Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayana, K.J.; Burela, R.G. A review of recent research on multifunctional composite materials and structures with their applications. Mater. Today 2018, 5, 5580–5590. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kislyuk, A.M.; Kiselev, D.A.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleve, S.P.; Kholkin, A.L.; Sobolev, N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. J. Magn. Magn. Mater. 2019, 486, 165209. [Google Scholar] [CrossRef]
- Pereira, N.; Lima, A.C.; Lanceros-Mendez, S.; Martins, P. Magnetoelectrics: Three centuries of research heading towards the 4.0 industrial revolution. Materials 2020, 13, 4033. [Google Scholar] [CrossRef] [PubMed]
- Sim, C.H.; Pan, A.Z.Z.; Wang, J. Thickness and coupling effects in bilayered multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. J. Appl. Phys. 2008, 103, 124109. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 2005, 309, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Zhang, J.J.; Xia, X.D.; Fang, C.; Weng, G.J. Nonlinear magnetoelectric effects of polymer-based hybrid magnetoelectric composites with chain-like terfenol-D/epoxy and PVDF multilayers. Compos. Sci. Technol. 2021, 216, 109069. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, J.J.; Ta, W.R.; Xia, X.D.; Weng, G.J. Surface and interface effects on the bending behavior of nonlinear multilayered magnetoelectric nanostructures. Compos. Struct. 2021, 275, 114485. [Google Scholar] [CrossRef]
- Gao, J.Q.; Hasanyan, D.; Shen, Y.; Wang, Y.J.; Li, J.F.; Viehland, D. Giant resonant magnetoelectric effect in bi-layered Metglas/Pb(Zr,Ti)O3 composites. J. Appl. Phys. 2012, 112, 104101. [Google Scholar] [CrossRef]
- Rödel, J.; Jo, W.; Seifert, K.T.; Anton, E.M.; Granzow, T.; Damjanovic, D. Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Nguyen, A.N.; Solard, J.; Nong, H.T.T.; Ben Osman, C.; Gomez, A.; Bockelée, V.; Tencé, G.S.; Schoenstein, F.; Sorbed, S.M.; Carrillo, A.E.; et al. Spin coating and micro-patterning optimization of composite thin films based on PVDF. Materials 2020, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.P.; Ren, H. A high efficiency standalone magnetoelectric energy converter based on Terfenol-D and PZT laminate. Appl. Phys. Lett. 2021, 118, 044101. [Google Scholar] [CrossRef]
- Ummer, R.P.; Sreekanth, P.; Raneesh, B.; Philip, R.; Rouxel, D.; Thomas, S.; Kalarikkal, N. Electric, magnetic and optical limiting (short pulse and ultrafast) studies in phase pure (1-x) BiFeO3-xNaNbO3 multiferroic nanocomposite synthesized by the pechini method. RSC Adv. 2015, 5, 67157–67164. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Goncalves, R.; Cardoso, V.F.; Lanceros-Mendez, S. Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Kolen’ko, Y.V.; Rivas, J.; Lanceros-Mendez, S. Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS. Appl. Mater. Inter. 2015, 7, 15017–15022. [Google Scholar] [CrossRef]
- Li, Y.H.; Feng, W.; Meng, L.; Tse, K.M.; Li, Z.; Huang, L.B.; Su, Z.Q.; Guo, S.F. Investigation on in-situ sprayed, annealed and corona poled PVDF-TrFE coatings for guided wave-based structural health monitoring: From crystallization to piezoelectricity. Mater. Des. 2021, 199, 109415. [Google Scholar] [CrossRef]
- Mayeen, A.; Kala, M.S.; Jayalakshmy, M.S.; Thomas, S.; Philip, J.; Rouxel, D.; Bhowmik, R.N.; Kalarikkal, N. Flexible and self-standing nickel ferrite–PVDF-TrFE cast films: Promising candidates for high-end magnetoelectric applications. Dalton T. 2019, 48, 16961–16973. [Google Scholar] [CrossRef]
- Kabir, E.; Khatun, M.; Nasrin, L.; Raihan, M.J.; Rahman, M. Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J. Phys. D Appl. Phys. 2017, 50, 163002. [Google Scholar] [CrossRef]
- Ruan, L.X.; Yao, X.N.; Chang, Y.F.; Zhou, L.Q.; Qin, G.W.; Zhang, X.M. Properties and applications of the β phase poly (vinylidene fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef]
- Cai, X.M.; Lei, T.P.; Sun, D.H.; Lin, L.W. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Ponnamma, D.; Aljarod, O.; Parangusan, H.; Al-Maadeed, M.A.A. Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Mater. Chem. Phys. 2020, 239, 122257. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Shi, K.M.; Chai, B.; Zou, H.Y.; Shen, P.Y.; Sun, B.; Jiang, P.K.; Shi, Z.W.; Huang, X.Y. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 2021, 80, 105515. [Google Scholar] [CrossRef]
- Hu, X.A.; Ding, Z.T.; Fei, L.X.; Xiang, Y.; Lin, Y. Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 2019, 54, 6401–6409. [Google Scholar] [CrossRef]
