Synthesis of Co3O4 Nanoparticles-Decorated Bi12O17Cl2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural, Morphological, and Elemental Analyses
2.2. Photocatalytic Performance
2.3. Analysis of Enhanced Photocatalytic Activity of Co3O4/BOC
2.4. Interfacial Charge Transfer Behavior and Photocatalytic Reaction Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Co3O4 Nanoparticles
3.3. Preparation of BOC and Co3O4/BOC
3.4. Characterization of Samples
3.5. Photocatalytic Activity Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Photocatalyst | Rate Constant (min−1) | Degradation Efficiency (%) | Degradation Time (min) | Lamp (C) | Amount of Catalyst (mg) | Solution Volume (mL) | Solution Concentration (mg/L) | Ref |
---|---|---|---|---|---|---|---|---|
Bi12O17Cl2 | 0.0115 min−1 | 83.5% | 140 | 300 W Xenon lamp, (420–720 nm) | 20 | 40 | 20 | This work |
Co3O4/Bi12O17Cl2 | 0.021 min−1 | 97.4% | ||||||
Bi12O17Cl2 | 1.93 × 10−3 min−1 | 40% | 240 | 300 W Xenon lamp, (420–720 nm) | 40 | 80 | 15 | [52] |
Ag/Bi12O17Cl2 | 10.3 × 10−3 min−1 | 93% | ||||||
Bi12O17Cl2 | 1.16 × 10−2 min−1 | 83% | 150 | 300 W Xenon lamp, (400–780 nm) | 80 | 80 | 20 | [53] |
Bi-Bi12O17Cl2 | 2.19 × 10−2 min−1 | 99% | ||||||
Bi12O17Cl2 | 0.074 min−1 | -- | 20 | 300 W Xenon lamp, (400 nm) | 10 | 50 | 10 | [54] |
Fe(III)-modified Bi12O17Cl2 | 0.157 min−1 | -- | ||||||
Bi12O17Cl2 | 0.0613 min−1 | 78% | 20 | 300 W Xenon lamp, (400 nm) | 30 | 50 | 10 | [23] |
Graphene/Bi12O17Cl2 | 0.160 min−1 | -- | ||||||
Bi12O17Cl2 | 0.102 min−1 | 83% | 20 | 300 W Xenon lamp, (400 nm) | 30 | 50 | 5 | [55] |
2D/2D g-C3N4/Bi12O17Cl2 | 0.353 min−1 | 99% | ||||||
ZnO/NiO | 0.019 min−1 | -- | 120 | 320 mW/cm2. LED light | 50 | 50 | 10 | [56] |
g-C3N4 | 1.11 min−1 | 99% | 90 | 150 watt halogen lamp | 50 | 100 | 5 | [57] |
Carbon dot implanted g-C3N4 | 0.48 min−1 | -- | 80 | 300 W Xenon lamp, (320–780 nm) | 10 | 30 | 15 | [58] |
BiVO4-Ni/AgVO3 | 0.133 min−1 | -- | 30 | 300 W Xenon lamp, (400 nm) | 30 | 50 | 10 | [59] |
Fe-BiOBr + H2O2 | 0.0646 min−1 | 98.23% | 60 | 350 W xenon lamp (420 nm) | 30 | 50 | 20 | [60] |
SrSnO3/g-C3N4 | k1: 0.0083−1 k2: 0.0348−1 | 97.3 | 250 | Sun Light | 100 | 100 | 5 | [61] |
References
- Al-Buriahi, A.K.; Al-Gheethi, A.A.; Senthil Kumar, P.; Radin Mohamed, R.M.S.; Yusof, H.; Alshalif, A.F.; Khalifa, N.A. Elimination of Rhodamine B from Textile Wastewater Using Nanoparticle Photocatalysts: A Review for Sustainable Approaches. Chemosphere 2022, 287, 132162. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef]
- Wright-Walters, M.; Volz, C.; Talbott, E.; Davis, D. An Updated Weight of Evidence Approach to the Aquatic Hazard Assessment of Bisphenol A and the Derivation a New Predicted No Effect Concentration (Pnec) Using a Non-Parametric Methodology. Sci. Total Environ. 2011, 409, 676–685. [Google Scholar] [CrossRef]
- Sadeghfar, F.; Zalipour, Z.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Chapter 2—Photodegradation Processes. In Interface Science and Technology; Ghaedi, M., Ed.; Photocatalysis: Fundamental Processes and Applications; Elsevier: Amsterdam, The Netherlands, 2021; Volume 32, pp. 55–124. [Google Scholar]
