Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro)
Abstract
:1. Introduction
2. Results
2.1. Spin Trapping ESR
2.2. DFT Calculations of Degradation Scheme
2.3. Hemolysis
2.4. Content of the Reduced Glutathione (GSH)
2.5. Reactive Oxygen and Nitrogen Species (RONS)
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. DFT Calculations
4.3. Electron Spin Resonance (ESR)
4.4. Spin Trapping ESR
4.5. ESR Spectra Simulation
4.6. Erythrocyte Isolation
4.7. Reactive Oxygen and Nitrogen Species Determination
4.8. Level of the Reduced Glutathione (GSH)
4.9. Hemolysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendum, T.; Stoler, E.; VanBenschoten, H.; Warner, J.C. Concentration of bisphenol A in thermal paper. Green Chem. Lett. Rev. 2011, 4, 81–86. [Google Scholar] [CrossRef]
- Marzouk, T.; Sathyanarayana, S.; Kim, A.; Seminario, A.; McKinney, C. A systematic review of exposure to bisphenol a from dental treatment. JDR Clin. Trans. Res. 2019, 4, 106–115. [Google Scholar] [CrossRef]
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef]
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.S.; Moon, H.B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.M.; Pussemier, L.; Scippo, M.L.; et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xie, J.; Mao, L.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environ. Pollut. 2020, 259, 113779. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, K.; Park, J.; Moon, H.B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.J.; Eun, S.H.; Kim, G.H.; et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother–neonate pairs. Sci. Total Environ. 2018, 626, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Irie, M.; Kishikawa, N.; Wada, M.; Kuroda, N.; Nakashima, K. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed. Chromatogr. 2004, 18, 501–507. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Ekong, J.; Needham, L.L. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ. Health Perspect. 2005, 113, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; He, C.; Thai, P.K.; Heffernan, A.; Vijayasarathy, S.; Toms, L.; Thompson, K.; Hobson, P.; Tscharke, B.J.; O’Brien, J.W.; et al. Urinary concentrations of bisphenols in the Australian population and their association with the per capita mass loads in wastewater. Environ. Sci. Technol. 2020, 54, 10141–10148. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhu, J.; Chen, Z.; Hong, Y.; Cai, Z. Occurrence and partitioning of bisphenol analogues in adults’ blood from China. Environ. Sci. Technol. 2018, 52, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.A.; Ho, S.M.; Hunt, P.A.; Knudsen, K.E.; Soto, A.M.; Prins, G.S. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod. Toxicol. 2007, 24, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsuoza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A comprehensive review on the carcinogenic potential of bisphenol A: Clues and evidence. Environ. Sci. Pollut. Res. Int. 2021, 28, 19643–19663. [Google Scholar] [CrossRef] [PubMed]
- Vom Saal, F.S.; Nagel, S.C.; Coe, B.L.; Angle, B.M.; Taylor, J.A. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol. Cell. Endocrinol. 2012, 354, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Naomi, R.; Yazid, M.D.; Bahari, H.; Keong, Y.Y.; Rajandram, R.; Embong, H.; Teoh, S.H. Bisphenol A (BPA) Leading to Obesity and Cardiovascular Complications: A Compilation of Current In Vivo Study. Int. J. Mol. Sci. 2022, 23, 2969. [Google Scholar] [CrossRef]
- Wu, M.; Xu, H.; Shen, Y.; Qiu, W.; Yang, M. Oxidative stress in zebrafish embryos induced by short-term exposure to bisphenol A, nonylphenol, and their mixture. Environ. Toxicol. Chem. 2011, 30, 2335–2341. [Google Scholar] [CrossRef]
