Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia
Abstract
1. Introduction
2. Results
2.1. PDMSCs Presented Proper Mesenchymal Stromal Cell Profile
2.2. Characteristics of the Study Population
2.3. PDMSCs Conditioned Media Ameliorated Maternal Hypertension and Proteinuria in LPS-Induced PE Mouse Model
2.4. Placental sFlt-1, TNF-α, and IL-6 Expression Were Inhibited by PDMSCs-CM in PE Mice
3. Discussion
4. Materials and Methods
4.1. PDMSCs Conditioned Media Preparation
4.2. Preeclamptic Mouse Model Preparation and PDMSCs-CM Treatment
4.3. RNA Isolation and Real-Time PCR
4.4. Enzyme-Linked Immunosorbent Assay (ELISA)
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishihara, N.; Matsuo, H.; Murakoshi, H.; Laoag-Fernandez, J.B.; Samoto, T.; Maruo, T. Increased Apoptosis in the Syncytiotrophoblast in Human Term Placentas Complicated by Either Preeclampsia or Intrauterine Growth Retardation. Am. J. Obstet. Gynecol. 2002, 186, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Latest Advances in Understanding Preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.G.; Lindheimer, M.D. Hypertension in Pregnancy. N. Engl. J. Med. 1992, 326, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schulz, L.C.; Schust, D.J. Preeclampsia: Multiple Approaches for a Multifactorial Disease. Dis. Model. Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef]
- Marzi, M.; Vigano, A.; Trabattoni, D.; Villa, M.L.; Salvaggio, A.; Clerici, E.; Clerici, M. Characterization of Type 1 and Type 2 Cytokine Production Profile in Physiologic and Pathologic Human Pregnancy. Clin. Exp. Immunol. 1996, 106, 127–133. [Google Scholar] [CrossRef]
- Saito, S.; Sakai, M.; Sasaki, Y.; Tanebe, K.; Tsuda, H.; Michimata, T. Quantitative Analysis of Peripheral Blood Th0, Th1, Th2 and the Th1:Th2 Cell Ratio during Normal Human Pregnancy and Preeclampsia. Clin. Exp. Immunol. 1999, 117, 550–555. [Google Scholar] [CrossRef]
- Saito, S.; Umekage, H.; Sakamoto, Y.; Sakai, M.; Tanebe, K.; Sasaki, Y.; Morikawa, H. Increased T-Helper-1-Type Immunity and Decreased T-Helper-2-Type Immunity in Patients with Preeclampsia. Am. J. Reprod. Immunol. 1999, 41, 297–306. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Vercruysse, L.; Verbist, L.; Van Assche, F.A. Interaction of Interstitial Trophoblast with Placental Bed Capillaries and Venules of Normotensive and Pre-Eclamptic Pregnancies. Placenta 1998, 19, 569–575. [Google Scholar] [CrossRef]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-Eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Gammill, H.S.; Roberts, J.M. Emerging Concepts in Preeclampsia Investigation. Front. Biosci. 2007, 12, 2403–2411. [Google Scholar] [CrossRef][Green Version]
- Lockwood, C.J.; Yen, C.-F.; Basar, M.; Kayisli, U.A.; Martel, M.; Buhimschi, I.; Buhimschi, C.; Huang, S.J.; Krikun, G.; Schatz, F. Preeclampsia-Related Inflammatory Cytokines Regulate Interleukin-6 Expression in Human Decidual Cells. Am. J. Pathol. 2008, 172, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Mandò, C.; Razini, P.; Novielli, C.; Anelli, G.M.; Belicchi, M.; Erratico, S.; Banfi, S.; Meregalli, M.; Tavelli, A.; Baccarin, M.; et al. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction. Stem Cells Transl. Med. 2016, 5, 451–463. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yen, B.L.; Huang, H.-I.; Chien, C.-C.; Jui, H.-Y.; Ko, B.-S.; Yao, M.; Shun, C.-T.; Yen, M.-L.; Lee, M.