- Taghizadeh, A.; Taghizadeh, M.; Sabzehmeidani, M.M.; Sadeghfar, F.; Ghaedi, M. Chapter 1—Electronic Structure: From Basic Principles to Photocatalysis. In Interface Science and Technology; Ghaedi, M., Ed.; Photocatalysis: Fundamental Processes and Applications; Elsevier: Amsterdam, The Netherlands, 2021; Volume 32, pp. 1–53. [Google Scholar]
- Kumar, R.; Raizada, P.; Khan, A.A.P.; Nguyen, V.-H.; Van Le, Q.; Ghotekar, S.; Selvasembian, R.; Gandhi, V.; Singh, A.; Singh, P. Recent Progress in Emerging BiPO4-Based Photocatalysts: Synthesis, Properties, Modification Strategies, and Photocatalytic Applications. J. Mater. Sci. Technol. 2022, 108, 208–225. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Liu, G.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Synthesis of Carnation Flower-like Bi2O2CO3 Photocatalyst and Its Promising Application for Photoreduction of Cr(VI). Adv. Powder Technol. 2022, 33, 103481. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Yi, Z.; Wang, S.; Wu, X.; Li, R.; Yang, H. Comparative Investigation on Synthesis, Morphological Tailoring and Photocatalytic Activities of Bi2O2CO3 Nanostructures. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 644, 128758. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Xian, T.; Gao, H.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Template-Free Synthesis of Bi2O2CO3 Hierarchical Nanotubes Self-Assembled from Ordered Nanoplates for Promising Photocatalytic Applications. Phys. Chem. Chem. Phys. 2022, 24, 8279–8295. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, H.; Liu, G.; Pu, Z.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Preparation of Core-Shell Heterojunction Photocatalysts by Coating CdS Nanoparticles onto Bi4Ti3O12 Hierarchical Microspheres and Their Photocatalytic Removal of Organic Pollutants and Cr(VI) Ions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127918. [Google Scholar] [CrossRef]
- Guo, J.; Shi, L.; Zhao, J.; Wang, Y.; Tang, K.; Zhang, W.; Xie, C.; Yuan, X. Enhanced Visible-Light Photocatalytic Activity of Bi2MoO6 Nanoplates with Heterogeneous Bi2MoO6-X@Bi2MoO6 Core-Shell Structure. Appl. Catal. B Environ. 2018, 224, 692–704. [Google Scholar] [CrossRef]
- Huang, C.; Chen, L.; Li, H.; Mu, Y.; Yang, Z. Synthesis and Application of Bi2WO6 for the Photocatalytic Degradation of Two Typical Fluoroquinolones under Visible Light Irradiation. RSC Adv. 2019, 9, 27768–27779. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zhang, Y.; Sun, D.; Zhang, S.; Tang, T.; Zhang, X.; Cao, S. Bi2O3-Sensitized TiO2 Hollow Photocatalyst Drives the Efficient Removal of Tetracyclines under Visible Light. Inorg. Chem. 2020, 59, 18131–18140. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Liang, J.; Yuan, X.; Jiang, L.; Yu, H.; Sun, H.; Zhu, Z.; Ye, S.; Tang, N.; et al. Fabrication and Regulation of Vacancy-Mediated Bismuth Oxyhalide towards Photocatalytic Application: Development Status and Tendency. Coord. Chem. Rev. 2021, 443, 214033. [Google Scholar] [CrossRef]
