Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson’s Disease
Abstract
:1. Introduction
2. Toxin-Based Models of Parkinson’s Disease
2.1. 6-OHDA
2.2. Rotenone, Paraquat and BMAA
2.3. MPTP and MPP+
3. α-Synuclein-Induced Functional Alterations in Nigral DAergic Neurons
4. Other Genetic Models
4.1. PINK1 and Parkin
4.2. LRRK2
4.3. DJ-1 and MitoPark
5. Summary of DAergic Neuron Functional Alterations in PD Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ehringer, H.; Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr. 1960, 38, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009, 72, S1–S136. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.; Emre, M.; Jenner, P.; Poewe, W. Levodopa in the treatment of Parkinson's disease. Eur. J. Neurol. 2009, 16, 982–989. [Google Scholar] [CrossRef]
- Damier, P.; Hirsch, E.C.; Agid, Y.; Graybiel, A.M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999, 122, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Brichta, L.; Greengard, P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: An update. Front. Neuroanat. 2014, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C.; Costa, A.; Provensi, G.; Mannaioni, G.; Masi, A. The Hyperpolarization-Activated Current Determines Synaptic Excitability, Calcium Activity and Specific Viability of Substantia Nigra Dopaminergic Neurons. Front. Cell. Neurosci. 2017, 11, 187. [Google Scholar] [CrossRef]
- Heo, J.Y.; Nam, M.H.; Yoon, H.H.; Kim, J.; Hwang, Y.J.; Won, W.; Woo, D.H.; Lee, J.A.; Park, H.J.; Jo, S.; et al. Aberrant Tonic Inhibition of Dopaminergic Neuronal Activity Causes Motor Symptoms in Animal Models of Parkinson’s Disease. Curr. Biol. 2020, 30, 276–291.e9. [Google Scholar] [CrossRef]
- Guatteo, E.; Rizzo, F.R.; Federici, M.; Cordella, A.; Ledonne, A.; Latini, L.; Nobili, A.; Viscomi, M.T.; Biamonte, F.; Landrock, K.K.; et al. Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Exp. Neurol. 2017, 287, 21–33. [Google Scholar] [CrossRef]
- Ledonne, A.; Mercuri, N.B. Current Concepts on the Physiopathological Relevance of Dopaminergic Receptors. Front. Cell. Neurosci. 2017, 11, 27. [Google Scholar] [CrossRef]
- Greene, J.G.; Dingledine, R.; Greenamyre, J.T. Gene expression profiling of rat midbrain dopamine neurons: Implications for selective vulnerability in parkinsonism. Neurobiol. Dis. 2005, 18, 19–31. [Google Scholar] [CrossRef]
- Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468, 696–700, Erratum in Nature 2015, 521, 380. [Google Scholar] [CrossRef] [PubMed]
- Liss, B.; Striessnig, J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson’s Disease. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Bolam, J.P.; Pissadaki, E.K. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov. Disord. 2012, 27, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.N.; Chaturvedi, V.K.; Singh, P.; Singh, B.K.; Singh, M.P. Mucuna pruriens in Parkinson’s and in some other diseases: Recent advancement and future prospective. 3 Biotech 2020, 1, 522. [Google Scholar] [CrossRef]
- Rai, S.N.; Singh, P. Advancement in the modelling and therapeutics of Parkinson’s disease. J. Chem. Neuroanat. 2020, 104, 101752. [Google Scholar] [CrossRef]
- Breese, G.R.; Traylor, T.D. Effect of 6-hydroxydopamine on brain norepinephrine and dopamine evidence for selective degeneration of catecholamine neurons. J. Pharmacol. Exp. Ther. 1970, 174, 413–420. [Google Scholar]
- Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968, 5, 107–110. [Google Scholar] [CrossRef]
- Hefti, F.; Melamed, E.; Wurtman, R.J. Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization. Brain Res. 1980, 195, 123–137. [Google Scholar] [CrossRef]
- Deumens, R.; Blokland, A.; Prickaerts, J. Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 2002, 175, 303–317. [Google Scholar] [CrossRef]
- Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.; Benabid, A.L.; Sadoul, R.; Verna, J.M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 2001, 65, 135–172. [Google Scholar] [CrossRef]
- Andrew, R.; Watson, D.G.; Best, S.A.; Midgley, J.M.; Wenlong, H.; Petty, R.K. The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem. Res. 1993, 18, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Sauer, H.; Oertel, W.H. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994, 59, 401–415. [Google Scholar] [CrossRef]