-C.; Chen, Y.-C. Isolation of Multipotent Cells from Human Term Placenta. Stem Cells 2005, 23, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Brooke, G.; Tong, H.; Levesque, J.-P.; Atkinson, K. Molecular Trafficking Mechanisms of Multipotent Mesenchymal Stem Cells Derived from Human Bone Marrow and Placenta. Stem Cells Dev. 2008, 17, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Parolini, O.; Alviano, F.; Bergwerf, I.; Boraschi, D.; De Bari, C.; De Waele, P.; Dominici, M.; Evangelista, M.; Falk, W.; Hennerbichler, S.; et al. Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells Dev. 2010, 19, 143–154. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human Placenta-Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential. Stem Cells 2004, 22, 649–658. [Google Scholar] [CrossRef]
- Chang, C.-J.; Yen, M.-L.; Chen, Y.-C.; Chien, C.-C.; Huang, H.-I.; Bai, C.-H.; Yen, B.L. Placenta-Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon-Gamma. Stem Cells 2006, 24, 2466–2477. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Jiang, X.; Mao, N. Human-Placenta-Derived Mesenchymal Stem Cells Inhibit Proliferation and Function of Allogeneic Immune Cells. Cell Tissue Res. 2007, 330, 437–446. [Google Scholar] [CrossRef]
- Rolfo, A.; Giuffrida, D.; Nuzzo, A.M.; Pierobon, D.; Cardaropoli, S.; Piccoli, E.; Giovarelli, M.; Todros, T. Pro-Inflammatory Profile of Preeclamptic Placental Mesenchymal Stromal Cells: New Insights into the Etiopathogenesis of Preeclampsia. PLoS ONE 2013, 8, e59403. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.; Fan, H.; Zhao, X.; Li, P.; Wang, Z.; Hu, Y.; Hou, Y. Mesenchymal Stem Cells Ameliorate Th1-Induced Pre-Eclampsia-like Symptoms in Mice via the Suppression of TNF-α Expression. PLoS ONE 2014, 9, e88036. [Google Scholar] [CrossRef]
- Fu, L.; Liu, Y.; Zhang, D.; Xie, J.; Guan, H.; Shang, T. Beneficial Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on an Endotoxin-Induced Rat Model of Preeclampsia. Exp. Ther. Med. 2015, 10, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Chiasson, V.L.; Pinzur, L.; Raveh, S.; Abraham, E.; Jones, K.A.; Bounds, K.R.; Ofir, R.; Flaishon, L.; Chajut, A.; et al. Human Placenta-Derived Stromal Cells Decrease Inflammation, Placental Injury and Blood Pressure in Hypertensive Pregnant Mice. Clin. Sci. 2016, 130, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Dominina, A.P.; Fridliandskaia, I.I.; Zemel’ko, V.I.; Pugovkina, N.A.; Kovaleva, Z.V.; Zenin, V.V.; Grinchuk, T.M.; Nikol’skiĭ, N.N. Mesenchymal stem cells of human endometrium do not undergo spontaneous transformation during long-term cultivation. Tsitologiia 2013, 55, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qu, X.; Zhao, R.C. Clinical Applications of Mesenchymal Stem Cells. J. Hematol. Oncol. 2012, 5, 19. [Google Scholar] [CrossRef]
- Wu, W.; He, Q.; Li, X.; Zhang, X.; Lu, A.; Ge, R.; Zhen, H.; Chang, A.E.; Li, Q.; Shen, L. Long-Term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells. Int. J. Biol. Sci. 2011, 7, 892–901. [Google Scholar] [CrossRef]
- Bernardo, M.E.; Zaffaroni, N.; Novara, F.; Cometa, A.M.; Avanzini, M.A.; Moretta, A.; Montagna, D.; Maccario, R.; Villa, R.; Daidone, M.G.; et al. Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-Term in Vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res. 2007, 67, 9142–9149. [Google Scholar] [CrossRef]