- Zhu, G.; Hojamberdiev, M.; Zhang, S.; Din, S.T.U.; Yang, W. Enhancing Visible-Light-Induced Photocatalytic Activity of BiOI Microspheres for NO Removal by Synchronous Coupling with Bi Metal and Graphene. Appl. Surf. Sci. 2019, 467–468, 968–978. [Google Scholar] [CrossRef]
- Xiao, X.; Jiang, J.; Zhang, L. Selective Oxidation of Benzyl Alcohol into Benzaldehyde over Semiconductors under Visible Light: The Case of Bi12O17Cl2 Nanobelts. Appl. Catal. B Environ. 2013, 142–143, 487–493. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Zhang, X.; Qiu, H.-B.; Wang, W.-K.; Huang, G.-X.; Jiang, J.; Yu, H.-Q. Photocatalytic Degradation of Bisphenol A by Oxygen-Rich and Highly Visible-Light Responsive Bi12O17Cl2 Nanobelts. Appl. Catal. B Environ. 2017, 200, 659–665. [Google Scholar] [CrossRef]
- Liu, X.; Xing, Y.; Liu, Z.; Du, C. Enhanced Photocatalytic Activity of Bi12O17Cl2 Preferentially Oriented Growth along [200] with Various Surfactants. J. Mater. Sci. 2018, 53, 14217–14230. [Google Scholar] [CrossRef]
- Fang, K.; Shi, L.; Wang, F.; Yao, L. The Synthesis of 3D Bi12O17Cl2 Hierarchical Structure with Visible-Light Photocatalytic Activity. Mater. Lett. 2020, 277, 128352. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, J.; Zhu, X.; Ji, M.; Chen, C.; Liu, Y.; Li, L.; Wei, T.; Li, H.; Xia, J. Chemical Bonding Interface in Bi2Sn2O7/BiOBr S-Scheme Heterojunction Triggering Efficient N2 Photofixation. Appl. Catal. B Environ. 2023, 323, 122148. [Google Scholar] [CrossRef]
- Guo, M.; He, H.; Cao, J.; Lin, H.; Chen, S. Novel I-Doped Bi12O17Cl2 Photocatalysts with Enhanced Photocatalytic Activity for Contaminants Removal. Mater. Res. Bull. 2019, 112, 205–212. [Google Scholar] [CrossRef]
- Zhang, M.; Bi, C.; Lin, H.; Cao, J.; Chen, S. Construction of Novel Au/Bi12O17Cl2 Composite with Intensive Visible Light Activity Enhancement for Contaminants Removal. Mater. Lett. 2017, 191, 132–135. [Google Scholar] [CrossRef]
- Ma, J.; Shi, L.; Hou, L.; Yao, L.; Lu, C.; Geng, Z. Fabrication of Graphene/Bi12O17Cl2 as an Effective Visible-Light Photocatalyst. Mater. Res. Bull. 2020, 122, 110690. [Google Scholar] [CrossRef]
- He, G.; Xing, C.; Xiao, X.; Hu, R.; Zuo, X.; Nan, J. Facile Synthesis of Flower-like Bi12O17Cl2/β-Bi2O3 Composites with Enhanced Visible Light Photocatalytic Performance for the Degradation of 4-Tert-Butylphenol. Appl. Catal. B Environ. 2015, 170–171, 1–9. [Google Scholar] [CrossRef]
- In Situ Assembly of BiOI@Bi12O17Cl2 P-n Junction: Charge Induced Unique Front-Lateral Surfaces Coupling Heterostructure with High Exposure of BiOI {001} Active Facets for Robust and Nonselective Photocatalysis. Appl. Catal. B Environ. 2016, 199, 75–86. [CrossRef]
- Guo, J.; Sun, H.; Yuan, X.; Jiang, L.; Wu, Z.; Yu, H.; Tang, N.; Yu, M.; Yan, M.; Liang, J. Photocatalytic Degradation of Persistent Organic Pollutants by Co-Cl Bond Reinforced CoAl-LDH/Bi12O17Cl2 Photocatalyst: Mechanism and Application Prospect Evaluation. Water Res. 2022, 219, 118558. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Shi, L.; Wang, Z.; Liu, D. Preparation of Ag2O/Bi12O17Cl2 p-n Junction Photocatalyst and Its Photocatalytic Performance under Visible and Infrared Light. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127811. [Google Scholar] [CrossRef]