- Berretta, N.; Freestone, P.S.; Guatteo, E.; de Castro, D.; Geracitano, R.; Bernardi, G.; Mercuri, N.B.; Lipski, J. Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro. Neurotoxicology 2005, 26, 869–881. [Google Scholar] [CrossRef]
- Qu, L.; Wang, Y.; Zhang, H.T.; Li, N.; Wang, Q.; Yang, Q.; Gao, G.D.; Wang, X.L. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons. Neurosci. Lett. 2014, 575, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, L.; Wang, X.L.; Gao, L.; Li, Z.Z.; Gao, G.D.; Yang, Q. Firing pattern modulation through SK channel current increase underlies neuronal survival in an organotypic slice model of Parkinson’s disease. Mol. Neurobiol. 2015, 51, 424–436. [Google Scholar] [CrossRef]
- Aumann, T.D.; Gantois, I.; Egan, K.; Vais, A.; Tomas, D.; Drago, J.; Horne, M.K. SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Exp. Neurol. 2008, 213, 419–430. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Q.J.; Liu, J.; Wang, S.; Ali, U.; Gui, Z.H.; Wang, Y. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist in 6-hydroxydopamine partially lesioned rats reverses abnormal firing of dopaminergic neurons. Brain Res. 2009, 1286, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Bilbao, G.; Ruiz-Ortega, J.A.; Miguens, N.; Ulibarri, I.; Linazasoro, G.; Gómez-Urquijo, S.; Garibi, J.; Ugedo, L. Electrophysiological characterization of substantia nigra dopaminergic neurons in partially lesioned rats: Effects of subthalamotomy and levodopa treatment. Brain Res. 2006, 1084, 175–184. [Google Scholar] [CrossRef]
- Bové, J.; Prou, D.; Perier, C.; Przedborski, S. Toxin-induced models of Parkinson’s disease. NeuroRx 2005, 2, 484–494. [Google Scholar] [CrossRef]
- Sherer, T.B.; Richardson, J.R.; Testa, C.M.; Seo, B.B.; Panov, A.V.; Yagi, T.; Matsuno-Yagi, A.; Miller, G.W.; Greenamyre, J.T. Mechanism of toxicity of pesticides acting at complex I: Relevance to environmental etiologies of Parkinson’s disease. J. Neurochem. 2007, 100, 1469–1479. [Google Scholar] [CrossRef]
- Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 2000, 3, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Röper, J.; Ashcroft, F.M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflug. Arch. 1995, 430, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Liss, B.; Bruns, R.; Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999, 18, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Freestone, P.S.; Chung, K.K.; Guatteo, E.; Mercuri, N.B.; Nicholson, L.F.; Lipski, J. Acute action of rotenone on nigral dopaminergic neurons—Involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur. J. Neurosci. 2009, 30, 1849–1859. [Google Scholar] [CrossRef]
- Wu, C.; Yang, K.; Liu, Q.; Wakui, M.; Jin, G.Z.; Zhen, X.; Wu, J. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology 2010, 59, 567–572. [Google Scholar] [CrossRef]
- Liss, B.; Haeckel, O.; Wildmann, J.; Miki, T.; Seino, S.; Roeper, J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat. Neurosci. 2005, 8, 1742–1751. [Google Scholar] [CrossRef]
- Wu, Y.N.; Martella, G.; Johnson, S.W. Rotenone enhances N-methyl-D-aspartate currents by activating a tyrosine kinase in rat dopamine neurons. Neuroreport 2007, 18, 1813–1816. [Google Scholar] [CrossRef]
- Wu, J.; Chan, P.; Schroeder, K.M.; Ellsworth, K.; Partridge, L.D. 1-Methyl-4-phenylpridinium (MPP+)-induced functional run-down of GABA(A) receptor-mediated currents in acutely dissociated dopaminergic neurons. J. Neurochem. 2002, 83, 87–99. [Google Scholar] [CrossRef]
- Wu, Y.N.; Johnson, S.W. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology 2009, 30, 320–325. [Google Scholar] [CrossRef]
- Wu, Y.N.; Johnson, S.W. Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons. Neuroscience 2011, 195, 138–144. [Google Scholar] [CrossRef]
