Reducing Pre- and Post-Treatments in Cryopreservation Protocol and Testing Storage at −80 °C for Norway Spruce Embryogenic Cultures
Abstract
:1. Introduction
2. Results
2.1. Experiment I to Test ABA in the Pre-Treatment Media
2.2. Experiment II to Test Storage at −80 °C with Several Pre-Treatment and Slow-Cooling Methods
2.3. Experiment III to Test Reduction of Post-Thawing Treatments
2.4. Experiment IV to Test Modifications of Pre-Treatments
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Initiation and Proliferation of the SE Lines
4.3. Experimental Design
4.3.1. Experiment I to Test ABA in the Pre-Treatment Media
4.3.2. Experiment II to Test Storage at −80 °C
4.3.3. Experiment III to Test Reduction of Post-Thawing Treatments
4.3.4. Experiment IV to Test Modifications of Pre-Treatments
4.4. Maturation
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Forests and Energy; FAO Forestry Paper 154; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Bonga, J.M. Conifer clonal propagation in tree improvement programs. In Vegetative Propagation of Forest Trees; Park, Y.S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science: Seoul, Republic of Korea, 2006; pp. 3–31. [Google Scholar]
- Park, Y.S. Implementation of conifer somatic embryogenesis in clonal forestry: Technical requirements and deployment considerations. Ann. For. Sci. 2002, 59, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Sutton, B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann. For. Sci. 2002, 59, 657–661. [Google Scholar] [CrossRef]
- Denchev, P.; Grossnickle, C.S. Somatic embryogenesis for conifer seedling production. Reforesta 2019, 7, 109–137. [Google Scholar] [CrossRef]
- Högberg, K.A.; Varis, S. Vegetative propagation of Norway spruce: Experiences and present situation in Sweden and Finland. In Vegetative Propagation of Forest Trees; Park, Y.S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science: Seoul, Republic of Korea, 2016; pp. 358–550. [Google Scholar]
- Varis, S.; Ahola, S.; Jaakola, L.; Aronen, T. Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce. Cryobiology 2017, 76, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Tikkinen, M.; Varis, S.; Välimäki, S.; Nikkanen, T.; Aronen, T. Somatic embryogenesis of Norway spruce in Finland—Seven years from start to first commercial pilots. In Proceedings of the 5th international Conference of the IUFRO Unit 2.09.02 on “Clonal Trees in the Bioeconomy Age: Opportunities and Challenges”, Coimbra, Portugal, 10–15 September 2018. [Google Scholar]
- Ivetic, V.; Devetaković, J.; Nonic, M.; Stanković, D.; Šijačić-Nikolić, M. Genetic diversity and forest reproductive material-from seed source selection to planting. iForest-Biogeosci. For. 2016, 9, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Timmis, R.; Timmis, K.A.; Carlson, W.C.; Welty, E.D.E. Somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii). In Somatic Embryogenesis in Woody Plants—Gymnosperms; Jain, S.M., Gupta, P.K., Newton, R.J., Eds.; Kluwer: Dordrecht, The Netherlands, 1995; Volume 3, pp. 303–313. [Google Scholar]