- Kim, K.-H.; Choi, Y.-H. Surface Oxidation of Cobalt Carbonate and Oxide Nanowires by Electrocatalytic Oxygen Evolution Reaction in Alkaline Solution. Mater. Res. Express 2022, 9, 034001. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, C.; Zuo, G.; Guo, Y.; Xiao, W.; Dai, Y.; Kong, J.; Xu, X.; Zhou, Y.; Xie, A.; et al. 0D/2D Co3O4/TiO2 Z-Scheme Heterojunction for Boosted Photocatalytic Degradation and Mechanism Investigation. Appl. Catal. B Environ. 2020, 278, 119298. [Google Scholar] [CrossRef]
- Dai, X.; Cui, L.; Yao, L.; Shi, L. Facile Construction of Novel Co3O4/Bi12O17Cl2 Heterojunction Composites with Enhanced Photocatalytic Performance. J. Solid State Chem. 2021, 297, 122066. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, B.; Liu, G.; Li, H.; Xia, J. Carbonized Polymer Dots Modified Ultrathin Bi12O17Cl2 Nanosheets Z-Scheme Heterojunction for Robust CO2 Photoreduction. Chem. Eng. Sci. 2021, 232, 116338. [Google Scholar] [CrossRef]
- Wang, L.; Min, X.; Sui, X.; Chen, J.; Wang, Y. Facile Construction of Novel BiOBr/Bi12O17Cl2 Heterojunction Composites with Enhanced Photocatalytic Performance. J. Colloid Interface Sci. 2020, 560, 21–33. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, J.; Cheng, T.; Cao, M.; Sun, Z.; Zhou, R.; Huang, L.; Wang, D.; Li, Y.; Wu, Y. Bilayer Nanosheets of Unusual Stoichiometric Bismuth Oxychloride for Potassium Ion Storage and CO2 Reduction. Nano Energy 2020, 75, 104939. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Ji, X.; Huang, S.; Xia, J.; Xie, M.; Yan, J.; Xu, H.; Li, H. Conjugated Conducting Polymers PANI Decorated Bi12O17Cl2 Photocatalyst with Extended Light Response Range and Enhanced Photoactivity. Appl. Surf. Sci. 2019, 464, 552–561. [Google Scholar] [CrossRef]
- Superior Visible Light Hydrogen Evolution of Janus Bilayer Junctions via Atomic-Level Charge Flow Steering|Nature Communications. Available online: https://www.nature.com/articles/ncomms11480 (accessed on 15 October 2022).
- Diallo, A.; Beye, A.C.; Doyle, T.B.; Park, E.; Maaza, M. Green Synthesis of Co3O4 Nanoparticles via Aspalathus Linearis: Physical Properties. Green Chem. Lett. Rev. 2015, 8, 30–36. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Hu, X.; Zhou, W.; Zhao, Y. Effect of Formic Acid Treatment on the Structure and Catalytic Activity of Co3O4 for N2O Decomposition. Catal. Lett. 2019, 149, 1026–1036. [Google Scholar] [CrossRef]
- Lopes Matias, J.A.; Sabino da Silva, E.B.; Raimundo, R.A.; Ribeiro da Silva, D.; Oliveira, J.B.L.; Morales, M.A. (Bi13Co11)Co2O40–Co3O4 Composites: Synthesis, Structural and Magnetic Properties. J. Alloy. Compd. 2021, 852, 156991. [Google Scholar] [CrossRef]
- Gu, Y.; Guo, B.; Yi, Z.; Wu, X.; Zhang, J.; Yang, H. Synthesis of a Self-Assembled Dual Morphologies Ag-NPs/SrMoO4 Photocatalyst with LSPR Effect for the Degradation of Methylene Blue Dye. ChemistrySelect 2022, 7, e202201274. [Google Scholar] [CrossRef]
