Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease
Abstract
:1. Introduction
2. Reduction in the Risk Factors of CVDs
3. Cardiovascular Disease
4. Coronary Artery Disease
5. Stroke
6. Hypertension
7. Atherosclerosis
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J.C.; Pakpour, S. Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges. Microbiome 2020, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Marć, M.A.; Jastrząb, R.; Mytych, J. Does the Gut Microbial Metabolome Really Matter? The Connection between GUT Metabolome and Neurological Disorders. Nutrients 2022, 14, 3967. [Google Scholar] [CrossRef]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–Microbiota Interactions and Personalized Nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.-C.; Million, M.; Hugon, P.; Armougom, F.; Raoult, D. Human Gut Microbiota: Repertoire and Variations. Front. Cell. Infect. Microbiol. 2012, 2, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; et al. Homeostasis of the Gut Barrier and Potential Biomarkers. Am. J. Physiol.-Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and Clinical Implications of the Brain–Gut–Enteric Microbiota Axis. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Mo, R.; Zhang, X.; Yang, Y. Effect of Probiotics on Lipid Profiles in Hypercholesterolaemic Adults: A Meta-Analysis of Randomized Controlled Trials. Med. Clínica 2019, 152, 473–481. [Google Scholar] [CrossRef]
- Del Pinto, R.; Pietropaoli, D.; Monaco, A.; Desideri, G.; Ferri, C.; Grassi, D. Non-Pharmacological Strategies against Systemic Inflammation: Molecular Basis and Clinical Evidence. Curr. Pharm. Des. 2020, 26, 2620–2629. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, B.; Zhou, X.; Wang, Y.; Wang, H.; Jia, S.; Zhang, Z.; Chu, C.; Mu, J. Combined Lowering Effects of Rosuvastatin and L. Acidophilus on Cholesterol Levels in Rat. J. Microbiol. Biotechnol. 2019, 29, 473–481. [Google Scholar] [CrossRef]
- Hala, I. EL-Adawi. Cytotoxicity Assay and Antioxidant Activities of the Lactic Acid Bacterial Strains. Afr. J. Microbiol. Res. 2012, 6, 1700–1712. [Google Scholar] [CrossRef]
- Tenorio-Jiménez, C.; Martínez-Ramírez, M.J.; Tercero-Lozano, M.; Arraiza-Irigoyen, C.; Del Castillo-Codes, I.; Olza, J.; Plaza-Díaz, J.R.; Olivares, M.; Gil, Á.; Gómez-Llorente, C. Evaluation of the Effect of Lactobacillus Reuteri V3401 on Biomarkers of Inflammation and Cardiovascular Risk in Obese Adults with Metabolic Syndrome: A Randomized Clinical Trial (PROSIR). Clin. Nutr. 2018, 37, S15. [Google Scholar] [CrossRef]
- Szulińska, M.; Łoniewski, I.; Skrypnik, K.; Sobieska, M.; Korybalska, K.; Suliburska, J.; Bogdański, P. Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women—A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients 2018, 10, 1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizushima, S. Randomized Controlled Trial of Sour Milk on Blood Pressure in Borderline Hypertensive Men. Am. J. Hypertens. 2004, 17, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Ejtahed, H.-S.; Ardeshirlarijani, E.; Tabatabaei-Malazy, O.; Hoseini-Tavassol, Z.; Hasani-Ranjbar, S.; Soroush, A.-R.; Larijani, B. Effect of Probiotic Foods and Supplements on Blood Pressure: A Systematic Review of Meta-Analyses Studies of Controlled Trials. J. Diabetes Metab. Disord. 2020, 19, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Matsutomo, T. Potential Benefits of Garlic and Other Dietary Supplements for the Management of Hypertension (Review). Exp. Ther. Med. 2019, 19, 1479–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 10 September 2022).
