Anti-Inflammatory Activity of 3, 5-Diprenyl-4-hydroxyacetophenone Isolated from Ageratina pazcuarensis
Abstract
:1. Introduction
2. Results
2.1. Structure of DHAP
2.2. Acute Anti-Inflammatory Activity: Edema Induced by TPA
2.3. The Antioxidant Activity
2.4. Levels of Nitric Oxide (NO) and Cytokines
2.5. Membrane Stabilization Property
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extraction and Isolation
4.4. Structural Analysis
4.5. Animals
4.6. Acute Anti-Inflammatory Activity: Edema Induced by TPA
4.7. Antioxidant Activity by DPPH Assay
4.8. Cell Viability Assay
4.9. Determination of Nitric Oxide (NO) and Cytokines
4.10. Membrane Stabilization Property
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, T.R.C.L.; Marques, G.S.; Vieira, A.C.Q.M.; Freitas, J.C.R. State of the art of anti-inflammatory drugs. In Pharmacotherapy; Badria, F., Ed.; Intech: Rijeks, Croatia, 2012. [Google Scholar]
- Kim, Y.; Bayona, P.W.; Kim, M.; Chang, J.; Hong, S.; Park, Y.; Budiman, A.; Kim, Y.J.; Choi, C.Y.; Kim, W.S.; et al. Macrophage Lamin A/C regulates inflammation and development of obesity-induced insulin resistance. Front. Immunol. 2018, 9, 696. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Purohit, S.; Sharma, A.; Zhi, W.; Bai, S.; Hopkins, D.; Steed, L.; Bode, B.; Anderson, S.W.; Reed, J.C.; Steed, R.D.; et al. Protein of TNF-α and IL6 pathways are elevated in serum of type-1 diabetes patients with microalbuminuria. Front. Immunol. 2018, 9, 154. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mata, R.; Figueroa, M.; Navarrete, A.; Rivero, C.I. Chemistry and biology of selected Mexican medicinal plants. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, J.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 108, pp. 1–142. [Google Scholar]
- Zardini, E.M. Etnobotánica de compuestas Argentinas con especial referencia a su uso farmacológico (Primera parte). Acta Farm. Bonaer. 1984, 3, 77–99. [Google Scholar]
- Sasikumar, J.M.; Doss, P.A.A.; Doss, A. Antibacterial activity of Eupatorium glandulosum leaves. Fitoterapia 2005, 70, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Román, R.; Zamilpa, A.; Jiménez, J.; Rojas, G.; Tortoriello, J. Clinical trial to compare the effectiveness of two concentrations of the Ageratina pichinchensis in the topical treatment of onychomycosis. J. Ethopharmacol. 2009, 126, 74–78. [Google Scholar] [CrossRef]
- Monroy, O.C.; Castillo, E.P. Plantas medicinales utilizadas en el estado de Morelos. Ed. Universidad Autónoma del Estado de Morelos, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Universidad 2ª Ed. 2007; p. 69. ISBN 968-878-277-7. [Google Scholar]
- Rivero-Cruz, I.; Gutiérrez-González, J.A.; Pérez-Vásquez, A.; Villaseñor, J.L.; Mata, R. The genus Ageratina (Asteraceae) in America: An insight into its chemistry, and pharmacological potential. Comb. Chem. High Throughput Screen. 2022; Advance online publication. [Google Scholar] [CrossRef]
- Urones, J.G.; De Pascual, T.J.; Marcos, I.S.; Fernández, M.R.; Basabe, B.P.; Sexmero, C.J. Acetophenones and terpenoids from Senecio gallzcus. Phytochemistry 1987, 26, 1113–1115. [Google Scholar] [CrossRef]
- Sánchez, M.M.E.; Silverio, R.J.; Rivero, C.J.F.; Rocha, G.H.I.; Pineda, F.J.B.; Arrieta, J. Antinociceptive effect and gastroprotective mechanisms of 3,5-diprenyl-4-hydroxyacetophenone from Ageratina pichinchensis. Fitoterapia 2013, 87, 11–19. [Google Scholar] [CrossRef]
- Sánchez-Ramos, M.; Alvarez, L.; Romero-Estrada, A.; Bernabé-Antonio, A.; Marquina-Bahena, S.; Cruz-Sosa, F. Establishment of a cell suspension culture of Ageratina pichinchensis (Kunth) for the improved production of anti-inflammatory compounds. Plants 2020, 9, 1398. [Google Scholar] [CrossRef]
- Gandhisan, R.; Thamaraichelvan, A.; Baburaj, K. Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitoterapia 1991, 62, 82–83. [Google Scholar]
- Potterat, O. Antioxidants and free radical scavergers of natual origin. Curr. Org. Chem. 1997, 1, 415–440. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Graca, M.M. Antioxidant and anti-inflammatory activities of essential oil. A Short Rev. Mol. 2010, 15, 9252–9287. [Google Scholar]
- Hiraganahalli, B.D.; Prince, S.B. Effect of baricitinib on TPA-induced psoriasis like skin inflammation. Life Sci. 2021, 279, 119655. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, D.W.; Eom, S.A.; Jun, S.Y.; Park, M.Y.; Kim, D.S.; Kwon, H.J.; Han, K.H.; Park, J.; Hwang, H.S.; et al. Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein BMB. Rep. Korean Soc. Biochem. Mol. Sci. 2012, 45, 354–359. [Google Scholar]