- Urgunde, A.B.; Kamboj, V.; Kannattil, H.P.; Gupta, R. Layer-by-Layer Coating of Cobalt-Based Ink for Large-Scale Fabrication of OER Electrocatalyst. Energy Technol. 2019, 7, 1900603. [Google Scholar] [CrossRef]
- Din, S.T.U.; Lee, H.; Yang, W. Z-Scheme Heterojunction of 3-Dimensional Hierarchical Bi3O4Cl/Bi5O7I for a Significant Enhancement in the Photocatalytic Degradation of Organic Pollutants (RhB and BPA). Nanomaterials 2022, 12, 767. [Google Scholar] [CrossRef]
- Li, R.; Hu, B.; Yu, T.; Chen, H.; Wang, Y.; Song, S. Insights into Correlation among Surface-Structure-Activity of Cobalt-Derived Pre-Catalyst for Oxygen Evolution Reaction. Adv. Sci. 2020, 7, 1902830. [Google Scholar] [CrossRef]
- Yu, L.; Lei, T.; Nan, B.; Kang, J.; Jiang, Y.; He, Y.; Liu, C.T. Mo Doped Porous Ni–Cu Alloy as Cathode for Hydrogen Evolution Reaction in Alkaline Solution. RSC Adv. 2015, 5, 82078–82086. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, S.; Bi, F.; Chen, J.; Wang, Y.; Cui, L.; Xu, J.; Zhang, X. Highly Efficient Photothermal Catalysis of Toluene over Co3O4/TiO2 p-n Heterojunction: The Crucial Roles of Interface Defects and Band Structure. Appl. Catal. B Environ. 2022, 315, 121550. [Google Scholar] [CrossRef]
- Rational Design of Carbon-Doped Carbon Nitride/Bi12O17Cl2 Composites: A Promising Candidate Photocatalyst for Boosting Visible-Light-Driven Photocatalytic Degradation of Tetracycline|ACS Sustainable Chemistry & Engineering. Available online: https://pubs.acs.org/doi/full/10.1021/acssuschemeng.8b00782 (accessed on 2 November 2022).
- Guerrero-Araque, D.; Acevedo-Peña, P.; Ramírez-Ortega, D.; Lartundo-Rojas, L.; Gómez, R. SnO2–TiO2 Structures and the Effect of CuO, CoO Metal Oxide on Photocatalytic Hydrogen Production. J. Chem. Technol. Biotechnol. 2017, 92, 1531–1539. [Google Scholar] [CrossRef]
- Patel, M.; Park, W.-H.; Ray, A.; Kim, J.; Lee, J.-H. Photoelectrocatalytic Sea Water Splitting Using Kirkendall Diffusion Grown Functional Co3O4 Film. Sol. Energy Mater. Sol. Cells 2017, 171, 267–274. [Google Scholar] [CrossRef]
- Zhu, G.; Hojamberdiev, M.; Zhang, W.; Taj Ud Din, S.; Joong Kim, Y.; Lee, J.; Yang, W. Enhanced Photocatalytic Activity of Fe-Doped Bi4O5Br2 Nanosheets Decorated with Au Nanoparticles for Pollutants Removal. Appl. Surf. Sci. 2020, 526, 146760. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. Well-Crystallized Square-like 2D BiOCl Nanoplates: Mannitol-Assisted Hydrothermal Synthesis and Improved Visible-Light-Driven Photocatalytic Performance. RSC Adv. 2011, 1, 1542–1553. [Google Scholar] [CrossRef]
- Kato, D.; Tomita, O.; Nelson, R.; Kirsanova, M.A.; Dronskowski, R.; Suzuki, H.; Zhong, C.; Tassel, C.; Ishida, K.; Matsuzaki, Y.; et al. Bi12O17Cl2 with a Sextuple Bi—O Layer Composed of Rock-Salt and Fluorite Units and Its Structural Conversion through Fluorination to Enhance Photocatalytic Activity. Available online: https://onlinelibrary.wiley.com/doi/10.1002/adfm.202204112 (accessed on 6 October 2022).