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Crary, M.A.; Carnaby, G.D.; Shabbir, Y.; Miller, L.; Silliman, S. Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients with Dysphagia. Dysphagia 2015, 31, 60–65. [Google Scholar] [CrossRef]
- Gavin, N.C.; Button, E.; Keogh, S.; McMillan, D.; Rickard, C. Does Parenteral Nutrition Increase the Risk of Catheter-Related Bloodstream Infection? A Systematic Literature Review. J. Parenter. Enter. Nutr. 2017, 41, 918–928. [Google Scholar] [CrossRef]
- Li, H. Value of Acute Gastrointestinal Injury Grading System in Assessing Gastrointestinal Dysfunction in Critically Ill Patients: Application in Early Enteral Nutrition. World Chin. J. Dig. 2014, 22, 4668. [Google Scholar] [CrossRef]
- Wong, S.; Jamous, A.; O’Driscoll, J.; Sekhar, R.; Weldon, M.; Yau, C.Y.; Hirani, S.P.; Grimble, G.; Forbes, A. A Lactobacillus Casei Shirota Probiotic Drink Reduces Antibiotic-Associated Diarrhoea in Patients with Spinal Cord Injuries: A Randomised Controlled Trial. Br. J. Nutr. 2013, 111, 672–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendis, S.; Puska, P. Global Atlas on Cardiovascular Disease Prevention and Control CVDs; World Health Organization: Geneva, Switzerland; World Heart Federation: Geneva, Switzerland; World Stroke Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Saxelby, C. Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors. Nutr. Diet. 2006, 63, 189–190. [Google Scholar] [CrossRef]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart Disease and Stroke Statistics—2012 Update: A Report from the American Heart Association. Circulation 2012, 125, e2–e220. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature reviews. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Mishra, S.; Wang, S.; Nagpal, R.; Miller, B.; Singh, R.; Taraphder, S.; Yadav, H. Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Tringe, S.G. Comparative Metagenomics of Microbial Communities. Science 2005, 308, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Kitai, T.; Tang, W.H. Wilson. Gut Microbiota in Cardiovascular Disease and Heart Failure. Clin. Sci. 2018, 132, 85–91. [Google Scholar] [CrossRef]
- Li, D.Y.; Tang, W.H.W. Gut Microbiota and Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 39. [Google Scholar] [CrossRef]
- Frei, R.; Akdis, M.; O’Mahony, L. Prebiotics, Probiotics, Synbiotics, and the Immune System. Curr. Opin. Gastroenterol. 2015, 31, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and Cardiovascular Disease: From Pathogenesis to Therapeutic Target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef]
- Raygan, F.; Rezavandi, Z.; Bahmani, F.; Ostadmohammadi, V.; Mansournia, M.A.; Tajabadi-Ebrahimi, M.; Borzabadi, S.; Asemi, Z. The Effects of Probiotic Supplementation on Metabolic Status in Type 2 Diabetic Patients with Coronary Heart Disease. Diabetol. Metab. Syndr. 2018, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Raygan, F.; Ostadmohammadi, V.; Asemi, Z. The Effects of Probiotic and Selenium Co-Supplementation on Mental Health Parameters and Metabolic Profiles in Type 2 Diabetic Patients with Coronary Heart Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2019, 38, 1594–1598. [Google Scholar] [CrossRef] [PubMed]