- Gibert, Y.; Sassi-Messai, S.; Fini, J.B.; Bernard, L.; Zalko, D.; Cravedi, J.P.; Balaguer, P.; Andersson-Landahl, M.; Demeneix, B.; Laudet, V. Bisphenol A induces otolith malformations during vertebrate embryogenesis. BMC Dev. Biol. 2011, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Kondo, F. Bisphenol A degradation in seawater is different from that in river water. Chemosphere 2005, 60, 1288–1292. [Google Scholar] [CrossRef]
- Torres, R.; Abdelmalek, F.; Combet, E.; Pétrier, C.; Pulgarin, C. A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters. J. Hazard. Mater. 2007, 146, 546–551. [Google Scholar] [CrossRef]
- Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A. Comparison of Fenton and sono-Fenton bisphenol A degradation. J. Hazard. Mater. 2007, 142, 559–563. [Google Scholar] [CrossRef]
- Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. Degradation of bisphenol A in water by the photo-Fenton reaction. J. Photochem. Photobiol. A Chem. 2004, 162, 297–305. [Google Scholar] [CrossRef]
- Makarova, K.; Siudem, P.; Zawada, K.; Kurkowiak, J. Screening of toxic effects of bisphenol A and products of its degradation: Zebrafish (Danio rerio) embryo test and molecular docking. Zebrafish 2016, 13, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Zhu, L.; Zhu, L.; Kun, Y.; Zhu, X. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. Ecotoxicol. Environ. Saf. 2008, 71, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Maćczak, A.; Bukowska, B.; Michałowicz, J. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015, 176, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, B.; Kowalska, S. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicol. Lett. 2004, 152, 73–84. [Google Scholar] [CrossRef]
- Boge, G.; Roche, H. Cytotoxicity of phenolic compounds on dicentrarchus labrax erythocytes. Bull. Environ. Contam. Toxicol. 1996, 57, 171–178. [Google Scholar]
- Yamamoto, T.; Yasuhara, A.; Shiraishi, H.; Nakasugi, O. Bisphenol A in hazardous waste landfill leachates. Chemosphere 2001, 42, 415–418. [Google Scholar] [CrossRef]
- Körner, W.; Bolz, U.; Süßmuth, W.; Schuller, W.; Hanf, V.; Hagenmaier, H. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 2000, 40, 1131–1142. [Google Scholar] [CrossRef]
- Kang, J.H.; Kondo, F. Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere 2002, 49, 493–498. [Google Scholar] [CrossRef]
- Klecka, G.M.; Gonsior, S.J.; West, R.J.; Goodwin, P.A.; Markham, D.A. Biodegradation of bisphenol A in aquatic environments: River die-away. Environ. Toxicol. Chem. 2010, 20, 2725–2735. [Google Scholar] [CrossRef]
- Kocaman, E.; Ozhan, K. Degradation of Bisphenol A in Natural and Artificial Marine and Freshwaters in Turkey. Bull. Environ. Contam. Toxicol. 2019, 103, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yin, K.; Chen, L. Bacteria-mediated bisphenol A degradation. Appl. Microbiol. Biotechnol. 2013, 97, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yamanaka, H.; Moriyoshi, K.; Ohmoto, T.; Ohe, T. Biodegradation of Bisphenol A and Related Compounds by Sphingomonas sp. Strain BP-7 Isolated fromSeawater. Biosci. Biotechnol. Biochem. 2007, 71, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, C.; Liang, J.; Liu, M.; Rui, J.; Shi, J.; Yu, Y.; Zhang, X. Aerobic degradation of bisphenol A by Pseudomonas sp. LM-1: Characteristic and pathway. Biodegradation 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Kappelmeyer, U.; Kastner, M.; Schauer, F.; Heipieper, H.J. The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. Int. Biodeterior. Biodegrad. 2010, 64, 324–330. [Google Scholar] [CrossRef]
- Sajiki, J.; Masumizu, T. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process. Chemosphere 2004, 57, 241–252. [Google Scholar] [CrossRef]
- Mardyukov, A.; Sanchez-Garcia, E.; Crespo-Otero, R.; Sander, W. Interaction and reaction of the phenyl radical with water: A source of OH radicals. Angew. Chem. Int. 2009, 121, 4898–4901. [Google Scholar] [CrossRef]