- Chen, Y.; Liu, G.; Dong, L.; Liu, X.; Liu, M.; Wang, X.; Gao, C.; Wang, G.; Teng, Z.; Yang, W.; et al. A Microwave-Assisted Solvothermal Method to Synthesize BiOCl Microflowers with Oxygen Vacancies and Their Enhanced Photocatalytic Performance. J. Alloy. Compd. 2023, 930, 167331. [Google Scholar] [CrossRef]
- Chang, F.; Wang, X.; Luo, J.; Wang, J.; Xie, Y.; Deng, B.; Hu, X. Ag/Bi12O17Cl2 Composite: A Case Study of Visible-Light-Driven Plasmonic Photocatalyst. Mol. Catal. 2017, 427, 45–53. [Google Scholar] [CrossRef]
- Chang, F.; Lei, B.; Zhang, X.; Xu, Q.; Chen, H.; Deng, B.; Hu, X. The Reinforced Photocatalytic Performance of Binary-Phased Composites Bi-Bi12O17Cl2 Fabricated by a Facile Chemical Reduction Protocol. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 290–298. [Google Scholar] [CrossRef]
- Meng, X.; Shi, L.; Yao, L.; Zhang, Y.; Cui, L. Fe (III) Clusters Modified Bi12O17Cl2 Nanosheets Photocatalyst for Boosting Photocatalytic Performance through Interfacial Charge Transfer Effect. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124658. [Google Scholar] [CrossRef]
- Shi, L.; Si, W.; Wang, F.; Qi, W. Construction of 2D/2D Layered g-C3N4/Bi12O17Cl2 Hybrid Material with Matched Energy Band Structure and Its Improved Photocatalytic Performance. RSC Adv. 2018, 8, 24500–24508. [Google Scholar] [CrossRef]
- Ma, L.; Ai, X.; Chen, Y.; Liu, P.; Lin, C.; Lu, K.; Jiang, W.; Wu, J.; Song, X. Improved Photocatalytic Activity via N-Type ZnO/p-Type NiO Heterojunctions. Nanomaterials 2022, 12, 3665. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, D.; Kędzierski, T.; Aleksandrzak, M.; Mijowska, E.; Zielińska, B. Influence of Hydrogenation on Morphology, Chemical Structure and Photocatalytic Efficiency of Graphitic Carbon Nitride. Int. J. Mol. Sci. 2021, 22, 13096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J.; Xia, Y.; Xun, M.; Chen, H.; Liu, X.; Yin, X. Metal-Free Carbon Quantum Dots Implant Graphitic Carbon Nitride: Enhanced Photocatalytic Dye Wastewater Purification with Simultaneous Hydrogen Production. Int. J. Mol. Sci. 2020, 21, 1052. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, F.; Chi, X.; Tian, Y.; Zhu, Z.; Guan, R.; Song, J. A Mesoporous Nanofibrous BiVO4-Ni/AgVO3 Z-Scheme Heterojunction Photocatalyst with Enhanced Photocatalytic Reduction of Cr6+ and Degradation of RhB under Visible Light. Appl. Surf. Sci. 2022, 603, 154416. [Google Scholar] [CrossRef]
- An, W.; Wang, H.; Yang, T.; Xu, J.; Wang, Y.; Liu, D.; Hu, J.; Cui, W.; Liang, Y. Enriched Photocatalysis-Fenton Synergistic Degradation of Organic Pollutants and Coking Wastewater via Surface Oxygen Vacancies over Fe-BiOBr Composites. Chem. Eng. J. 2023, 451, 138653. [Google Scholar] [CrossRef]
- de Sousa Filho, I.A.; Arana, L.R.; Doungmo, G.; Grisolia, C.K.; Terrashke, H.; Weber, I.T. SrSnO3/g-C3N4 and Sunlight: Photocatalytic Activity and Toxicity of Degradation Byproducts. J. Environ. Chem. Eng. 2020, 8, 103633. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, S.T.U.; Xie, W.-F.; Yang, W. Synthesis of Co3O4 Nanoparticles-Decorated Bi12O17Cl2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA. Int. J. Mol. Sci. 2022, 23, 15028. https://doi.org/10.3390/ijms232315028
Din STU, Xie W-F, Yang W. Synthesis of Co3O4 Nanoparticles-Decorated Bi12O17Cl2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA. International Journal of Molecular Sciences. 2022; 23(23):15028. https://doi.org/10.3390/ijms232315028
Chicago/Turabian StyleDin, Syed Taj Ud, Wan-Feng Xie, and Woochul Yang. 2022. "Synthesis of Co3O4 Nanoparticles-Decorated Bi12O17Cl2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA" International Journal of Molecular Sciences 23, no. 23: 15028. https://doi.org/10.3390/ijms232315028
APA StyleDin, S. T. U., Xie, W.-F., & Yang, W. (2022). Synthesis of Co3O4 Nanoparticles-Decorated Bi12O17Cl2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA. International Journal of Molecular Sciences, 23(23), 15028. https://doi.org/10.3390/ijms232315028