- Engelmann, F. Cryopreservation: Progress and prospects. In Vitro Cell. Dev. Biol. Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Cyr, D.; Lazaroff, W.; Grimes, S.; Quan, G.; Bethune, T.; Dunstan, D.; Roberts, D. Cryopreservation of interior spruce (Picea glauca–engelmanni complex) embryogenic cultures. Plant Cell Rep. 1994, 13, 574–577. [Google Scholar] [CrossRef]
- Find, J.I.; Kristensen, M.M.; Nørgaard, J.V.; Krogstrup, P. Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway Spruce and Sitka spruce. Plant Cell Tissue Organ Cult. 1998, 53, 27–33. [Google Scholar] [CrossRef]
- Kartha, K.K.; Fowke, L.C.; Leung, N.L.; Caswell, K.L.; Hakman, I. Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 1988, 132, 529–539. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Ward, C.; Cheliak, W.M. Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix×eurolepis) and black spruce (Picea mariana). J. Exp. Bot. 1992, 43, 73–79. [Google Scholar] [CrossRef]
- Nørgaard, J.V.; Duran, V.; Johnsen, Ø.; Krostrup, P.; Baldursson, S.; von Arnold, S. Variations in cryotolerance of embryogenic Picea abies cell lines and the association to genetic, morphological and physiological factors. Can. J. For. Res. 1993, 23, 2560–2567. [Google Scholar] [CrossRef]
- Gale, S.; John, A.; Harding, K.; Benson, E.E. Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: A comparison of vitrification protocols. CryoLetters 2008, 29, 135–144. [Google Scholar] [PubMed]
- Touchell, D.; Chiang, V.; Tsai, C.-J. Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep. 2002, 21, 118–124. [Google Scholar]
- Hazubska-Przybył, T.; Chmielarz, P.; Michalak, M.; Bojarczuk, K. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). PCTOC 2010, 102, 35–44. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Chmielarz, P.; Michalak, M.; Dering, M.; Bojarczuk, K. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. PCTOC 2013, 113, 303–313. [Google Scholar] [CrossRef]
- Kong, L.; von Aderkas, P. A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. PCTOC 2011, 106, 115–125. [Google Scholar] [CrossRef]
- Bomal, C.; Tremblay, F.-M. Dried cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann. Bot. 2000, 86, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Percy, R.E.; Livingston, N.J.; Moran, J.A.; Von Aderkas, P. Desiccation, cryopreservation and water relations parameters of white spruce (Picea glauca) and interior spruce (Picea glauca× engelmannii complex) somatic embryos. Tree Physiol. 2001, 21, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Durzan, D.J.; Finkle, B.J. Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can. J. For. Res. 1987, 17, 1130–1134. [Google Scholar] [CrossRef]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Montalbán, I.A.; Moncaleán, P. Long term conservation at −80 °C of Pinus radiata embryogenic cell lines: Recovery, maturation and germination. CryoLetters 2017, 38, 202–209. [Google Scholar]
- Klimaszewska, K.; Noceda, C.; Pelletier, G.; Label, P.; Rodriguez, R.; Lelu-Walter, M.A. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell. Dev. Biol.-Plant 2009, 45, 20–33. [Google Scholar] [CrossRef]