- Farrokhian, A.; Raygan, F.; Soltani, A.; Tajabadi-Ebrahimi, M.; Sharifi Esfahani, M.; Karami, A.A.; Asemi, Z. The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob. Proteins 2017, 11, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hofeld, B.C.; Puppala, V.K.; Tyagi, S.; Ahn, K.W.; Anger, A.; Jia, S.; Salzman, N.H.; Hessner, M.J.; Widlansky, M.E. Lactobacillus Plantarum 299v Probiotic Supplementation in Men with Stable Coronary Artery Disease Suppresses Systemic Inflammation. Sci. Rep. 2021, 11, 3972. [Google Scholar] [CrossRef]
- Moludi, J.; Kafil, H.S.; Qaisar, S.A.; Gholizadeh, P.; Alizadeh, M.; Vayghyan, H.J. Effect of Probiotic Supplementation along with Calorie Restriction on Metabolic Endotoxemia, and Inflammation Markers in Coronary Artery Disease Patients: A Double Blind Placebo Controlled Randomized Clinical Trial. Nutr. J. 2021, 20, 47. [Google Scholar] [CrossRef]
- Moludi, J.; Khedmatgozar, H.; Nachvak, S.M.; Abdollahzad, H.; Moradinazar, M.; Sadeghpour Tabaei, A. The Effects of Co-Administration of Probiotics and Prebiotics on Chronic Inflammation, and Depression Symptoms in Patients with Coronary Artery Diseases: A Randomized Clinical Trial. Nutr. Neurosci. 2022, 25, 1659–1668. [Google Scholar] [CrossRef]
- Tai, E.S.; Fok, A.C.; Chu, R.; Tan, C.E. A Study to Assess the Effect of Dietary Supplementation with Soluble Fibre (Minolest) on Lipid Levels in Normal Subjects with Hypercholesterolaemia. Ann. Acad. Med. Singap. 1999, 28, 209–213. [Google Scholar]
- Lim, S.-H. Larch Arabinogalactan Attenuates Myocardial Injury by Inhibiting Apoptotic Cascades in a Rat Model of Ischemia–Reperfusion. J. Med. Food 2017, 20, 691–699. [Google Scholar] [CrossRef]
- Jiang, T.; Xing, X.; Zhang, L.; Liu, Z.; Zhao, J.; Liu, X. Chitosan Oligosaccharides Show Protective Effects in Coronary Heart Disease by Improving Antioxidant Capacity via the Increase in Intestinal Probiotics. Oxidative Med. Cell. Longev. 2019, 2019, 7658052. [Google Scholar] [CrossRef] [PubMed]
- Moludi, J.; Alizadeh, M.; Lotfi Yagin, N.; Pasdar, Y.; Nachvak, S.M.; Abdollahzad, H.; Sadeghpour Tabaei, A. New Insights on Atherosclerosis: A Cross-Talk between Endocannabinoid Systems with Gut Microbiota. J. Cardiovasc. Thorac. Res. 2018, 10, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The Role of Inflammation in Irritable Bowel Syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.W.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, H.; Takeuchi, S.; Kubota, K.; Kobayashi, Y.; Kozakai, S.; Ukai, I.; Shichiku, A.; Okubo, M.; Numasaki, M.; Kanemitsu, Y.; et al. Lipopolysaccharide (LPS)-Binding Protein Stimulates CD14-Dependent Toll-like Receptor 4 Internalization and LPS-Induced TBK1–IKKϵ–IRF3 Axis Activation. J. Biol. Chem. 2018, 293, 10186–10201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasterkamp, G.; van Keulen, J.K.; de Kleijn, D.P.V. Role of Toll-like Receptor 4 in the Initiation and Progression of Atherosclerotic Disease. Eur. J. Clin. Investig. 2004, 34, 328–334. [Google Scholar] [CrossRef]
- Reid, G. Probiotics: Definition, Scope and Mechanisms of Action. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 17–25. [Google Scholar] [CrossRef]
- Villar-García, J.; Hernández, J.J.; Güerri-Fernández, R.; González, A.; Lerma, E.; Guelar, A.; Saenz, D.; Sorlí, L.; Montero, M.; Horcajada, J.P.; et al. Effect of Probiotics (Saccharomyces boulardii) on Microbial Translocation and Inflammation in HIV-Treated Patients. JAIDS J. Acquir. Immune Defic. Syndr. 2015, 68, 256–263. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V. Promotion of Epithelial Barrier Integrity via Probiotic-Derived Products. J. Pediatric Gastroenterol. Nutr. 2017, 64, 335–336. [Google Scholar] [CrossRef]