- Martella, G.; Madeo, G.; Maltese, M.; Vanni, V.; Puglisi, F.; Ferraro, E.; Schirinzi, T.; Valente, E.M.; Bonanni, L.; Shen, J.; et al. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice. Neurobiol. Dis. 2016, 91, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Vehovszky, A.; Szabó, H.; Hiripi, L.; Elliott, C.J.; Hernádi, L. Behavioural and neural deficits induced by rotenone in the pond snail Lymnaea stagnalis. A possible model for Parkinson’s disease in an invertebrate. Eur. J. Neurosci. 2007, 25, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Lee, C.H.; Shih, C.C.; Liou, H.H. Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta. Biochem. Pharmacol. 2008, 76, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.M.; Brody, J.A. Amyotrophic lateral sclerosis and parkinsonism-dementia on Guam, 1945-1972. I. Descriptive epidemiology. Am. J. Epidemiol. 1975, 101, 287–301. [Google Scholar] [CrossRef]
- Garruto, R.M.; Yase, Y. Neurodegenerative disorders of the western pacific: The search for mechanisms of pathogenesis. Trends Neurosci. 1986, 9, 368–374. [Google Scholar] [CrossRef]
- Spencer, P.S.; Nunn, P.B.; Hugon, J.; Ludolph, A.; Roy, D.N. Motorneurone disease on Guam: Possible role of a food neurotoxin. Lancet 1986, 1, 965. [Google Scholar] [CrossRef]
- Dunlop, R.A.; Banack, S.A.; Bishop, S.L.; Metcalf, J.S.; Murch, S.J.; Davis, D.A.; Stommel, E.W.; Karlsson, O.; Brittebo, E.B.; Chatziefthimiou, A.D.; et al. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox. Res. 2021, 39, 81–106. [Google Scholar] [CrossRef]
- Cox, P.A. BMAA, Neurodegeneration, and Neuroprotection. Neurotox. Res. 2021, 39, 1–5. [Google Scholar] [CrossRef]
- Cox, P.A.; Davis, D.A.; Mash, D.C.; Metcalf, J.S.; Banack, S.A. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc. Biol. Sci. 2016, 283, 20152397. [Google Scholar] [CrossRef]
- Cucchiaroni, M.L.; Viscomi, M.T.; Bernardi, G.; Molinari, M.; Guatteo, E.; Mercuri, N.B. Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons. J. Neurosci. 2010, 30, 5176–5188. [Google Scholar] [CrossRef]
- Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219, 979–980. [Google Scholar] [CrossRef]
- Riachi, N.J.; Harik, S.I. Strain differences in systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice correlate best with monoamine oxidase activity at the blood-brain barrier. Life Sci. 1988, 42, 2359–2363. [Google Scholar] [CrossRef]
- Riachi, N.J.; LaManna, J.C.; Harik, S.I. Entry of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into the rat brain. J. Pharmacol. Exp. Ther. 1989, 249, 744–748. [Google Scholar]
- Jacobowitz, D.M.; Burns, R.S.; Chiueh, C.C.; Kopin, I.J. N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) causes destruction of the nigrostriatal but not the mesolimbic dopamine system in the monkey. Psychopharmacol. Bull. 1984, 20, 416–422. [Google Scholar] [PubMed]
- Masi, A.; Narducci, R.; Landucci, E.; Moroni, F.; Mannaioni, G. MPP(+)-dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons. Br. J. Pharmacol. 2013, 169, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, N.B.; Bonci, A.; Calabresi, P.; Stefani, A.; Bernardi, G. Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur. J. Neurosci. 1995, 7, 462–469. [Google Scholar] [CrossRef] [PubMed]
- D’Addario, S.L.; Di Segni, M.; Ledonne, A.; Piscitelli, R.; Babicola, L.; Martini, A.; Spoleti, E.; Mancini, C.; Ielpo, D.; D’Amato, F.R.; et al. Resilience to anhedonia-passive coping induced by early life experience is linked to a long-lasting reduction of Ih current in VTA dopaminergic neurons. Neurobiol. Stress 2021, 14, 100324. [Google Scholar] [CrossRef]
- Yee, A.G.; Lee, S.M.; Hunter, M.R.; Glass, M.; Freestone, P.S.; Lipski, J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology 2014, 45, 1–11. [Google Scholar] [CrossRef]
- Newcomer, T.A.; Rosenberg, P.A.; Aizenman, E. TOPA quinone, a kainate-like agonist and excitotoxin is generated by a catecholaminergic cell line. J. Neurosci. 1995, 15, 3172–3177. [Google Scholar] [CrossRef]
- Guatteo, E.; Yee, A.; McKearney, J.; Cucchiaroni, M.L.; Armogida, M.; Berretta, N.; Mercuri, N.B.; Lipski, J. Dual effects of L-DOPA on nigral dopaminergic neurons. Exp. Neurol. 2013, 247, 582–594. [Google Scholar] [CrossRef]
- Lipski, J.; Nistico, R.; Berretta, N.; Guatteo, E.; Bernardi, G.; Mercuri, N.B. L-DOPA: A scapegoat for accelerated neurodegeneration in Parkinson’s disease? Prog. Neurobiol. 2011, 94, 389–407. [Google Scholar] [CrossRef]
- Dryanovski, D.I.; Guzman, J.N.; Xie, Z.; Galteri, D.J.; Volpicelli-Daley, L.A.; Lee, V.M.; Miller, R.J.; Schumacker, P.T.; Surmeier, D.J. Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J. Neurosci. 2013, 33, 10154–10164. [Google Scholar] [CrossRef] [PubMed]