- Popov, B.V.; Petrov, N.S.; Mikhailov, V.M.; Tomilin, A.N.; Alekseenko, L.L.; Grinchuk, T.M.; Zaichik, A.M. Spontaneous Transformation and Immortalization of Mesenchymal Stem Cells in Vitro. Cell Tissue Biol. 2009, 3, 110–120. [Google Scholar] [CrossRef]
- Nuzzo, A.M.; Giuffrida, D.; Zenerino, C.; Piazzese, A.; Olearo, E.; Todros, T.; Rolfo, A. JunB/Cyclin-D1 Imbalance in Placental Mesenchymal Stromal Cells Derived from Preeclamptic Pregnancies with Fetal-Placental Compromise. Placenta 2014, 35, 483–490. [Google Scholar] [CrossRef]
- Karp, J.M.; Leng Teo, G.S. Mesenchymal Stem Cell Homing: The Devil Is in the Details. Cell Stem Cell 2009, 4, 206–216. [Google Scholar] [CrossRef]
- Asami, T.; Ishii, M.; Fujii, H.; Namkoong, H.; Tasaka, S.; Matsushita, K.; Ishii, K.; Yagi, K.; Fujiwara, H.; Funatsu, Y.; et al. Modulation of Murine Macrophage TLR7/8-Mediated Cytokine Expression by Mesenchymal Stem Cell-Conditioned Medium. Mediat. Inflamm. 2013, 2013, 264260. [Google Scholar] [CrossRef]
- Nuzzo, A.M.; Giuffrida, D.; Masturzo, B.; Mele, P.; Piccoli, E.; Eva, C.; Todros, T.; Rolfo, A. Altered Expression of G1/S Phase Cell Cycle Regulators in Placental Mesenchymal Stromal Cells Derived from Preeclamptic Pregnancies with Fetal-Placental Compromise. Cell Cycle 2017, 16, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Wu, S.-Y.; Tang, S.-E.; Li, M.-H.; Lin, S.-S.; Chu, S.-J.; Huang, K.-L. Protective Effects of Neural Crest-Derived Stem Cell-Conditioned Media against Ischemia-Reperfusion-Induced Lung Injury in Rats. Inflammation 2017, 40, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lei, D.; Ouyang, W.; Ren, J.; Li, H.; Hu, J.; Huang, S. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines in Vitro. BioMed. Res. Int. 2014, 2014, 109389. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Lee, O.K.; Kuo, T.K.; Chen, W.-M.; Lee, K.-D.; Hsieh, S.-L.; Chen, T.-H. Isolation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef]
- Hu, Y.; Liao, L.; Wang, Q.; Ma, L.; Ma, G.; Jiang, X.; Zhao, R.C. Isolation and Identification of Mesenchymal Stem Cells from Human Fetal Pancreas. J. Lab. Clin. Med. 2003, 141, 342–349. [Google Scholar] [CrossRef]
- Abomaray, F.M.; Al Jumah, M.A.; Kalionis, B.; AlAskar, A.S.; Al Harthy, S.; Jawdat, D.; Al Khaldi, A.; Alkushi, A.; Knawy, B.A.; Abumaree, M.H. Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Rev. Rep. 2015, 11, 423–441. [Google Scholar] [CrossRef]
- Abumaree, M.H.; Abomaray, F.M.; Alshabibi, M.A.; AlAskar, A.S.; Kalionis, B. Immunomodulatory Properties of Human Placental Mesenchymal Stem/Stromal Cells. Placenta 2017, 59, 87–95. [Google Scholar] [CrossRef]
- Du, W.; Li, X.; Chi, Y.; Ma, F.; Li, Z.; Yang, S.; Song, B.; Cui, J.; Ma, T.; Li, J.; et al. VCAM-1+ Placenta Chorionic Villi-Derived Mesenchymal Stem Cells Display Potent pro-Angiogenic Activity. Stem Cell Res. Ther. 2016, 7, 49. [Google Scholar] [CrossRef]
- Grylls, A.; Seidler, K.; Neil, J. Link between Microbiota and Hypertension: Focus on LPS/TLR4 Pathway in Endothelial Dysfunction and Vascular Inflammation, and Therapeutic Implication of Probiotics. Biomed. Pharmacother. 2021, 137, 111334. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z.; Han, Y.; Yu, H. Fatty Acid Oxidation Changes and the Correlation with Oxidative Stress in Different Preeclampsia-like Mouse Models. PLoS ONE 2014, 9, e109554. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zeng, P.; Xu, Z.; Ye, D.; Yu, X.; Wang, N.; Tang, J.; Zhou, Y.; Huang, Y. Treatment of Lipoxin A(4) and Its Analogue on Low-Dose Endotoxin Induced Preeclampsia in Rat and Possible Mechanisms. Reprod. Toxicol. 2012, 34, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Fu, L.; Wang, L.; Lin, L.; Yu, L.; Zhang, L.; Shang, T. Therapeutic Benefit of Mesenchymal Stem Cells in Pregnant Rats with Angiotensin Receptor Agonistic Autoantibody-Induced Hypertension: Implications for Immunomodulation and Cytoprotection. Hypertens. Pregnancy 2017, 36, 247–258. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.F.; Almeida, T.R.; Ribeiro Machado, M.P.; Cuba, M.B.; Alves, A.C.; da Silva, M.V.; Rodrigues Júnior, V.; Dias da Silva, V.J. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension. Stem Cells Int. 2015, 2015, 685383. [Google Scholar] [CrossRef]
- Oliveira-Sales, E.B.; Maquigussa, E.; Semedo, P.; Pereira, L.G.; Ferreira, V.M.; Câmara, N.O.; Bergamaschi, C.T.; Campos, R.R.; Boim, M.A. Mesenchymal Stem Cells (MSC) Prevented the Progression of Renovascular Hypertension, Improved Renal Function and Architecture. PLoS ONE 2013, 8, e78464. [Google Scholar] [CrossRef]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef]
- Beer, L.; Mildner, M.; Ankersmit, H.J. Cell Secretome Based Drug Substances in Regenerative Medicine: When Regulatory Affairs Meet Basic Science. Ann. Transl. Med. 2017, 5, 170. [Google Scholar] [CrossRef]
- Albonici, L.; Benvenuto, M.; Focaccetti, C.; Cifaldi, L.; Miele, M.T.; Limana, F.; Manzari, V.; Bei, R. PlGF Immunological Impact during Pregnancy. Int. J. Mol. Sci. 2020, 21, 8714. [Google Scholar] [CrossRef]
- Jones, R.L.; Stoikos, C.; Findlay, J.K.; Salamonsen, L.A. TGF-Beta Superfamily Expression and Actions in the Endometrium and Placenta. Reprod. Camb. Engl. 2006, 132, 217–232. [Google Scholar] [CrossRef]
- Wu, L.-Z.; Liu, X.-L.; Xie, Q.-Z. Osteopontin Facilitates Invasion in Human Trophoblastic Cells via Promoting Matrix Metalloproteinase-9 in Vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 14121–14130. [Google Scholar]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int. J. Inflam. 2011, 2011, 908468. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ye, W.; Liu, X.; Lv, Y.; Yao, C.; Wei, J. VEGF and SFLT-1 in Serum of PIH Patients and Effects on the Foetus. Exp. Ther. Med. 2019, 17, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.M.; Giuffrida, D.; Moretti, L.; Re, P.; Grassi, G.; Menato, G.; Rolfo, A. Placental and Maternal SFlt1/PlGF Expression in Gestational Diabetes Mellitus. Sci. Rep. 2021, 11, 2312. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, A.; Attini, R.; Nuzzo, A.M.; Piazzese, A.; Parisi, S.; Ferraresi, M.; Todros, T.; Piccoli, G.B. Chronic Kidney Disease May Be Differentially Diagnosed from Preeclampsia by Serum Biomarkers. Kidney Int. 2013, 83, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.J.; Khalil, R.A. Genetic, Immune and Vasoactive Factors in the Vascular Dysfunction Associated with Hypertension in Pregnancy. Expert Opin. Ther. Targets 2015, 19, 1495–1515. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.L.; Olister, S.M.; Liu, X.; Thompson, J.H.; Zhang, X.J.; Pennline, K.; Azuero, R.; Clark, D.A.; Miller, M.J. Interleukin-10 Attenuates Experimental Fetal Growth Restriction and Demise. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1998, 12, 189–197. [Google Scholar] [CrossRef]