- Gulati, P.; Singh, N.; Muthuraman, A. Pharmacologic Evidence for Role of Endothelial Nitric Oxide Synthase in Neuroprotective Mechanism of Ischemic Postconditioning in Mice. J. Surg. Res. 2014, 188, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wernerman, J. Paradigm of Early Parenteral Nutrition Support in Combination with Insufficient Enteral Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 160–163. [Google Scholar] [CrossRef] [PubMed]
- de Brito-Ashurst, I.; Preiser, J.-C. Diarrhea in Critically Ill Patients. J. Parenter. Enter. Nutr. 2016, 40, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Early Enteral Nutrition to Prevent Stress Ulcer Bleeding in Elderly Patients with Severe Stroke. Chin. J. Pract. Nerv. Dis. 2017, 20, 50–52. [Google Scholar]
- Zhang, J.M. Application Effect of Prospective Visual Management in the Prevention of Early Enteral Nutrition Complications in Patients with Severe Stroke. Int. J. Nurs. 2017, 36, 433–436. [Google Scholar]
- Ritzel, R.M.; Lai, Y.-J.; Crapser, J.D.; Patel, A.R.; Schrecengost, A.; Grenier, J.M.; Mancini, N.S.; Patrizz, A.; Jellison, E.R.; Morales-Scheihing, D.; et al. Aging Alters the Immunological Response to Ischemic Stroke. Acta Neuropathol. 2018, 136, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-n-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, e002699. [Google Scholar] [CrossRef] [Green Version]
- Spychala, M.S.; Venna, V.R.; Jandzinski, M.; Doran, S.J.; Durgan, D.J.; Ganesh, B.P.; Ajami, N.J.; Putluri, N.; Graf, J.; Bryan, R.M.; et al. Age-Related Changes in the Gut Microbiota Influence Systemic Inflammation and Stroke Outcome. Ann. Neurol. 2018, 84, 23–36. [Google Scholar] [CrossRef]
- Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.-X.; Rey, F.; Wang, T.; et al. Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proc. Natl. Acad. Sci. USA 2013, 110, 4410–4415. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ojima, M.; Ogura, H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients 2021, 13, 2439. [Google Scholar] [CrossRef]
- Santos, M.; Shah, A.M. Alterations in Cardiac Structure and Function in Hypertension. Curr. Hypertens. Rep. 2014, 16, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 Mm Hg, 1990–2015. JAMA 2017, 317, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, S.F.; Scherrer, U.; Messerli, F.H. Secondary Arterial Hypertension: When, Who, and How to Screen? Eur. Heart J. 2014, 35, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report from the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Franczyk, B.; Banach, M.; Gluba-Brzozka, A. Hypertension—Current Natural Strategies to Lower Blood Pressure. Curr. Pharm. Des. 2017, 23, 2453–2461. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, B.P.; Nelson, J.W.; Eskew, J.R.; Ganesan, A.; Ajami, N.J.; Petrosino, J.F.; Bryan, R.M.; Durgan, D.J. Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension 2018, 72, 1141–1150. [Google Scholar] [CrossRef]
- Vasquez, E.C.; Meyrelles, S.S.; Gava, A.L.; Campagnaro, B.P.; Gil-Longo, J.; Campos-Toimil, M.; Pereira, T.M.C. Beneficial Effects of the Synbiotic Kefir on the Neural Control of Cardiovascular Function. J. Food Microbiol. 2018, 2, 25–33. [Google Scholar]
