Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy
Abstract
:1. Introduction
2. Results
2.1. Overall Assessment
2.2. Weight Distribution
2.3. Support Surface
3. Discussion
3.1. Oxytocin Disturbs Some Locomotor Parameters in Animals Subjected to Unilateral Vestibular Neurectomy
3.2. Oxytocin Induces a Change in Postural Strategy in Animals Subjected to Unilateral Vestibular Neurectomy
3.3. Oxytocin Delays Vestibular Compensation?
4. Materials and Methods
4.1. Animals
4.2. Unilateral Vestibular Neurectomy
4.3. Study Design
4.4. Criteria for Exclusion
- -
- A loss of body weight equal to more than 20% of the preoperative value.
- -
- If the facial nerve had been sectioned.
- -
- Abnormalities in behavioral scoring, i.e., the inability of the animal to stand on all four paws after 5 days post-UVN, convulsions, hemiataxia, etc.
4.5. Qualitative Assessment of the Vestibular Syndrome
- -
- Tail hanging behavior: animals were picked up from the ground at the base of the tail, and body rotation was scored from 0 points (no rotation) to 3 points (several rotations of 360°).
- -
- Landing reflex: after the animals were picked up from the ground at the base of the tail, we scored the first 3 landings from 0 (presence of a landing reflex on the 3 landings) to 3 points (absence of landing reflex on the 3 landings). When lifted by the tail, the control rats exhibited a landing reflex consisting of a forelimb extension that allowed them to land successfully (i.e., they landed on all four legs). The rats with impaired vestibular function do not exhibit a forelimb extension, spin or bend ventrally, sometimes “crawling” up toward their tails, causing them to miss their landings.
- -
- Rearing: the ability of the rat to rear was scored from 0 points (rearing is observed) to 1 point (rearing is absent).
- -
- Grooming: the ability of the rat to groom correctly was scored as follows: 0 points (correct grooming of full body), 1 point (grooming of the face, belly, and flanks but not the base of the tail), 2 points (grooming of the face and belly), 3 points (grooming of the face), 4 points (inability of the animal to groom itself).
- -
- Displacement: the quality of the displacement of the rat was scored from 0 (displacement of the rat with no visible deficit) to 3 points (several deficits in the displacement of the rat).
- -
- Head tilt was scored by estimating the angle between the jaw plane and the horizontal from 0 points (absence of a head tilt) to 3 points (for a 90° angle).
- -
- Barrel rolling was scored as follows: 0 points (absence of barrel rolling), 1 point (barrel rolling evoked by an acceleration in the vertical axis of the rat in our hand), and 2 points (spontaneous barrel rolling).
- -
- Retropulsion characterizing backward movements was scored from 0 (absence of retropulsion) to 1 point (presence of retropulsion).
- -
- Circling was scored from 0 points (absence of circling behavior) to 1 point (presence of circling behavior).
- -
- Bobbing was related to rapid head tilts to the side and was scored from 0 points (absence of bobbing) to 1 point (presence of bobbing).
4.6. Body Weight Distribution
4.7. Support Surface
4.8. Open Field Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lacour, M.; Helmchen, C.; Vidal, P.-P. Vestibular Compensation: The Neuro-Otologist’s Best Friend. J. Neurol. 2016, 263, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.F.; Curthoys, I.S. Mechanisms of Recovery Following Unilateral Labyrinthectomy: A Review. Brain Res. Rev. 1989, 14, 155–180. [Google Scholar] [CrossRef] [PubMed]
- Darlington, C.L.; Dutia, M.B.; Smith, P.F. The Contribution of the Intrinsic Excitability of Vestibular Nucleus Neurons to Recovery from Vestibular Damage: Recovery from Vestibular Damage: Role of Vestibular Nucleus. Eur. J. Neurosci. 2002, 15, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Ris, L.; de Waele, C.; Serafin, M.; Vidal, P.P.; Godaux, E. Neuronal Activity in the Ipsilateral Vestibular Nucleus Following Unilateral Labyrinthectomy in the Alert Guinea Pig. J. Neurophysiol. 1995, 74, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, S.; Watabe, I.; Sadlaoud, K.; Tonetto, A.; Tighilet, B. BDNF Signaling Promotes Vestibular Compensation by Increasing Neurogenesis and Remodeling the Expression of Potassium-Chloride Cotransporter KCC2 and GABAA Receptor in the Vestibular Nuclei. J. Neurosci. 2016, 36, 6199–6212. [Google Scholar] [CrossRef] [Green Version]