- Mardyukov, A.; Crespo-Otero, R.; Sanchez-Garcia, E.; Sander, W. Photochemistry and Reactivity of the Phenyl Radical–Water System: A Matrix Isolation and Computational Study. Chemistry 2010, 16, 8679–8689. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215–241. [Google Scholar]
- Makarova, K.; Rokhina, E.V.; Golovina, E.A.; Van As, H.; Virkutyte, J. Combination of neural networks and DFT calculations for the comprehensive analysis of FDMPO radical adducts from fast isotropic electron spin resonance spectra. J. Phys. Chem. A 2012, 116, 443–451. [Google Scholar] [CrossRef]
- Sajiki, J.; Takahashi, K.; Yonekubo, J. Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Suthar, H.; Verma, R.; Patel, S.; Jasrai, Y. Green tea potentially ameliorates bisphenol A-induced oxidative stress: An in vitro and in silico study. Biochem. Res. Int. 2014, 2014, 259763. [Google Scholar] [CrossRef] [PubMed]
- Eyer, P. Effects of superoxide dismutase on the autoxidation of 1,4-hydroquinone. Chem. Biol. Interact. 1991, 80, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.R.; Snyder, R. Oxidative modifications produced in HL-60 cells on exposure to benzene metabolites. J. Appl. Toxicol. 1995, 15, 403–409. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comp. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian Inc.: Wallingford, CT, USA, 2000; Volume 1, pp. 1–19. [Google Scholar]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Olchowik-Grabarek, E.; Mavlyanov, S.; Abdullajanova, N.; Gieniusz, R.; Zamaraeva, M. Specificity of hydrolysable tannins from Rhus typhina L. to oxidants in cell and cell-free models. Appl. Biochem. Biotechnol. 2017, 181, 495–510. [Google Scholar] [CrossRef]
- Hyun, M.; Rathor, L.; Kim, H.J.; McElroy, T.; Hwang, K.H.; Wohlgemuth, S.; Curry, S.; Xiao, R.; Leeuwenburgh, C.; Heo, J.D.; et al. Comparative toxicities of BPA, BPS, BPF, and TMBPF in the nematode Caenorhabditis elegans and mammalian fibroblast cells. Toxicology 2021, 461, 152924. [Google Scholar] [CrossRef]
- Back, P.; De Vos, W.H.; Depuydt, G.G.; Matthijssens, F.; Vanfleteren, J.R.; Braeckman, B.P. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans. Free Radic. Biol. Med. 2012, 52, 850–859. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
Enthalpy (ΔH) [kcal/mol] | Gibbs Free Energy (ΔG) [kcal/mol] | |||||||
---|---|---|---|---|---|---|---|---|
B3LYP/6-311G(d,p) | M06-2X/6-311G(d,p) | B3LYP/6-311G(d,p) | M06-2X/6-311G(d,p) | |||||
Gas | Water | Gas | Water | Gas | Water | Gas | Water | |
1 | −23.87 | −4.09 | 1.10 | 1.17 | −27.23 | −7.34 | −2.29 | −2.14 |
2 | −53.67 | −34.06 | −23.75 | −147.99 | −57.88 | −38.19 | −28.08 | −152.49 |
3 | 27.82 | 10.10 | 2.24 | 3.70 | 28.95 | 11.23 | 3.35 | 4.81 |
4 | −126.84 | −106.42 | −112.32 | −111.74 | −115.36 | −94.98 | −100.73 | −100.19 |
5 | 57.03 | 39.38 | 28.10 | 153.78 | 58.49 | 40.84 | 29.63 | 155.52 |
6 | −97.04 | −76.45 | 87.47 | 37.42 | −84.70 | −64.13 | −74.93 | 50.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, K.; Olchowik-Grabarek, E.; Drabikowski, K.; Kurkowiak, J.; Zawada, K. Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro). Int. J. Mol. Sci. 2023, 24, 492. https://doi.org/10.3390/ijms24010492
Makarova K, Olchowik-Grabarek E, Drabikowski K, Kurkowiak J, Zawada K. Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro). International Journal of Molecular Sciences. 2023; 24(1):492. https://doi.org/10.3390/ijms24010492
Chicago/Turabian StyleMakarova, Katerina, Ewa Olchowik-Grabarek, Krzysztof Drabikowski, Justyna Kurkowiak, and Katarzyna Zawada. 2023. "Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro)" International Journal of Molecular Sciences 24, no. 1: 492. https://doi.org/10.3390/ijms24010492