- Pimenta, F.S.; Luaces-Regueira, M.; Ton, A.M.; Campagnaro, B.P.; Campos-Toimil, M.; Pereira, T.M.; Vasquez, E.C. Mechanisms of Action of Kefir in Chronic Cardiovascular and Metabolic Diseases. Cell. Physiol. Biochem. 2018, 48, 1901–1914. [Google Scholar] [CrossRef]
- Friques, A.G.F.; Arpini, C.M.; Kalil, I.C.; Gava, A.L.; Leal, M.A.; Porto, M.L.; Nogueira, B.V.; Dias, A.T.; Andrade, T.U.; Pereira, T.M.C.; et al. Chronic Administration of the Probiotic Kefir Improves the Endothelial Function in Spontaneously Hypertensive Rats. J. Transl. Med. 2015, 13, 390. [Google Scholar] [CrossRef] [Green Version]
- Silva-Cutini, M.A.; Almeida, S.A.; Nascimento, A.M.; Abreu, G.R.; Bissoli, N.S.; Lenz, D.; Endringer, D.C.; Brasil, G.A.; Lima, E.M.; Biancardi, V.C.; et al. Long-Term Treatment with Kefir Probiotics Ameliorates Cardiac Function in Spontaneously Hypertensive Rats. J. Nutr. Biochem. 2019, 66, 79–85. [Google Scholar] [CrossRef]
- Brasil, G.A.; de Almeida Silva-Cutini, M.; de Souza Andrade Moraes, F.; de Melo Costa Pereira, T.; Vasquez, E.C.; Lenz, D.; Bissoli, N.S.; Endringer, D.C.; de Lima, E.M.; Biancardi, V.C.; et al. The Benefits of Soluble Non-Bacterial Fraction of Kefir on Blood Pressure and Cardiac Hypertrophy in Hypertensive Rats Are Mediated by an Increase in Baroreflex Sensitivity and Decrease in Angiotensin-Converting Enzyme Activity. Nutrition 2018, 51–52, 66–72. [Google Scholar] [CrossRef]
- Nakajima, K.; Hata, Y.; Osono, Y.; Hamura, M.; Kobayashi, S.; Watanuki, M. Antihypertensive Effect of Extracts of Lactobacillus Casei in Patients with Hypertension. J. Clin. Biochem. Nutr. 1995, 18, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Naruszewicz, M.; Johansson, M.-L.; Zapolska-Downar, D.; Bukowska, H. Effect of Lactobacillus Plantarum 299v on Cardiovascular Disease Risk Factors in Smokers. Am. J. Clin. Nutr. 2002, 76, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Brantsaeter, A.L.; Myhre, R.; Haugen, M.; Myking, S.; Sengpiel, V.; Magnus, P.; Jacobsson, B.; Meltzer, H.M. Intake of Probiotic Food and Risk of Preeclampsia in Primiparous Women: The Norwegian Mother and Child Cohort Study. Am. J. Epidemiol. 2011, 174, 807–815. [Google Scholar] [CrossRef]
- Hariri, M.; Salehi, R.; Feizi, A.; Mirlohi, M.; Ghiasvand, R.; Habibi, N. A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial on Probiotic Soy Milk and Soy Milk: Effects on Epigenetics and Oxidative Stress in Patients with Type II Diabetes. Genes Nutr. 2015, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Kassaian, N.; Aminorroaya, A.; Feizi, A.; Jafari, P.; Amini, M. The Effects of Probiotic and Synbiotic Supplementation on Metabolic Syndrome Indices in Adults at Risk of Type 2 Diabetes: Study Protocol for a Randomized Controlled Trial. Trials 2017, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalesi, S.; Sun, J.; Buys, N.; Jayasinghe, R. Effect of Probiotics on Blood Pressure. Hypertension 2014, 64, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Ravindran, K.; Kuebler, W.M. Novel Regulators of Endothelial Barrier Function. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 307, L924–L935. [Google Scholar] [CrossRef] [Green Version]
