticles in Monoamine Oxidase Biosensors for Determining Antidepressants. Inorg. Mater. 2019, 55, 1390–1398. [Google Scholar] [CrossRef]
Tricyclic Antidepressant | Selective Serotonin Reuptake Inhibitors | ||
---|---|---|---|
Antidepressant | Chemical Structure | Antidepressant | Chemical Structure |
Amitriptyline | Escitalopram | ||
Clomipramine | Sertraline | ||
Imipramine | Paroxetine | ||
Trimipramine | Fluvoxamine | ||
Desipramine | Fluoxetine | ||
Monoamine oxidase inhibitor | Serotonin antagonist and reuptake inhibitor | ||
Selegiline | Tradozone | ||
Moclobemide | Serotonin and norepinephrine reuptake inhibitor | ||
Pirlindole | Venlafaxine |
Antidepressant | Sample | Platform | Technique | Linear Range | LOD | References |
---|---|---|---|---|---|---|
Amitriptyline | Pharmaceutical | CNT/PE | CV, DPV, SWV | 1.61 µmolL−1 | [29] | |
Buzepide Methiodide | Urine, human blood serum | TiO2/CPE | CV, DPV | µmolL−1 | 8.2 nmolL−1 | [21] |
Clomipramine | Spiked human serum, urine | MWCNTs/GCE | DPV-AAdSV | mmol L−1 | 1.315 × 10−8 gmL−1 | [30] |
Escitalopram | Urine, cerebrospinal fluid | EGPU-GR | DPV, SWV | 1.512 µmolL−1 | 0.25 µmolL−1 (SWV) 0.32 µmolL−1 (DPV) | [33] |
Fluvoxamine | Urine, pharmaceuticals | HgNPs/MWCNT/GCE | CV, DPV | 0.0201.750 µmolL−1 | 0.01 µmolL−1 | [57] |
Paroxetine | Urine, pharmaceuticals, blood serum | FCA-CD/CNT/GCE | CV, DPV | µmolL−1 | 0.03 µmolL−1 | [29] |
Imipramine | Urine, pharmaceuticals | FCA-CD/CNT/GCE | CV, DPV | 10–350 µmolL−1 (CV) 0.1–10 µmolL−1 (DPV) | 0.03 µmolL−1 | [29] |
Imipramine | Pharmaceuticals | EGRU | CV, SWV | --- | 4.60 nmolL−1 | [44] |
Sertraline | Human serum | NiLD/AuNPs/MWCNTs/GCE | CV, DPV | 0.05–5.50 mmolL−1 | --- | [58] |
Sertraline | Spiked plasma | CNT/CsMCPE/SDS | CV, SWV | 60.0 nM–15.0 µmolL−1 | 9.2 nmolL−1 | [37] |
Sertraline | Pharmaceuticals, synthetic urine | ZnFe2O4NP/SPE | CV, DPV | 0.07–300 µmolL−1 | 0.02 µmolL−1 | [55] |
Sertraline | Pharmaceuticals, human serum | MIP/Gr/SPE | CV, DPV | 5.0 nmolL−1mol L−1 | 1.99 nmolL−1 | [67] |
Fluoxetine | Pharmaceuticals, plasms | Graphene/MIP/CPE | DPV | 6 nmolL−1–0.1 µmolL−1 | 2.8 nmol L−1 | [59] |
Trimipramine | Human blood and serum | MWCNT/MIP/CPE | SWV | 0.10–25 nmolL−1 | 0.045 nmolL−1 | [61] |
Trazodone | Tap water, human serum | MIP/SPCE | CV, DPV | 5–80 µmolL−1 | 1.6 µmolL−1 | [60] |
Citalopram | Spiked river water | MIP/SPCE | CV, EIS | 0.10–1.25 µmolL−1 | 0.162 µmolL−1 | [61] |
Citalopram | Pharmaceuticals, urine, serum | AMWCNTs@GONRs | CV, EIS, DPV | 0.5–10 µmolL−1 | 0.042 µmolL−1 | [69] |
Trimipramine | Plasma, urine | MWCNT/CPE | DPV | ---- | 0.002 µmolL−1 | [31] |
Venlafaxine | Pharmaceuticals | MWCNT/IL/GCE | CV, SWV | 2.0 µmolL−1–2.0mol L−1 | 1.69 µmolL−1 | [32] |
Venlafaxine | Serum | CoPd@Al2O3/GCE | CV, SWASV | 1.95 mmolL−1–0.5 µmolL−1 | 1.96 pmolL−1 | [55] |
Venlafaxine | Serum, pharmaceuticals | NiCO2O4/rGO/GCE | CV, SWV | 5.0500molL−1 | 3.4 nmolL−1 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldevilla, R.; Morais, S.L.; Cruz, A.; Delerue-Matos, C.; Moreira, F.; Pacheco, J.G.; Santos, M.; Barroso, M.F. Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. Int. J. Mol. Sci. 2023, 24, 8480. https://doi.org/10.3390/ijms24108480
Caldevilla R, Morais SL, Cruz A, Delerue-Matos C, Moreira F, Pacheco JG, Santos M, Barroso MF. Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. International Journal of Molecular Sciences. 2023; 24(10):8480. https://doi.org/10.3390/ijms24108480
Chicago/Turabian StyleCaldevilla, Renato, Stephanie L. Morais, Agostinho Cruz, Cristina Delerue-Matos, Fernando Moreira, João G. Pacheco, Marlene Santos, and Maria Fátima Barroso. 2023. "Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review" International Journal of Molecular Sciences 24, no. 10: 8480. https://doi.org/10.3390/ijms24108480
APA StyleCaldevilla, R., Morais, S. L., Cruz, A., Delerue-Matos, C., Moreira, F., Pacheco, J. G., Santos, M., & Barroso, M. F. (2023). Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. International Journal of Molecular Sciences, 24(10), 8480. https://doi.org/10.3390/ijms24108480