- Uéda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; Yoshimoto, M.; Otero, D.A.; Kondo, J.; Ihara, Y.; Saitoh, T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993, 90, 11282–11286. [Google Scholar] [CrossRef]
- Jakes, R.; Spillantini, M.G.; Goedert, M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994, 345, 27–32. [Google Scholar] [CrossRef]
- Iwai, A.; Masliah, E.; Yoshimoto, M.; Ge, N.; Flanagan, L.; de Silva, H.A.; Kittel, A.; Saitoh, T. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995, 14, 467–475. [Google Scholar] [CrossRef]
- Sidhu, A.; Wersinger, C.; Vernier, P. Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J. 2004, 18, 637–647. [Google Scholar] [CrossRef]
- Burré, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Südhof, T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. [Google Scholar] [CrossRef]
- Garcia-Reitböck, P.; Anichtchik, O.; Bellucci, A.; Iovino, M.; Ballini, C.; Fineberg, E.; Ghetti, B.; Della Corte, L.; Spano, P.; Tofaris, G.K.; et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 2010, 133, 2032–2044. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, A.; Wersinger, C.; Vernier, P. α-Synuclein regulation of the dopaminergic transporter: A possible role in the pathogenesis of Parkinson’s disease. FEBS Lett. 2004, 565, 1–5. [Google Scholar] [CrossRef]
- Li, W.W.; Yang, R.; Guo, J.C.; Ren, H.M.; Zha, X.L.; Cheng, J.S.; Cai, D.F. Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport 2007, 18, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Guardia-Laguarta, C.; Area-Gomez, E.; Rüb, C.; Liu, Y.; Magrané, J.; Becker, D.; Voos, W.; Schon, E.A.; Przedborski, S. alpha-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 2014, 34, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Guardia-Laguarta, C.; Area-Gomez, E.; Schon, E.A.; Przedborski, S. A new role for α-synuclein in Parkinson’s disease: Alteration of ER-mitochondrial communication. Rev. Mov. Disord. 2015, 30, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef]
- Ghiglieri, V.; Calabrese, V.; Calabresi, P. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration. Front. Neurol. 2018, 9, 295. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, A.; Fournier, M.; Lashuel, H.A. Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: Implications for Parkinson’s disease pathogenesis and therapies. Prog. Brain Res. 2010, 183, 115–145. [Google Scholar] [CrossRef]
- Chavarría, C.; Souza, J.M. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch. Biochem. Biophys. 2013, 533, 25–32. [Google Scholar] [CrossRef]
- Gallegos, S.; Pacheco, C.; Peters, C.; Opazo, C.M.; Aguayo, L.G. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front. Neurosci. 2015, 9, 59. [Google Scholar] [CrossRef]
- Xilouri, M.; Brekk, O.R.; Stefanis, L. α-Synuclein and protein degradation systems: A reciprocal relationship. Mol. Neurobiol. 2013, 47, 537–551. [Google Scholar] [CrossRef]
- Janezic, S.; Threlfell, S.; Dodson, P.D.; Dowie, M.J.; Taylor, T.N.; Potgieter, D.; Parkkinen, L.; Senior, S.L.; Anwar, S.; Ryan, B.; et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc. Natl. Acad. Sci. USA 2013, 110, E4016–E4025. [Google Scholar] [CrossRef]
- Dodson, P.D.; Dreyer, J.K.; Jennings, K.A.; Syed, E.C.; Wade-Martins, R.; Cragg, S.J.; Bolam, J.P.; Magill, P.J. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proc. Natl. Acad. Sci. USA 2016, 113, E2180–E2188. [Google Scholar] [CrossRef]
- Subramaniam, M.; Althof, D.; Gispert, S.; Schwenk, J.; Auburger, G.; Kulik, A.; Fakler, B.; Roeper, J. Mutant alpha-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels. J. Neurosci. 2014, 34, 13586–13599. [Google Scholar] [CrossRef] [PubMed]
- Stoica, G.; Lungu, G.; Bjorklund, N.L.; Taglialatela, G.; Zhang, X.; Chiu, V.; Hill, H.H.; Schenk, J.O.; Murray, I. Potential role of α-synuclein in neurodegeneration: Studies in a rat animal model. J. Neurochem. 2012, 122, 812–822. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, J.C.; DiFrancesco, D. Dysfunctional HCN ion channels in neurological diseases. Front. Cell. Neurosci. 2015, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- Nuber, S.; Harmuth, F.; Kohl, Z.; Adame, A.; Trejo, M.; Schönig, K.; Zimmermann, F.; Bauer, C.; Casadei, N.; Giel, C.; et al. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. Brain 2013, 136, 412–432. [Google Scholar] [CrossRef] [PubMed]