- Khaddaj Mallat, R.; Mathew John, C.; Kendrick, D.J.; Braun, A.P. The Vascular Endothelium: A Regulator of Arterial Tone and Interface for the Immune System. Crit. Rev. Clin. Lab. Sci. 2017, 54, 458–470. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, Q.; Thakur, A.; Alfred, M.O.; Chakraborty, M.; Ghosh, A.; Yu, X. Endothelial Dysfunction in Diabetes and Hypertension: Role of MicroRNAs and Long Non-Coding RNAs. Life Sci. 2018, 213, 258–268. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Zuo, L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int. J. Mol. Sci. 2015, 16, 27770–27780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Robles-Vera, I.; Toral, M.; Romero, M.; Jiménez, R.; Sánchez, M.; Pérez-Vizcaíno, F.; Duarte, J. Antihypertensive Effects of Probiotics. Curr. Hypertens. Rep. 2017, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.K.; Khodja, N.I.; Auger, C.; Alhosin, M.; Boehm, N.; Oswald-Mammosser, M.; Schini-Kerth, V.B. Probiotics (VSL#3) Prevent Endothelial Dysfunction in Rats with Portal Hypertension: Role of the Angiotensin System. PLoS ONE 2014, 9, e97458. [Google Scholar] [CrossRef]
- Cheng, C.-P.; Tsai, S.-W.; Chiu, C.P.; Pan, T.-M.; Tsai, T.-Y. The Effect of Probiotic-Fermented Soy Milk on Enhancing the NO-Mediated Vascular Relaxation Factors. J. Sci. Food Agric. 2012, 93, 1219–1225. [Google Scholar] [CrossRef]
- Malik, M.; Suboc, T.M.; Tyagi, S.; Salzman, N.; Wang, J.; Ying, R.; Tanner, M.J.; Kakarla, M.; Baker, J.E.; Widlansky, M.E. Lactobacillus Plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men with Stable Coronary Artery Disease. Circ. Res. 2018, 123, 1091–1102. [Google Scholar] [CrossRef]
- Tripolt, N.J.; Leber, B.; Blattl, D.; Eder, M.; Wonisch, W.; Scharnagl, H.; Stojakovic, T.; Obermayer-Pietsch, B.; Wascher, T.C.; Pieber, T.R.; et al. Short Communication: Effect of Supplementation with Lactobacillus Casei Shirota on Insulin Sensitivity, β-Cell Function, and Markers of Endothelial Function and Inflammation in Subjects with Metabolic Syndrome—A Pilot Study. J. Dairy Sci. 2013, 96, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Gui, T.; Shimokado, A.; Sun, Y.; Akasaka, T.; Muragaki, Y. Diverse Roles of Macrophages in Atherosclerosis: From Inflammatory Biology to Biomarker Discovery. Mediat. Inflamm. 2012, 2012, 693083. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic Atherosclerosis Is Associated with an Altered Gut Metagenome. Nat. Commun. 2012, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.-Y.; Wang, M.; Zhang, J.; Barve, S.S.; McClain, C.J.; Joshi-Barve, S. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability. Am. J. Pathol. 2017, 187, 2686–2697. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlidou, E.; Fasoulas, A.; Mantzorou, M.; Giaginis, C. Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 15898. https://doi.org/10.3390/ijms232415898
Pavlidou E, Fasoulas A, Mantzorou M, Giaginis C. Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease. International Journal of Molecular Sciences. 2022; 23(24):15898. https://doi.org/10.3390/ijms232415898
Chicago/Turabian StylePavlidou, Eleni, Aristeidis Fasoulas, Maria Mantzorou, and Constantinos Giaginis. 2022. "Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease" International Journal of Molecular Sciences 23, no. 24: 15898. https://doi.org/10.3390/ijms232415898
APA StylePavlidou, E., Fasoulas, A., Mantzorou, M., & Giaginis, C. (2022). Clinical Evidence on the Potential Beneficial Effects of Probiotics and Prebiotics in Cardiovascular Disease. International Journal of Molecular Sciences, 23(24), 15898. https://doi.org/10.3390/ijms232415898