- Ren, L.; Wang, M.R.; Wang, Q.C. ROS-induced oxidative stress in plant cryopreservation: Occurrence and alleviation. Planta 2021, 254, 124. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.Y.Y.; Bräutigam, K.; Hüner, N.P.; Ensminger, I. Champions of winter survival: Cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist 2021, 229, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Liu, M.; Jiang, F.; Zhou, R.; Bai, Y.; Wei, H.; Zhang, D.; Wei, J.; Wu, Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. Plant Cell Rep. 2022, 41, 1955–1973. [Google Scholar] [CrossRef] [PubMed]
- Edesi, J.; Tolonen, J.; Ruotsalainen, A.L.; Aspi, J.; Häggman, H. Cryopreservation enables long-term conservation of critically endangered species Rubus humulifolius. Biodivers. Conserv. 2020, 29, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Högberg, K.A.; Bozhkov, P.V.; Grönroos, R.; Arnold, S.V. Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies. Scand. J. For. Res. 2001, 16, 295–304. [Google Scholar] [CrossRef]
- Rigault, P.; Boyle, B.; Lepage, P.; Cooke, J.E.; Bousquet, J.; MacKay, J.J. A white spruce gene catalog for conifer genome analyses. Plant Physiol. 2011, 157, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.E.; Holliday, J.A.; Yuen, M.; Nguyen, A.; Aitken, S.N.; Bohlmann, J. Sequencing of Sitka spruce (Picea sitchensis) cDNA libraries constructed from autumn buds and foliage reveals autumn-specific spruce transcripts. Tree Genet. Genomes 2013, 9, 683–691. [Google Scholar] [CrossRef]
- Ćalić, D.; Milojević, J.; Belić, M.; Miletić, R.; Zdravković-Korać, S. Impact of storage temperature on pollen viability and germinability of four Serbian autochthon apple cultivars. Front. Plant Sci. 2021, 12, 709231. [Google Scholar] [CrossRef] [PubMed]
- Fayos, O.; Echávarri, B.; Vallés, M.P.; Mallor, C.; Garcés-Claver, A.; Castillo, A.M. A simple and efficient method for onion pollen preservation: Germination, dehydration, storage conditions, and seed production. Sci. Hortic. 2022, 305, 111358. [Google Scholar] [CrossRef]
- Yang, H.; Huo, Y.; Yee, J.C.; Yarish, C. Germplasm cryopreservation of macroalgae for aquaculture breeding and natural resource conservation: A review. Aquaculture 2021, 544, 737037. [Google Scholar] [CrossRef]
- Välimäki, S.; Hazubska-Przybył, T.; Ratajczak, E.; Tikkinen, M.; Varis, S.; Aronen, T. Somatic embryo yield and quality from Norway spruce embryogenic tissue proliferated in suspension culture. Front. Plant Sci. 2021, 12, 791549. [Google Scholar] [CrossRef]
- Häggman, H.M.; Ryynänen, L.A.; Aronen, T.S.; Krajnakova, J. Cryopreservation of embryogenic cultures of Scots pine. PCTOC 1998, 54, 45–53. [Google Scholar] [CrossRef]
- Latutrie, M.; Aronen, T. Long-term cryopreservation of embryogenic Pinus sylvestris cultures. Scand. J. For. Res. 2013, 28, 103–109. [Google Scholar] [CrossRef]
- Aronen, T.S.; Krajnakova, J.; Häggman, H.M.; Ryynänen, L.A. Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci. 1999, 142, 163–172. [Google Scholar] [CrossRef]
- Krajňáková, J.; Sutela, S.; Aronen, T.; Gömöry, D.; Vianello, A.; Häggman, H. Long-term cryopreservation of Greek fir embryogenic cell lines: Recovery, maturation and genetic fidelity. Cryobiology 2011, 63, 17–25. [Google Scholar] [CrossRef]