- Krashia, P.; Cordella, A.; Nobili, A.; La Barbera, L.; Federici, M.; Leuti, A.; Campanelli, F.; Natale, G.; Marino, G.; Calabrese, V.; et al. Author Correction: Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat. Commun. 2019, 10, 4725, Erratum in Nat. Commun. 2019, 10, 3945. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, A.; Sciaccaluga, M.; Loffredo, V.; Megaro, A.; Ledonne, A.; Cardinale, A.; Federici, M.; Bellingacci, L.; Paciotti, S.; Ferrari, E.; et al. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain 2021, 144, 3477–3491. [Google Scholar] [CrossRef]
- Krashia, P.; Martini, A.; Nobili, A.; Aversa, D.; D’Amelio, M.; Berretta, N.; Guatteo, E.; Mercuri, N.B. On the properties of identified dopaminergic neurons in the mouse substantia nigra and ventral tegmental area. Eur. J. Neurosci. 2017, 45, 92–105. [Google Scholar] [CrossRef]
- Hill, E.; Gowers, R.; Richardson, M.J.E.; Wall, M.J. α-Synuclein Aggregates Increase the Conductance of Substantia Nigra Dopamine Neurons, an Effect Partly Reversed by the KATP Channel Inhibitor Glibenclamide. eNeuro 2021, 8, ENEURO.0330-20.2020. [Google Scholar] [CrossRef]
- Poole, A.C.; Thomas, R.E.; Andrews, L.A.; McBride, H.M.; Whitworth, A.J.; Pallanck, L.J. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2008, 105, 1638–1643. [Google Scholar] [CrossRef]
- Yang, Y.; Ouyang, Y.; Yang, L.; Beal, M.F.; McQuibban, A.; Vogel, H.; Lu, B. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. USA 2008, 105, 7070–7075. [Google Scholar] [CrossRef]
- Gehrke, S.; Wu, Z.; Klinkenberg, M.; Sun, Y.; Auburger, G.; Guo, S.; Lu, B. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 2015, 21, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.M.; Brancati, F.; Caputo, V.; Graham, E.A.; Davis, M.B.; Ferraris, A.; Breteler, M.M.; Gasser, T.; Bonifati, V.; Bentivoglio, A.R.; et al. PARK6 is a common cause of familial parkinsonism. Neurol. Sci. 2002, 23, S117–S118. [Google Scholar] [CrossRef]
- Kitada, T.; Pisani, A.; Porter, D.R.; Yamaguchi, H.; Tscherter, A.; Martella, G.; Bonsi, P.; Zhang, C.; Pothos, E.N.; Shen, J. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl. Acad. Sci. USA 2007, 104, 11441–11446. [Google Scholar] [CrossRef]
- Gispert, S.; Ricciardi, F.; Kurz, A.; Azizov, M.; Hoepken, H.H.; Becker, D.; Voos, W.; Leuner, K.; Müller, W.E.; Kudin, A.P.; et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 2009, 4, e5777. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Pickrell, A.M. Hidden phenotypes of PINK1/Parkin knockout mice. Biochim. Biophys. Acta. Gen. Subj. 2021, 1865, 129871. [Google Scholar] [CrossRef]
- Bishop, M.W.; Chakraborty, S.; Matthews, G.A.; Dougalis, A.; Wood, N.W.; Festenstein, R.; Ungless, M.A. Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice. J. Neurophysiol. 2010, 104, 3009–3020. [Google Scholar] [CrossRef]
- Regoni, M.; Cattaneo, S.; Mercatelli, D.; Novello, S.; Passoni, A.; Bagnati, R.; Davoli, E.; Croci, L.; Consalez, G.G.; Albanese, F.; et al. Pharmacological antagonism of kainate receptor rescues dysfunction and loss of dopamine neurons in a mouse model of human parkin-induced toxicity. Cell Death Dis. 2020, 11, 963. [Google Scholar] [CrossRef]
- Regoni, M.; Zanetti, L.; Comai, S.; Mercatelli, D.; Novello, S.; Albanese, F.; Croci, L.; Consalez, G.G.; Ciammola, A.; Valtorta, F.; et al. Early Dysfunction of Substantia Nigra Dopamine Neurons in the ParkinQ311X Mouse. Biomedicines 2021, 9, 514. [Google Scholar] [CrossRef]
- Pearlstein, E.; Michel, F.J.; Save, L.; Ferrari, D.C.; Hammond, C. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1(−/−) Mouse Model of Parkinson’s Disease. Front. Cell. Neurosci. 2016, 10, 168. [Google Scholar] [CrossRef]
- Healy, D.G.; Wood, N.W.; Schapira, A.H. Test for LRRK2 mutations in patients with Parkinson’s disease. Pract. Neurol. 2008, 8, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.E.S.; Ho, P.W.; Liu, H.F.; Pang, S.Y.; Leung, C.T.; Malki, Y.; Choi, Z.Y.; Ramsden, D.B.; Ho, S.L. LRRK2 mutant knock-in mouse models: Therapeutic relevance in Parkinson’s disease. Transl. Neurodegener. 2022, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.S.; Chen, C.Y.; Chen, Y.L.; Weng, Y.H.; Yeh, T.H.; Lu, C.S.; Chang, Y.M.; Wang, H.L. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiol. Dis. 2014, 68, 190–199. [Google Scholar] [CrossRef]
