Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer
Abstract
:1. Introduction
2. Results
2.1. Patient Baseline Characteristics
2.2. Dosage, Treatment Duration, and Discontinuation of Chemotherapy with TIP
2.3. Efficacy of TIP in mCRPC
2.4. Toxicity and Tolerability of TIP
2.5. Cytotoxic Effects of the Individual Drugs and Their Combinations in PCa Cells Bearing Different Levels of Drug Resistance
2.6. Cis as a Single Agent or in Combinations Is More Effective in Doce-Resistant PCa Cells
2.7. Differential Effects of TIP on the Proteome of Doce-Sensitive and -Resistant PCa Cells
2.8. Validation of the Proteomics Data
2.9. Defective DNA Repair Mechanisms in Doce-Resistant Cells Result in Higher Therapy Efficacy
3. Discussion
4. Material and Methods
4.1. Clinical Study Design, Participants, and Experimental Treatment Intervention
4.2. End Points of the Clinical Study
4.3. Reagents
4.4. Cell Lines and Culture Conditions
4.5. In Vitro Cytotoxicity Assay (MTT Test)
4.6. Immunofluorescence
4.7. Caspase Activity Assay
4.8. p-gp-Driven Efflux of Calcein-AM
4.9. Western Blotting
4.10. Drug Combinational Studies
4.11. DNA Fragmentation and Cell Cycle Analysis
4.12. Global Proteome Screening Analysis
4.13. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halabi, S.; Kelly, W.K.; Ma, H.; Zhou, H.; Solomon, N.C.; Fizazi, K.; Tangen, C.M.; Rosenthal, M.; Petrylak, D.P.; Hussain, M.; et al. Meta-Analysis Evaluating the Impact of Site of Metastasis on Overall Survival in Men With Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2016, 34, 1652–1659. [Google Scholar] [CrossRef][Green Version]
- Aparicio, A.M.; Harzstark, A.L.; Corn, P.G.; Wen, S.; Araujo, J.C.; Tu, S.M.; Pagliaro, L.C.; Kim, J.; Millikan, R.E.; Ryan, C.; et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin. Cancer Res. 2013, 19, 3621–3630. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Motzer, R.J.; Sheinfeld, J.; Mazumdar, M.; Bains, M.; Mariani, T.; Bacik, J.; Bajorin, D.; Bosl, G.J. Paclitaxel, ifosfamide, and cisplatin second-line therapy for patients with relapsed testicular germ cell cancer. J. Clin. Oncol. 2000, 18, 2413–2418. [Google Scholar] [CrossRef]
- Albers, P.; Albrecht, W.; Algaba, F.; Bokemeyer, C.; Cohn-Cedermark, G.; Fizazi, K.; Horwich, A.; Laguna, M.P. Tandstad EAU Guidelines on Testicular Cancer: Update 2021; EAU Guidelines Office: Arnhem, The Netherlands, 2021; ISBN 978-94-92671-13-4. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 6 June 2022).