- Vonlaufen, A.; Phillips, P.A.; Xu, Z.; Zhang, X.; Yang, L.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Withdrawal of Alcohol Promotes Regression While Continued Alcohol Intake Promotes Persistence of LPS-Induced Pancreatic Injury in Alcohol-Fed Rats. Gut 2011, 60, 238–246. [Google Scholar] [CrossRef]
- Wang, L.-L.; Yu, Y.; Guan, H.-B.; Qiao, C. Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod. Sci. 2016, 23, 1058–1070. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, M. Effect of paeonol on adhesive function of rat vascular endothelial cells induced by lipopolysaccharide and co-cultured with smooth muscle cells. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi/China J. Chin. Mater. Med. 2014, 39, 1058–1063. [Google Scholar]
- Zekri, A.-R.N.; Salama, H.; Medhat, E.; Musa, S.; Abdel-Haleem, H.; Ahmed, O.S.; Khedr, H.A.H.; Lotfy, M.M.; Zachariah, K.S.; Bahnassy, A.A. The Impact of Repeated Autologous Infusion of Haematopoietic Stem Cells in Patients with Liver Insufficiency. Stem Cell Res. Ther. 2015, 6, 118. [Google Scholar] [CrossRef]
- Shi, M.; Liu, Z.; Wang, Y.; Xu, R.; Sun, Y.; Zhang, M.; Yu, X.; Wang, H.; Meng, L.; Su, H.; et al. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. Stem Cells Transl. Med. 2017, 6, 2053–2061. [Google Scholar] [CrossRef]
- Hauser, P.V.; De Fazio, R.; Bruno, S.; Sdei, S.; Grange, C.; Bussolati, B.; Benedetto, C.; Camussi, G. Stem Cells Derived from Human Amniotic Fluid Contribute to Acute Kidney Injury Recovery. Am. J. Pathol. 2010, 177, 2011–2021. [Google Scholar] [CrossRef] [PubMed]
- Oludare, G.O.; Ilo, O.J.; Lamidi, B.A. Effects of Lipopolysaccharide and High Saline Intake on Blood Pressure, Angiogenic Factors and Liver Enzymes of Pregnant Rats. Niger. J. Physiol. Sci. Off. Publ. Physiol. Soc. Niger. 2017, 32, 129–136. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
PDMSCs-CM (n = 5) | Control (n = 5) | p-Value | |
---|---|---|---|
Number of fetuses | 41 | 24 | p < 0.01 |
Fetal reabsorption | 0 | 5 | p = 0.02 |
Fetal weight, grams (median and range) | 0.82 (0.62–1.26) | 0.75 (0.59–0.99) | ns |
Placental weight, grams (median and range) | 0.12 (0.07–0.25) | 0.09 (0.05–0.14) | p < 0.01 |
Hematocrit (%) | 11.1 | 10.8 | ns |
RBC | 7.2 | 7.08 | ns |
WBC | 1.1 | 1.2 | ns |
Plt | 330 | 135 | ns |
Htc (%) | 10.4 | 10.3 | ns |
Hb | 10.1 | 9.9 | ns |
ALT (mg/dL) | 39.7 | 39.7 | ns |
AST (mg/dL) | 247.7 | 263.7 | ns |
Urea (mg/dL) | 35.2 | 34.2 | ns |
Creatinine (mg/dL) | 0.07 | 0.07 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuzzo, A.M.; Moretti, L.; Mele, P.; Todros, T.; Eva, C.; Rolfo, A. Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. Int. J. Mol. Sci. 2022, 23, 1674. https://doi.org/10.3390/ijms23031674
Nuzzo AM, Moretti L, Mele P, Todros T, Eva C, Rolfo A. Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. International Journal of Molecular Sciences. 2022; 23(3):1674. https://doi.org/10.3390/ijms23031674
Chicago/Turabian StyleNuzzo, Anna Maria, Laura Moretti, Paolo Mele, Tullia Todros, Carola Eva, and Alessandro Rolfo. 2022. "Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia" International Journal of Molecular Sciences 23, no. 3: 1674. https://doi.org/10.3390/ijms23031674
APA StyleNuzzo, A. M., Moretti, L., Mele, P., Todros, T., Eva, C., & Rolfo, A. (2022). Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. International Journal of Molecular Sciences, 23(3), 1674. https://doi.org/10.3390/ijms23031674