- Skiteva, O.; Yao, N.; Sitzia, G.; Chergui, K. LRRK2-G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J. Neurochem. 2022, 1–15. [Google Scholar] [CrossRef]
- Sloan, M.; Alegre-Abarrategui, J.; Potgieter, D.; Kaufmann, A.K.; Exley, R.; Deltheil, T.; Threlfell, S.; Connor-Robson, N.; Brimblecombe, K.; Wallings, R.; et al. LRRK2 BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function. Hum. Mol. Genet. 2016, 25, 951–963. [Google Scholar] [CrossRef]
- Bonifati, V.; Oostra, B.A.; Heutink, P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J. Mol. Med. 2004, 82, 163–174. [Google Scholar] [CrossRef]
- Lopez-Fabuel, I.; Martin-Martin, L.; Resch-Beusher, M.; Azkona, G.; Sanchez-Pernaute, R.; Bolaños, J.P. Mitochondrial respiratory chain disorganization in Parkinson’s disease-relevant PINK1 and DJ1 mutants. Neurochem. Int. 2017, 109, 101–105. [Google Scholar] [CrossRef]
- Huang, M.; Chen, S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog. Neurobiol. 2021, 204, 102114. [Google Scholar] [CrossRef]
- Kim, R.H.; Smith, P.D.; Aleyasin, H.; Hayley, S.; Mount, M.P.; Pownall, S.; Wakeham, A.; You-Ten, A.J.; Kalia, S.K.; Horne, P.; et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl. Acad. Sci. USA 2005, 102, 5215–5220. [Google Scholar] [CrossRef]
- Ledonne, A.; Federici, M.; Giustizieri, M.; Pessia, M.; Imbrici, P.; Millan, M.J.; Bernardi, G.; Mercuri, N.B. Trace amines depress D(2)-autoreceptor-mediated responses on midbrain dopaminergic cells. Br. J. Pharmacol. 2010, 160, 1509–1520. [Google Scholar] [CrossRef]
- Goldberg, M.S.; Pisani, A.; Haburcak, M.; Vortherms, T.A.; Kitada, T.; Costa, C.; Tong, Y.; Martella, G.; Tscherter, A.; Martins, A.; et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005, 45, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Martella, G.; Tscherter, A.; Costa, C.; Mercuri, N.B.; Bernardi, G.; Shen, J.; Calabresi, P. Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: Role of Na+/K+ ATPase. Neurobiol. Dis. 2006, 23, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, M.I.; Terzioglu, M.; Galter, D.; Zhu, S.; Hofstetter, C.; Lindqvist, E.; Thams, S.; Bergstrand, A.; Hansson, F.S.; Trifunovic, A.; et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. USA 2007, 104, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Galter, D.; Pernold, K.; Yoshitake, T.; Lindqvist, E.; Hoffer, B.; Kehr, J.; Larsson, N.G.; Olson, L. MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav. 2010, 9, 173–181. [Google Scholar] [CrossRef]
- Good, C.H.; Hoffman, A.F.; Hoffer, B.J.; Chefer, V.I.; Shippenberg, T.S.; Bäckman, C.M.; Larsson, N.G.; Olson, L.; Gellhaar, S.; Galter, D.; et al. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson’s disease. FASEB J. 2011, 25, 1333–1344. [Google Scholar] [CrossRef]
- Branch, S.Y.; Chen, C.; Sharma, R.; Lechleiter, J.D.; Li, S.; Beckstead, M.J. Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson’s Disease. J. Neurosci. 2016, 36, 4026–4037. [Google Scholar] [CrossRef]
- González-Rodríguez, P.; Zampese, E.; Stout, K.A.; Guzman, J.N.; Ilijic, E.; Yang, B.; Tkatch, T.; Stavarache, M.A.; Wokosin, D.L.; Gao, L.; et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021, 599, 650–656. [Google Scholar] [CrossRef]
- Gantz, S.C.; Ford, C.P.; Morikawa, H.; Williams, J.T. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu. Rev. Physiol. 2018, 80, 219–241. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 1984, 4, 2877–2890. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Single spike firing. J. Neurosci. 1984, 4, 2866–2876. [Google Scholar] [CrossRef]
- Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine release in the basal ganglia. Neuroscience 2011, 198, 112–137. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Shepard, P.D. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 2006, 140, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Ungless, M.A.; Faisal, A.A. Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Sci. Rep. 2017, 7, 5248. [Google Scholar] [CrossRef] [PubMed]