- Rastoldo, G.; Marouane, E.; El-Mahmoudi, N.; Péricat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; López-Juárez, A.; El-Ahmadi, A.; Caron, P.; et al. L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022, 11, 684. [Google Scholar] [CrossRef]
- Rastoldo, G.; El Mahmoudi, N.; Marouane, E.; Pericat, D.; Watabe, I.; Toneto, A.; López-Juárez, A.; Chabbert, C.; Tighilet, B. Adult and Endemic Neurogenesis in the Vestibular Nuclei after Unilateral Vestibular Neurectomy. Prog. Neurobiol. 2021, 196, 101899. [Google Scholar] [CrossRef]
- Leonzino, M.; Busnelli, M.; Antonucci, F.; Verderio, C.; Mazzanti, M.; Chini, B. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2. Cell Rep. 2016, 15, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; et al. Oxytocin-Mediated GABA Inhibition During Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science 2014, 343, 675–679. [Google Scholar] [CrossRef]
- Tyzio, R.; Cossart, R.; Khalilov, I.; Minlebaev, M.; Hübner, C.A.; Represa, A.; Ben-Ari, Y.; Khazipov, R. Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain during Delivery. Science 2006, 314, 1788–1792. [Google Scholar] [CrossRef]
- Ben-Ari, Y.; Khalilov, I.; Kahle, K.T.; Cherubini, E. The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders. Neuroscientist 2012, 18, 467–486. [Google Scholar] [CrossRef]
- Rivera, C.; Voipio, J.; Payne, J.A.; Ruusuvuori, E.; Lahtinen, H.; Lamsa, K.; Pirvola, U.; Saarma, M.; Kaila, K. The K+/Cl− Co-Transporter KCC2 Renders GABA Hyperpolarizing during Neuronal Maturation. Nature 1999, 397, 251–255. [Google Scholar] [CrossRef]
- Stil, A.; Liabeuf, S.; Jean-Xavier, C.; Brocard, C.; Viemari, J.-C.; Vinay, L. Developmental Up-Regulation of the Potassium–Chloride Cotransporter Type 2 in the Rat Lumbar Spinal Cord. Neuroscience 2009, 164, 809–821. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory Actions of Gaba during Development: The Nature of the Nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef]
- Owens, D.F.; Kriegstein, A.R. Is There More to Gaba than Synaptic Inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef]
- Juif, P.-E.; Breton, J.-D.; Rajalu, M.; Charlet, A.; Goumon, Y.; Poisbeau, P. Long-Lasting Spinal Oxytocin Analgesia Is Ensured by the Stimulation of Allopregnanolone Synthesis Which Potentiates GABAA Receptor-Mediated Synaptic Inhibition. J. Neurosci. 2013, 33, 16617–16626. [Google Scholar] [CrossRef] [Green Version]
- Gliddon, C.; Darlington, C.; Smith, P. GABAergic Systems in the Vestibular Nucleus and Their Contribution to Vestibular Compensation. Prog. Neurobiol. 2005, 75, 53–81. [Google Scholar] [CrossRef]
- Gould, B.R.; Zingg, H.H. Mapping Oxytocin Receptor Gene Expression in the Mouse Brain and Mammary Gland Using an Oxytocin Receptor-LacZ Reporter Mouse. Neuroscience 2003, 122, 155–167. [Google Scholar] [CrossRef]
- Russell, J.A.; Brunton, P.J. Oxytocin: Control of Secretion by the Brain and Central Roles. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12809-324-5. [Google Scholar]
- Rastoldo, G.; Marouane, E.; El Mahmoudi, N.; Péricat, D.; Bourdet, A.; Timon-David, E.; Dumas, O.; Chabbert, C.; Tighilet, B. Quantitative Evaluation of a New Posturo-Locomotor Phenotype in a Rodent Model of Acute Unilateral Vestibulopathy. Front. Neurol. 2020, 11, 505. [Google Scholar] [CrossRef]
- Marouane, E.; Rastoldo, G.; El Mahmoudi, N.; Péricat, D.; Chabbert, C.; Artzner, V.; Tighilet, B. Identification of New Biomarkers of Posturo-Locomotor Instability in a Rodent Model of Vestibular Pathology. Front. Neurol. 2020, 11, 470. [Google Scholar] [CrossRef]