- Schmid, S.; Omlin, A.; Higano, C.; Sweeney, C.; Martinez Chanza, N.; Mehra, N.; Kuppen, M.C.P.; Beltran, H.; Conteduca, V.; Vargas Pivato de Almeida, D.; et al. Activity of Platinum-Based Chemotherapy in Patients With Advanced Prostate Cancer With and Without DNA Repair Gene Aberrations. JAMA Netw. Open 2020, 3, e2021692. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Petrylak, D.P.; Sartor, O.; Witjes, J.A.; Demkow, T.; Ferrero, J.M.; Eymard, J.C.; Falcon, S.; Calabro, F.; James, N.; et al. Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: The SPARC trial. J. Clin. Oncol. 2009, 27, 5431–5438. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Teply, B.A.; Antonarakis, E.S. Treatment strategies for DNA repair-deficient prostate cancer. Expert Rev. Clin. Pharmacol. 2017, 10, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Corn, P.G.; Heath, E.I.; Zurita, A.; Ramesh, N.; Xiao, L.; Sei, E.; Li-Ning-Tapia, E.; Tu, S.M.; Subudhi, S.K.; Wang, J.; et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: A randomised, open-label, phase 1-2 trial. Lancet Oncol. 2019, 20, 1432–1443. [Google Scholar] [CrossRef]
- Kentepozidis, N.; Soultati, A.; Giassas, S.; Vardakis, N.; Kalykaki, A.; Kotsakis, A.; Papadimitraki, E.; Pantazopoulos, N.; Bozionellou, V.; Georgoulias, V. Paclitaxel in combination with carboplatin as salvage treatment in patients with castration-resistant prostate cancer: A Hellenic oncology research group multicenter phase II study. Cancer Chemother. Pharmacol. 2012, 70, 161–168. [Google Scholar] [CrossRef]
- Urakami, S.; Igawa, M.; Kikuno, N.; Yoshino, T.; Kishi, H.; Shigeno, K.; Shiina, H. Combination chemotherapy with paclitaxel, estramustine and carboplatin for hormone refractory prostate cancer. J. Urol. 2002, 168, 2444–2450. [Google Scholar] [CrossRef]
- Berry, W.R.; Hathorn, J.W.; Dakhil, S.R.; Loesch, D.M.; Jackson, D.V.; Gregurich, M.A.; Newcomb-Fernandez, J.K.; Asmar, L. Phase II randomized trial of weekly paclitaxel with or without estramustine phosphate in progressive, metastatic, hormone-refractory prostate cancer. Clin. Prostate Cancer 2004, 3, 104–111. [Google Scholar] [CrossRef]
- Fujiwara, M.; Akamatsu, S.; Sumiyoshi, T.; Segawa, T.; Mizuno, K.; Yoshino, T.; Goto, T.; Sawada, A.; Saito, R.; Kobayashi, T.; et al. Efficacy and Safety of Carboplatin Plus Paclitaxel as the First-, Second-, and Third-line Chemotherapy in Men with Castration-resistant Prostate Cancer. Clin. Genitourin. Cancer 2019, 17, e923–e929. [Google Scholar] [CrossRef] [PubMed]
- Jeske, S.; Tagawa, S.T.; Olowokure, O.; Selzer, J.; Giannakakou, P.; Nanus, D.M. Carboplatin plus paclitaxel therapy after docetaxel in men with metastatic castrate resistant prostate cancer. Urol. Oncol. 2011, 29, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Ifosfamide. BC Cancer Agency Cancer Drug Manual; revised 2007; BC Cancer Agency: Vancouver, BC, Canada, 1994. [Google Scholar]
- Hervonen, P.; Tulijoki, T.; Kellokumpu-Lehtinen, P. No additional benefit of adding ifosfamide to docetaxel in castration-resistant metastatic prostate cancer. Anticancer Res. 2012, 32, 3305–3309. [Google Scholar] [PubMed]
- Fujita, K.; Matsushima, H.; Nakano, M.; Kaneko, T. Ifosfamide in combined hormonochemotherapy on prostate cancer. Gan Kagaku Ryoho Cancer Chemother. 1994, 21, 227–230. [Google Scholar]
- Nait Slimane, S.; Marcel, V.; Fenouil, T.; Catez, F.; Saurin, J.C.; Bouvet, P.; Diaz, J.J.; Mertani, H.C. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020, 9, 2361. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem. 2012, 32, 1–14. [Google Scholar] [CrossRef][Green Version]