Type of Study | [6-OHDA] | Treatment | Modified Parameters in SNpc DAergic Neuron | Molecular Mechanisms | Reference |
---|---|---|---|---|---|
Ex vivo, rat | 0.2, 0.5, 1, 2 (mM) | 5 or 10 min | Inhibition of spontaneous firing; Rm drop; Ca2+ accumulation | D2-GIRK and KATP channels activation; mitochondrial release of Ca2+ ions | [23] |
Ex vivo, rat | 0.5, 1, 2 (mM) | 3–5 min | Inhibition of spontaneous firing; Ca2+ accumulation | N-type VGCC current amplitude increase | [24] |
In vitro organotypic culture, rat | 25 µM | 12 or 18 h | Irregular firing/bursting; depolarized RMP | Increased AHP and IAHP mediated by SK channels | [25] |
In vivo, mouse | 1.5 µg/µL (1.6 µL) | 1 injection, SNpc | 1 to 8 weeks after lesion; Lack of maturation of Rm, AP half-width, steady-state I(-100mV) | [26] | |
In vivo, rat | 4 µg/4 µL | 1 injection, MFB; tested 16–20 days after lesion | Increase in firing rate, n. of bursting neurons and n. spikes/burst | Release of glutamate and mGluR activation (rescue by MPEP) | [27] |
In vivo, rat | 4 µg/2 µL | 1 injection, MFB, 4–6 weeks after lesion | Decreased n. of active neurons; no significant difference in firing rate nor bursting; higher CV | Rearrangements of circuitry to compensate for neuronal loss | [28] |
In vivo, rat | 8 µg/4 µL | 1 injection, MFB | 32 days after lesion, 76% reduction in firing rate | Excessive GABA release by reactive astrocytes, rescued by MAO inhibitor safinamide | [7] |
Ex vivo | Ipsilateral slices from in vivo lesioned rat | Increase tonic GABAA current; no difference in sIPSC amplitude or frequency | Rescued by bicuculline and safinamide | [7] |
Type of Study | [Rotenone] | Treatment | Modified Parameters in SNpc DAergic Neuron | Molecular Mechanisms | Reference |
---|---|---|---|---|---|
In vitro, dissociated SNpc DAergic neurons, rat | 5 µM | Firing inhibition and membrane hyperpolarization | Activation of the sulphonylurea-sensitive KATP current | [32] | |
Ex vivo midbrain slice, mouse | 10 µM | 10 min | Firing inhibition and membrane hyperpolarization | SUR1-Kir6.2 vs. SUR2B-Kir6.2 KATP channels display different sensitivity to metabolic inhibition | [33] |
Ex vivo midbrain slice, rat | 5 nM; 200 nM; 1 µM | 10 min | Cm and Rm drop; KATP current activation; Ca2+ and Na+ accumulation; mitochondrial ROS production and Δψm depolarization | ROS activation of TRPM2 Ca2+-permeable and KATP channels | [34] |
In vitro, SNpc DAergic neurons acutely dissociated | 1 µM | 5–6 min | Firing inhibition | KATP channel opening; they are inhibited by the neuroprotective agent THB | [35] |
Ex vivo, midbrain slices, mouse | 100 nM | 5 min | Firing inhibition; KATP channel activation; ROS production | Kir6.2 subunit KO prevents DAergic neuron degeneration | [36] |
Ex vivo, midbrain slices, rat | 100 nM | 20–30 min | Increased INMDA (but not IAMPA) amplitude | [37] | |
In vitro, acutely dissociated SNpc DAergic neurons, rat | 5 µM | 10 min | Run-down of IGABAA, but not of IGly or IGlu | [38] | |
Ex vivo midbrain slices, rat | 100 nM | 30 min | Increased INMDA amplitude | Loss of Mg2+-block of NMDA-mediated currents that involves a tyrosine kinase | [39] |
Ex vivo midbrain slices, rats | 100 nM | 30 min | Increased INMDA amplitude | ROS and DA oxidation products mediate NMDA currents increase | [40] |
In vivo, mouse | 0.8 mg/kg | 7 days | Lack of gross functional alterations in SNpc DAergic neurons | [41] | |
In vivo, snail Lymnaea stagnalis | 0.5 µM | 7 days | Loss of dopaminergic IPSP | Uncoupling of dopaminergic synapses | [42] |
Ex vivo midbrain slice, rat | Paraquat, 30,100 µM | 20 min | Reduced IAMPA amplitude | Inhibition of post-synaptic AMPA receptors | [43] |
Ex vivo midbrain slice, rat | BMAA (0.1–10 mM) | 2–3 min | Increased firing; Ca2+ accumulation | Activation of mGluR and TRPC channels | [50] |
Type of Study | [MPTP/MPP+] | Treatment | Modified Parameters in SNpc DAergic Neuron | Molecular Mechanisms | Reference |
---|---|---|---|---|---|
Ex vivo | 100 nM–10 µM | 5 min | Spontaneous firing inhibition; KATP activation | Differential coupling between mitochondrial inhibition and KATP activation in SN vs. VTA neurons. Kir6.2 subunit KO prevents DAergic neuron degeneration | [36] |