- Percy, R.E.; Klimaszewska, K.; Cyr, D.R. Evaluation of somatic embryogenesis for clonal propagation of western white pine. Can. J. For. Res. 2000, 30, 1867–1876. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Bernier-Cardou, M.; Klimaszewska, K. Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster. Plant Cell Rep. 2006, 25, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Salaj, T.; Matušíková, I.; Fráterová, L.; Piršelová, B.; Salaj, J. Regrowth of embryogenic tissues of Pinus nigra following cryopreservation. PCTOC 2011, 106, 55–61. [Google Scholar] [CrossRef]
- Ulrich, J.N.; Finkle, B.J.; Moore, P.H.; Ginoza, H. Effect of mixture of cryoprotectants in attaining liquid nitrogen survival of callus cultures of tropical plant. Cryobiology 1979, 16, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Finkle, B.J.; Zavala, M.E.; Ulrich, J.M. Cryoprotective compounds in the freezing of plant tissues. In Cryopreservation of Plant Cells and Organs; Kartha, K.K., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 75–113. [Google Scholar]
- Litvay, J.D.; Verma, D.C.; Johnson, M.A. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 1985, 4, 325–328. [Google Scholar] [CrossRef] [PubMed]
SE Line | Regenerated Samples | Embryos/g FW | ||
---|---|---|---|---|
ABA | Control | ABA | Control | |
3006 | 0 | 2 | ||
3128 | 0 | 2 | ||
3301 | 0 | 0 | ||
4310 | 2 | 3 | 151.76 ± 8.88 | 165.76 ± 15.53 |
5852 | 2 | 3 | 1.90 ± 1.90 | 0 |
4611 | 3 | 3 | 18.29 ± 10.88 | 0 |
4934 | 2 | 2 | ||
6375 | 3 | 3 | 12.82 ± 4.87 | 27.54 ± 1.72 |
9130 | 3 | 3 | 98.51 ± 8.33 | 115.46 ± 36.48 |
Total | 15 | 21 | 56.66 ± 15.94 | 61.72 ± 19.14 |
SE Line | 0.2 M and 0.1 M Sucrose | 0.1 M Sucrose | 0.03 M Sucrose | ||||||
---|---|---|---|---|---|---|---|---|---|
Growing | Slow Growing | Dead | Growing | Slow Growing | Dead | Growing | Slow Growing | Dead | |
655 | 3 | 3 | 3 | ||||||
809 | 3 | 3 | 2 | 1 | |||||
1037 | 3 | 3 | 3 | ||||||
1046 | 3 | 2 | 1 | 2 | 1 | ||||
1082 | 3 | 3 | 1 | 2 | |||||
1119 * | 3 | 2 | 1 | ||||||
1129 * | 3 | 3 | |||||||
1130 | 3 | 2 | 1 | 3 | |||||
2851 | 3 | 3 | 3 | ||||||
4262 | 3 | 3 | 3 | ||||||
5111 | 3 | 3 | 3 | ||||||
5129 | 3 | 3 | 3 | ||||||
Total | 9 | 18 | 9 | 18 | 9 | 9 | 11 | 4 | 15 |
SE Line | Embryos/g FW | ||
---|---|---|---|
0.2 M and 0.1 M Sucrose | 0.1 M Sucrose | 0.03 M Sucrose | |
655 | 155.84 ± 4,00 | 122.39 ± 17.18 | 307.50 ± 13.07 |
809 | 249.90 ± 78.09 | 345.15 ± 19.23 | 258.41 ± 97.28 |
1037 | 0.72 ± 0.72 | 1.45 ± 1.45 | 0.73 ± 0.73 |
1046 | 87.43 ± 13.27 | 67.03 ± 9.59 | 88.34 ± 31.25 |
1082 | 171.14 ± 47.84 | 116.35 ± 11.55 | 128.38 ± 31.35 |
Total | 133.01 ±27.35 | 130.47 ± 31.35 | 156.67 ± 35.07 |
SE Line | 0.1 M and 0.2 M Sucrose and PEG6000 | 0.2 M Sucrose and PEG6000 | 0.1 M and 0.2 M Sucrose and PEG4000 | ||||||
---|---|---|---|---|---|---|---|---|---|
Growing | Slow Growing | Dead | Growing | Slow Growing | Dead | Growing | Slow Growing | Dead | |
809 | 3 | 3 | 3 | ||||||
894 | 2 | 1 | 1 | 2 | 1 | 2 | |||
1037 | 3 | 3 | 3 | ||||||
1041 | 3 | 2 | 1 | 2 | 1 | ||||
1046 | 2 | 1 | 3 | 3 | |||||
1050 | 2 | 1 | 1 | 1 | 1 | 3 | |||
1082 | 3 | 3 | 3 | ||||||
1083 | 3 | 3 | 3 | ||||||
1119 | 3 | 2 | 1 | 3 | |||||
1129 | 3 | 3 | 3 | ||||||
1130 | 3 | 3 | 3 | ||||||
Total | 27 | 1 | 5 | 24 | 3 | 6 | 20 | 2 | 11 |
SE Line | Embryos/g FW | ||
---|---|---|---|