- Ying, L.; Hofseth, L.J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 2007, 67, 1407–1410. [Google Scholar] [CrossRef][Green Version]
- Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef][Green Version]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood. 1996, 87, 2095–2147. [Google Scholar] [CrossRef][Green Version]
- Mauer, J.; Denson, J.L.; Bruning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 2015, 36, 92–101. [Google Scholar] [CrossRef]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006, 8 (Suppl. S2), S3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef][Green Version]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef][Green Version]
- Labu, Z.K.; Laboni, F.R.; Tarafdar, M.; Howlader, M.S.I.; Rashid, M.H. Membrane stabilization as a mechanism of anti-inflammatory and thrombolytic activities of ethanolic extract of aereal parts of Spondiasis pinanata (Family: Anacardiaceae). Archives 2015, 2, 44–51. [Google Scholar]
- Rahman, H.; Eswaraiah, M.C.; Vakati, K. In vitro studies suggest probable mechanism of eucalyptus oil for anti-inflammatory and anti-arthritic activity. Int. J. Phyto. Pharm. 2012, 2, 81–83. [Google Scholar] [CrossRef][Green Version]
- Parameswari, P.; Devika., R.; Vijayaraghavan, P. In vitro anti-inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J. Biol. Sci. 2019, 26, 460–463. [Google Scholar] [CrossRef]
- Ching-Wen, C.; Yun-Chieh, C.; Yu-Chin, L.; Wen-Huang, P. p-Hydroxyacetophenone suppresses nuclear factor-κB-related inflammation in nociceptive and inflammatory animal models. J. Nat. Med. 2017, 71, 422–432. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, C.; Zeng, T.; Li, Y.; Lai, Y.; Mo, C.; Chen, Y.; Huang, S.; Lv, Z.; Gao, L. P-hydroxyacetophenone ameliorates alcohol-induced steatosis and oxidative stress via the NF-κB signaling pathway in zebrafish and hepatocytes. Front. Pharmacol. 2020, 10, 1594. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.H.; Li, W.; Zhong, Y.L.; Niu, Q.W.; Li, Y.Y.; Zhang, Y.B.; Li, M.M.; Li, Y.L.; Wang, G.C. New Acetophenone Derivatives from Acronychia oligophlebia and Their Anti-inflammatory and Antioxidant Activities. Chem. Biodivers. 2018, 15, e18000080. [Google Scholar] [CrossRef] [PubMed]
- Young, L.M.; Kheifets, J.B.; Ballaron, S.J.; Young, J.M. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacological agents. Agents Actions 1989, 26, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Chanda, S.; Dave, R.; Kaneria, M. In vitro antioxidant property of some Indian medicinal plants. Res. J. Med. Plants. 2011, 5, 169–179. [Google Scholar] [CrossRef][Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
Treatment | Dose (mg/ear) | Difference of Weight (mg) | % Decrease in Inflammation |
---|---|---|---|
Negative group | --- | 11.85 ± 0.57 ** | 0.0 |
DHAP | 2.0 | 3.54 ± 0.66 * | 70.10 ± 5.53 |
1.0 | 4.47 ± 0.29 *,** | 62.27 ± 2.48 | |
0.5 | 5.74 ± 0.36 *,** | 51.54 ± 3.00 | |
Indomethacin | 2.0 | 2.76 ± 0.17 * | 76.73 ± 1.41 |
μg/mL | Diclofenac | DHAP |
---|---|---|
400 | 87.82 ± 0.42 | 75.70 ± 2.79 |
200 | 77.85 ± 0.31 | 76.17 ± 0.51 |
100 | 84.97 ± 0.45 | 83.69 ± 0.83 |
50 | 84.19 ± 0.10 | 85.35 ± 0.74 |
25 | 87.93 ± 0.56 | 86.59 ± 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Jiménez, S.; Pérez-Gutiérrez, M.S.; Sánchez-Mendoza, E.; Martínez-Casares, R.M.; Campos-Xolalpa, N.; Valladares-Cisneros, M.G.; Salinas-Sánchez, D.O. Anti-Inflammatory Activity of 3, 5-Diprenyl-4-hydroxyacetophenone Isolated from Ageratina pazcuarensis. Int. J. Mol. Sci. 2022, 23, 15012. https://doi.org/10.3390/ijms232315012
Rojas-Jiménez S, Pérez-Gutiérrez MS, Sánchez-Mendoza E, Martínez-Casares RM, Campos-Xolalpa N, Valladares-Cisneros MG, Salinas-Sánchez DO. Anti-Inflammatory Activity of 3, 5-Diprenyl-4-hydroxyacetophenone Isolated from Ageratina pazcuarensis. International Journal of Molecular Sciences. 2022; 23(23):15012. https://doi.org/10.3390/ijms232315012
Chicago/Turabian StyleRojas-Jiménez, Sarai, María Salud Pérez-Gutiérrez, Ernesto Sánchez-Mendoza, Rubria Marlen Martínez-Casares, Nimsi Campos-Xolalpa, María Guadalupe Valladares-Cisneros, and David Osvaldo Salinas-Sánchez. 2022. "Anti-Inflammatory Activity of 3, 5-Diprenyl-4-hydroxyacetophenone Isolated from Ageratina pazcuarensis" International Journal of Molecular Sciences 23, no. 23: 15012. https://doi.org/10.3390/ijms232315012