In vivo | 20 mg/kg, i.p., 4 injections in one day | 6 days later | 60% reduction of pacemaker firing | Excessive GABA release by reactive astrocytes | [7] |
In vitro, acutely isolated DAergic neurons from in vivo lesioned mouse | Decrease in spontaneous firing rate | Excessive GABA release by reactive astrocytes, (rescue by selegiline and bicuculline); | [7] | ||
Ex vivo midbrain slices, rat and mouse | 50 µM | 5–15 min | Ih inhibition; spontaneous firing inhibition | The shift of Ih activation curve toward negative potentials | [55] |
Ex vivo | 20 µM | 30 min | Spontaneous firing inhibition | DA vesicle displacement, D2-GIRK activation; Ih inhibition; KATP activation; DAT activation | [58] |
α-Synuclein-Related Manipulation | Specie | Methodological Information | Age | Modified Parameters in SNpc DAergic Neurons | Molecular Mechanisms | Reference |
---|---|---|---|---|---|---|
BAC-induced overexpression of human Snca | Mice (C57/Bl6 background) | In vivo single-unit extracellular recordings in urethane-anesthetized mice | 3–4 months 18–22 months | No alterations Reduced spontaneous firing rate | [80] | |
Overexpression of mutated A53T-Snca | Mice (C57BL6 background) | In vivo single-unit extracellular recordings in urethane-anesthetized mice | 3–4 months 7–10 months |
| Age-dependent impairment of voltage-activated K+ channels due to redox species | [82] |
Spontaneous overexpression of α-syn | Rat | In vivo single-unit extracellular recordings in urethane-anesthetized mice | 21–30 days |
| [8] | |
BAC-induced overexpression of human Snca | Rat (backgroud SD) | Ex vivo patch-clamp recordings in horizontal acute midbrain slices | 5 months | Decrease in spontaneous and evoked firing; increase in CV | Increase of IAHP | [86] |
Intrastriatal injection of α-syn-PFF | Wistar Rat | Ex vivo patch-clamp recordings in horizontal acute midbrain slices from 4–6 months-old rats subjected to in vivo intrastriatal α-syn-PFF injections (6 or 12 weeks before recordings) | 6 weeks after α-syn-PFF injection |
| [87] | |
12 weeks after α-syn-PFF injection |
| |||||
Acute injection of α-syn aggregates (oligomers and small fibrils) in single DAergic neurons | C57/BL6 mice | Ex vivo patch-clamp recordings in coronal acute midbrain slices | 2–3 weeks |
| α-syn-induced activation of KATP | [89] |
Gene Mutation | Age | Methodological Information | Modified Parameters in Snpc DAergic Neuron | Reference |
---|---|---|---|---|
PINK1 | 3–4 months | In vitro patch-clamp recordings and in vivo single-unit recordings in urethane-anesthetized animals |
| [98] |
PINK1 | 6–7 days 1–3 months | In vitro patch-clamp recordings |
| [101] |
Parkin | 25 days | In vitro cell-attached recordings |
| [99] |
Parkin | 30 days | In vivo single-unit recordings in chloral hydrate-anesthetized animals |
| [100] |
LRRK2 | 8 months | In vitro patch-clamp recordings |
| [104] |
LRRK2 | 16–22 months | In vivo single-unit recordings in urethane-anesthetized animals |
| [106] |
LRRK2 | 10–12 months | In vitro patch-clamp recordings |
| [105] |
DJ-1 | 1 month | In vitro patch-clamp recordings |
| [112] |
DJ-1 | 1–2 months | In vitro patch-clamp recordings |
| [113] |
Mitochondrial Tfam (MitoPark) | 6–8 weeks | In vitro patch-clamp recordings |
| [116] |
Mitochondrial Tfam (MitoPark) | 6–10 weeks >5 months | In vitro patch-clamp recordings |
| [117] |
Ndufs2 of mitochondrial complex-I | 1 month | In vitro patch-clamp recordings |
| [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guatteo, E.; Berretta, N.; Monda, V.; Ledonne, A.; Mercuri, N.B. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 4508. https://doi.org/10.3390/ijms23094508
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson’s Disease. International Journal of Molecular Sciences. 2022; 23(9):4508. https://doi.org/10.3390/ijms23094508
Chicago/Turabian StyleGuatteo, Ezia, Nicola Berretta, Vincenzo Monda, Ada Ledonne, and Nicola Biagio Mercuri. 2022. "Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson’s Disease" International Journal of Molecular Sciences 23, no. 9: 4508. https://doi.org/10.3390/ijms23094508
APA StyleGuatteo, E., Berretta, N., Monda, V., Ledonne, A., & Mercuri, N. B. (2022). Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson’s Disease. International Journal of Molecular Sciences, 23(9), 4508. https://doi.org/10.3390/ijms23094508