0.1 M and 0.2 M Sucrose and PEG6000 | 0.2 M Sucrose and PEG6000 | 0.1 M and 0.2 M Sucrose and PEG4000 | |
809 | 134.39 ± 8.70 | 100.23 ± 28.80 | 83.16 ± 54.49 |
1041 | 52.73 ± 8.03 | 41.12 ± 27.04 | 50.82 ± 9.45 |
1082 | 64.73 ± 7.24 | 165.99 ± 45.13 | 36.83 ± 7.47 |
1083 | 110.96 ± 78.06 | 61.01 ± 28.36 | 67.59 ± 21.01 |
1119 | 11.01 ± 2.24 | 2.19 ± 2.19 | 15.06 ± 8.71 |
1129 | 0.21 ± 0.21 | 0 | 15.11 ± 8.68 |
Total | 62.34 ± 16.19 | 61.76 ± 16.85 | 44.76 ± 10.51 |
Experiment | SE Line | Initiation Year | Origin | Embryos/g FW before Experiment |
---|---|---|---|---|
I | 3006 | 2012 | E2515 × K805 | 206 |
I | 3128 | 2012 | E2853 × E231 | 78 |
I | 3301 | 2012 | E329 × E2089 | 60 |
I | 4310 | 2012 | E2853 × E330 | 327 |
I | 5852 | 2012 | K264 × E330 | 0 |
I | 4611 | 2012 | K264 × E231 | 40 |
I | 4934 | 2012 | E318 × E231 | 4 |
I | 6375 | 2012 | E318 × K805 | 12 |
I | 9130 | 2012 | E329 × K805 | 61 |
II | 290 | 2014 | E162 × E81 | 4 |
II | 1048 | 2020 | Open-pollinated Pa f. condensata | 0 |
II, III *, IV * | 809 | 2020 | Open-pollinated Pa f. globosa | 418 |
II, III *, IV * | 1037 | 2020 | Open-pollinated Pa f. condensata | 0 |
II, III *, IV * | 1046 | 2020 | Open-pollinated Pa f. condensata | 198 |
II, III *, IV * | 1082 | 2020 | Open-pollinated Pa f. condensata | 223 |
II, III *, IV * | 1119 | 2020 | Open-pollinated Pa f. condensata | 0 |
II, III *, IV * | 1129 | 2020 | Open-pollinated Pa f. condensata | 0 |
II *, IV ** | 1041 | 2014 | E207 × E1373 | 42 |
II *, IV ** | 1050 | 2014 | E207 × E1373 | 75 |
II, IV * | 894 | 2020 | Open-pollinated Pa f. globosa | 15 |
II, IV * | 1083 | 2020 | Open-pollinated Pa f. condensata | 102 |
II, IV * | 1130 | 2020 | Open-pollinated Pa f. condensata | 11 |
III **** | 655 | 2014 | E18 × E436 | 330 |
III *** | 1130 | 2014 | E207 × E1373 | 191 |
III **** | 2851 | 2014 | E46 × E3222 | 405 |
III *** | 4262 | 2014 | E9 × E3231 | 310 |
III *** | 5111 | 2014 | E799 × E1366 | 106 |
III *** | 5129 | 2014 | E799 × E1366 | 307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varis, S.A.; Virta, S.; Montalbán, I.A.; Aronen, T. Reducing Pre- and Post-Treatments in Cryopreservation Protocol and Testing Storage at −80 °C for Norway Spruce Embryogenic Cultures. Int. J. Mol. Sci. 2022, 23, 15516. https://doi.org/10.3390/ijms232415516
Varis SA, Virta S, Montalbán IA, Aronen T. Reducing Pre- and Post-Treatments in Cryopreservation Protocol and Testing Storage at −80 °C for Norway Spruce Embryogenic Cultures. International Journal of Molecular Sciences. 2022; 23(24):15516. https://doi.org/10.3390/ijms232415516
Chicago/Turabian StyleVaris, Saila A., Susanna Virta, Itziar A. Montalbán, and Tuija Aronen. 2022. "Reducing Pre- and Post-Treatments in Cryopreservation Protocol and Testing Storage at −80 °C for Norway Spruce Embryogenic Cultures" International Journal of Molecular Sciences 23, no. 24: 15516. https://doi.org/10.3390/ijms232415516
APA StyleVaris, S. A., Virta, S., Montalbán, I. A., & Aronen, T. (2022). Reducing Pre- and Post-Treatments in Cryopreservation Protocol and Testing Storage at −80 °C for Norway Spruce Embryogenic Cultures. International Journal of Molecular Sciences, 23(24), 15516. https://doi.org/10.3390/ijms232415516