- Hu, J.M.; Nan, T.; Sun, N.X.; Chen, L.Q. Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 2015, 40, 728–735. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Lasheras, A.; Martins, P.; Pereira, N.; Barandiarán, J.M.; Lanceros-Mendez, S. Metallic glass/PVDF magnetoelectric laminates for resonant sensors and actuators: A review. Sensors 2017, 17, 1251. [Google Scholar] [CrossRef]
- Liu, S.; Zou, H.X.; Qin, B.; Huang, S.X.; Deng, L.W. Tailored magnetoelectric coupling in magnetically oriented polymer-based iron fiber composite. J. Magn. Magn. Mater. 2021, 540, 168408. [Google Scholar] [CrossRef]
- Silva, M.; Reis, S.; Lehmann, C.S.; Martins, P.; Lanceros-Mendez, S.; Lasheras, A.; Gutierrex, J.; Barandiarán, J.M. Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/vitrovac laminates. ACS Appl. Mater. Inter. 2013, 5, 10912–10919. [Google Scholar] [CrossRef]
- Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013, 61, 718–734. [Google Scholar] [CrossRef]
- Li, D.R.; Li, S.H.; Lu, Z.C. The effects of post-processing on longitudinal magnetostriction and core losses of high saturation flux density FeSiBC amorphous alloy ribbons and cores. J. Magn. Magn. Mater. 2021, 538, 168272. [Google Scholar] [CrossRef]
- Azuma, D.; Ito, N.; Ohta, M. Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 2020, 501, 166373. [Google Scholar] [CrossRef]
- Gomes, J.; Nunes, J.S.; Sencadas, V.; Lanceros-Méndez, S. Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride). Smart Mater. Struct. 2010, 19, 065010. [Google Scholar] [CrossRef]
- Ng, C.Y.B.; Gan, W.C.; Velayutham, T.S.; Goh, B.T.; Hashim, R. Structural control of the dielectric, pyroelectric and ferroelectric properties of poly (vinylidene fluoride-co-trifluoroethylene) thin films. Phys. Chem. Chem. Phys. 2020, 22, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, C.M.; Xia, K.; Liu, X.; Li, D.; Han, J. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification. Appl. Surf. Sci. 2019, 463, 626–634. [Google Scholar] [CrossRef]
- Karan, S.K.; Mandal, D.; Khatua, B.B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: An excellent material for a piezoelectric energy harvester. Nanoscale 2015, 7, 10655–10666. [Google Scholar] [CrossRef]
- Mishra, S.; Sahoo, R.; Unnikrishnan, L.; Ramadoss, A.; Mohanty, S.; Nayak, S.K. Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Mater. Res. Bull. 2020, 124, 110732. [Google Scholar] [CrossRef]
- Chipara, D.; Kuncser, V.; Lozano, K.; Alcoutlabi, M.; Ibrahim, E.; Chipara, M. Spectroscopic investigations on PVDF-Fe2O3 nanocomposites. J. Appl. Poly. Sci. 2020, 137, 48907. [Google Scholar] [CrossRef]
- Qiang, Y.; Antony, J.; Sharma, A.; Nutting, J.; Sikes, D.; Meyer, D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanopart Res. 2006, 8, 489–496. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Ogale, S.B.; Papaefthymiou, G.C.; Ramesh, R.; Kofinas, P. Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route. Appl. Phys. Lett. 2002, 80, 1616–1618. [Google Scholar] [CrossRef]
- Kohmoto, O.; Ohya, K. Mass densities of amorphous Co-rich FeCo-SiB alloys. J. Appl. Phys. 1985, 57, 626–627. [Google Scholar] [CrossRef]
- Parra, C.; Bolivar, F.J. Effect of cobalt addition on the microstructural evolution, thermal stability and magnetic properties of Fe-based amorphous alloys. Vacuum 2019, 169, 108911. [Google Scholar] [CrossRef]
- Zhou, J.P.; Yang, Y.; Zhang, G.B.; Peng, J.H.; Liu, P. Symmetric relationships between direct and converse magnetoelectric effects in laminate composites. Compos. Struct. 2016, 155, 107–117. [Google Scholar] [CrossRef]
Materials | Before Polarization (pC/N) | After Polarization (pC/N) |
---|---|---|
PVDF-TrFE films with vacuum drying from room temperature to 140 °C for 2 h (named heating condition 1) | 0.24 | 21.27 |
PVDF-TrFE films with direct 140 °C vacuum drying for 2 h (named heating condition 2) | 0.34 | 34.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, D.; Chen, X.; Huang, F.; Zhang, J.; Yang, P.; Li, R.; Lu, Y.; Liu, Y. Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB. Int. J. Mol. Sci. 2022, 23, 15992. https://doi.org/10.3390/ijms232415992
Wen D, Chen X, Huang F, Zhang J, Yang P, Li R, Lu Y, Liu Y. Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB. International Journal of Molecular Sciences. 2022; 23(24):15992. https://doi.org/10.3390/ijms232415992
Chicago/Turabian StyleWen, Dandan, Xia Chen, Fuchao Huang, Jingbo Zhang, Pingan Yang, Renpu Li, Yi Lu, and Yu Liu. 2022. "Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB" International Journal of Molecular Sciences 23, no. 24: 15992. https://doi.org/10.3390/ijms232415992
APA StyleWen, D., Chen, X., Huang, F., Zhang, J., Yang, P., Li, R., Lu, Y., & Liu, Y. (2022). Piezoelectric and Magnetoelectric Effects of Flexible Magnetoelectric Heterostructure PVDF-TrFE/FeCoSiB. International Journal of Molecular Sciences, 23(24), 15992. https://doi.org/10.3390/ijms232415992