- Tighilet, B.; Péricat, D.; Frelat, A.; Cazals, Y.; Rastoldo, G.; Boyer, F.; Dumas, O.; Chabbert, C. Adjustment of the Dynamic Weight Distribution as a Sensitive Parameter for Diagnosis of Postural Alteration in a Rodent Model of Vestibular Deficit. PLoS ONE 2017, 12, e0187472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, D.S.; Cornish, J.L.; Guastella, A.J.; Hunt, G.E.; McGregor, I.S. Oxytocin Decreases Methamphetamine Self-Administration, Methamphetamine Hyperactivity, and Relapse to Methamphetamine-Seeking Behaviour in Rats. Neuropharmacology 2010, 58, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.-C.; Zhou, L.; Ghee, S.M.; See, R.E.; Reichel, C.M. Oxytocin Decreases Cocaine Taking, Cocaine Seeking, and Locomotor Activity in Female Rats. Exp. Clin. Psychopharmacol. 2016, 24, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kovàcs, G.L.; Sarnyai, Z.; Barbarczi, E.; Szabó, G.; Telegdy, G. The Role of Oxytocin-Dopamine Interactions in Cocaine-Induced Locomotor Hyperactivity. Neuropharmacology 1990, 29, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yang, J.-Y.; Song, M.; Li, Y.; Wang, F.; Wu, C.-F. Inhibition by Oxytocin of Methamphetamine-Induced Hyperactivity Related to Dopamine Turnover in the Mesolimbic Region in Mice. Naunyn. Schmiedebergs. Arch. Pharmacol. 2008, 376, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Giardino, L.; Zanni, M.; Pignataro, O. DA1 and DA2 Receptor Regulation in the Striatum of Young and Old Rats after Peripheral Vestibular Lesion. Brain Res. 1996, 736, 111–117. [Google Scholar] [CrossRef]
- Leong, A.T.L.; Gu, Y.; Chan, Y.-S.; Zheng, H.; Dong, C.M.; Chan, R.W.; Wang, X.; Liu, Y.; Tan, L.H.; Wu, E.X. Optogenetic FMRI Interrogation of Brain-Wide Central Vestibular Pathways. Proc. Natl. Acad. Sci. USA 2019, 116, 10122–10129. [Google Scholar] [CrossRef] [Green Version]
- Rancz, E.A.; Moya, J.; Drawitsch, F.; Brichta, A.M.; Canals, S.; Margrie, T.W. Widespread Vestibular Activation of the Rodent Cortex. J. Neurosci. 2015, 35, 5926–5934. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.F. Vestibular Functions and Parkinson’s Disease. Front. Neurol. 2018, 9, 1085. [Google Scholar] [CrossRef] [Green Version]
- Stiles, L.; Zheng, Y.; Smith, P.F. The Effects of Electrical Stimulation of the Peripheral Vestibular System on Neurochemical Release in the Rat Striatum. PLoS ONE 2018, 13, e0205869. [Google Scholar] [CrossRef]
- Smith, P.F. Recent Developments in the Understanding of the Interactions between the Vestibular System, Memory, the Hippocampus, and the Striatum. Front. Neurol. 2022, 13, 986302. [Google Scholar] [CrossRef]
- Eugène, D.; Deforges, S.; Vibert, N.; Vidal, P.-P. Vestibular Critical Period, Maturation of Central Vestibular Neurons, and Locomotor Control. Ann. N. Y. Acad. Sci. 2009, 1164, 180–187. [Google Scholar] [CrossRef]
- Richter, A.; Ebert, U.; Nobrega, J.N.; Vallbacka, J.J.; Fedrowitz, M.; Löscher, W. Immunohistochemical and Neurochemical Studies on Nigral and Striatal Functions in the Circling (Ci) Rat, a Genetic Animal Model with Spontaneous Rotational Behavior. Neuroscience 1999, 89, 461–471. [Google Scholar] [CrossRef]
- Schirmer, M.; Lessenich, A.; Lindemann, S.; Löscher, W. Marked Differences in Response to Dopamine Receptor Antagonism in Two Rat Mutants, Ci2 and Ci3, with Lateralized Rotational Behavior. Behav. Brain Res. 2007, 180, 218–225. [Google Scholar] [CrossRef]
- Stiles, L.; Smith, P.F. The Vestibular-Basal Ganglia Connection: Balancing Motor Control. Brain Res. 2015, 1597, 180–188. [Google Scholar] [CrossRef]
- Keverne, E.B.; Curley, J.P. Vasopressin, Oxytocin and Social Behaviour. Curr. Opin. Neurobiol. 2004, 14, 777–783. [Google Scholar] [CrossRef]
- Wolfe, M.; Wisniewska, H.; Tariga, H.; Ibanez, G.; Collins, J.C.; Wisniewski, K.; Qi, S.; Srinivasan, K.; Hargrove, D.; Lindstrom, B.F. Selective and Non-Selective OT Receptor Agonists Induce Different Locomotor Behaviors in Male Rats via Central OT Receptors and Peripheral V1a Receptors. Neuropeptides 2018, 70, 64–75. [Google Scholar] [CrossRef]
- Marouane, E.; El Mahmoudi, N.; Rastoldo, G.; Péricat, D.; Watabe, I.; Lapôtre, A.; Tonetto, A.; Xavier, F.; Dumas, O.; Chabbert, C.; et al. Sensorimotor Rehabilitation Promotes Vestibular Compensation in a Rodent Model of Acute Peripheral Vestibulopathy by Promoting Microgliogenesis in the Deafferented Vestibular Nuclei. Cells 2021, 10, 3377. [Google Scholar] [CrossRef]
- Ba, X.; Ran, C.; Guo, W.; Guo, J.; Zeng, Q.; Liu, T.; Sun, W.; Xiao, L.; Xiong, D.; Huang, Y.; et al. Three-Day Continuous Oxytocin Infusion Attenuates Thermal and Mechanical Nociception by Rescuing Neuronal Chloride Homeostasis via Upregulation KCC2 Expression and Function. Front. Pharm. 2022, 13, 845018. [Google Scholar] [CrossRef]
- Péricat, D.; Farina, A.; Agavnian-Couquiaud, E.; Chabbert, C.; Tighilet, B. Complete and Irreversible Unilateral Vestibular Loss: A Novel Rat Model of Vestibular Pathology. J. Neurosci. Methods 2017, 283, 83–91. [Google Scholar] [CrossRef]
- Facchini, J.; Rastoldo, G.; Xerri, C.; Péricat, D.; El Ahmadi, A.; Tighilet, B.; Zennou-Azogui, Y. Unilateral Vestibular Neurectomy Induces a Remodeling of Somatosensory Cortical Maps. Prog. Neurobiol. 2021, 205, 102119. [Google Scholar] [CrossRef] [PubMed]
- Boadas-Vaello, P.; Riera, J.; Llorens, J. Behavioral and Pathological Effects in the Rat Define Two Groups of Neurotoxic Nitriles. Toxicol. Sci. 2005, 88, 456–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardisty-Hughes, R.E.; Parker, A.; Brown, S.D.M. A Hearing and Vestibular Phenotyping Pipeline to Identify Mouse Mutants with Hearing Impairment. Nat. Protoc. 2010, 5, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Liberge, M.; Manrique, C.; Bernard-Demanze, L.; Lacour, M. Changes in TNFα, NFκB and MnSOD Protein in the Vestibular Nuclei after Unilateral Vestibular Deafferentation. J. Neuroinflammat. 2010, 7, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukas, M.; Toth, I.; Reber, S.O.; Slattery, D.A.; Veenema, A.H.; Neumann, I.D. The Neuropeptide Oxytocin Facilitates Pro-Social Behavior and Prevents Social Avoidance in Rats and Mice. Neuropsychopharmacology 2011, 36, 2159–2168. [Google Scholar] [CrossRef]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef] [Green Version]
- Windle, R.J.; Kershaw, Y.M.; Shanks, N.; Wood, S.A.; Lightman, S.L.; Ingram, C.D. Oxytocin Attenuates Stress-Induced c-Fos MRNA Expression in Specific Forebrain Regions Associated with Modulation of Hypothalamo-Pituitary-Adrenal Activity. J. Neurosci. 2004, 24, 2974–2982. [Google Scholar] [CrossRef] [Green Version]
- Staab, J.P. Functional and Psychiatric Vestibular Disorders. Handb. Clin. Neurol. 2016, 137, 341–351. [Google Scholar] [CrossRef]
- Lacroix, E.; Deggouj, N.; Edwards, M.G.; Van Cutsem, J.; Van Puyvelde, M.; Pattyn, N. The Cognitive-Vestibular Compensation Hypothesis: How Cognitive Impairments Might Be the Cost of Coping With Compensation. Front. Hum. Neurosci. 2021, 15, 732974. [Google Scholar] [CrossRef]
- Popkirov, S.; Staab, J.P.; Stone, J. Persistent Postural-Perceptual Dizziness (PPPD): A Common, Characteristic and Treatable Cause of Chronic Dizziness. Pr. Neurol. 2018, 18, 5–13. [Google Scholar] [CrossRef]
- Waterston, J.; Chen, L.; Mahony, K.; Gencarelli, J.; Stuart, G. Persistent Postural-Perceptual Dizziness: Precipitating Conditions, Co-Morbidities and Treatment With Cognitive Behavioral Therapy. Front. Neurol. 2021, 12, 795516. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastoldo, G.; Marouane, E.; El-Mahmoudi, N.; Péricat, D.; Tighilet, B. Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. Int. J. Mol. Sci. 2022, 23, 15262. https://doi.org/10.3390/ijms232315262
Rastoldo G, Marouane E, El-Mahmoudi N, Péricat D, Tighilet B. Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. International Journal of Molecular Sciences. 2022; 23(23):15262. https://doi.org/10.3390/ijms232315262
Chicago/Turabian StyleRastoldo, Guillaume, Emna Marouane, Nada El-Mahmoudi, David Péricat, and Brahim Tighilet. 2022. "Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy" International Journal of Molecular Sciences 23, no. 23: 15262. https://doi.org/10.3390/ijms232315262
APA StyleRastoldo, G., Marouane, E., El-Mahmoudi, N., Péricat, D., & Tighilet, B. (2022). Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. International Journal of Molecular Sciences, 23(23), 15262. https://doi.org/10.3390/ijms232315262