- Duran, G.E.; Derdau, V.; Weitz, D.; Philippe, N.; Blankenstein, J.; Atzrodt, J.; Semiond, D.; Gianolio, D.A.; Mace, S.; Sikic, B.I. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein. Cancer Chemother Pharmacol. 2018, 81, 1095–1103. [Google Scholar] [CrossRef]
- Huang, P.H.; Cook, R.; Mittnacht, S. RB in DNA repair. Oncotarget 2015, 6, 20746–20747. [Google Scholar] [CrossRef]
- Smith, J.; Mun Tho, L.; Xu, N.; Gillespie, D.A. Chapter 3—The ATM–Chk2 and ATR–Chk1 Pathways in DNA Damage Signaling and Cancer. In Advances in Cancer Research; Vande Woude, G.F., Klein, G., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 108, pp. 73–112. [Google Scholar]
- Tsaur, I.; Heidegger, I.; Kretschmer, A.; Borgmann, H.; Gandaglia, G.; Briganti, A.; de Visschere, P.; Mathieu, R.; Valerio, M.; van den Bergh, R.; et al. Aggressive variants of prostate cancer—Are we ready to apply specific treatment right now? Cancer Treat. Rev. 2019, 75, 20–26. [Google Scholar] [CrossRef]
- Merkens, L.; Sailer, V.; Lessel, D.; Janzen, E.; Greimeier, S.; Kirfel, J.; Perner, S.; Pantel, K.; Werner, S.; von Amsberg, G. Aggressive variants of prostate cancer: Underlying mechanisms of neuroendocrine transdifferentiation. J. Exp. Clin. Cancer Res. 2022, 41, 46. [Google Scholar] [CrossRef]
- Locke, V.L.; Davey, R.A.; Davey, M.W. Modulation of drug and radiation resistance in small cell lung cancer cells by paclitaxel. Anticancer Drugs 2003, 14, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Porras, V.; Wang, X.C.; Palomero, L.; Marin-Aguilera, M.; Sole-Blanch, C.; Indacochea, A.; Jimenez, N.; Bystrup, S.; Bakht, M.; Conteduca, V.; et al. Taxane-induced Attenuation of the CXCR2/BCL-2 Axis Sensitizes Prostate Cancer to Platinum-based Treatment. Eur. Urol. 2021, 79, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.J.; Dabholkar, M.D.; Lee, K.B.; Bostick-Bruton, F.; Reed, E. Taxol effect on cisplatin sensitivity and cisplatin cellular accumulation in human ovarian cancer cells. J. Natl. Cancer Inst. Monogr. 1993, 15, 83–88. [Google Scholar]
- Waldman, T.; Zhang, Y.; Dillehay, L.; Yu, J.; Kinzler, K.; Vogelstein, B.; Williams, J. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 1997, 3, 1034–1036. [Google Scholar] [CrossRef]
- Uysal-Onganer, P.; Kawano, Y.; Caro, M.; Walker, M.M.; Diez, S.; Darrington, R.S.; Waxman, J.; Kypta, R.M. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol. Cancer 2010, 9, 55. [Google Scholar] [CrossRef][Green Version]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Heck, M.M.; Retz, M.; D’Alessandria, C.; Rauscher, I.; Scheidhauer, K.; Maurer, T.; Storz, E.; Janssen, F.; Schottelius, M.; Wester, H.J.; et al. Systemic Radioligand Therapy with (177)Lu Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer. J. Urol. 2016, 196, 382–391. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- von Amsberg, G.; Alsdorf, W.; Karagiannis, P.; Coym, A.; Kaune, M.; Werner, S.; Graefen, M.; Bokemeyer, C.; Merkens, L.; Dyshlovoy, S.A. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int. J. Mol. Sci. 2022, 23, 2569. [Google Scholar] [CrossRef]
- Agarwal, N.; McGregor, B.; Maughan, B.L.; Dorff, T.B.; Kelly, W.; Fang, B.; McKay, R.R.; Singh, P.; Pagliaro, L.; Dreicer, R.; et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: Results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol. 2022, 23, 899–909. [Google Scholar] [CrossRef]
- Sweeney, C.; Bracarda, S.; Sternberg, C.N.; Chi, K.N.; Olmos, D.; Sandhu, S.; Massard, C.; Matsubara, N.; Alekseev, B.; Parnis, F.; et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2021, 398, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Oromendia, C.; Danila, D.C.; Montgomery, B.; Hoimes, C.; Szmulewitz, R.Z.; Vaishampayan, U.; Armstrong, A.J.; Stein, M.; Pinski, J.; et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin. Cancer Res. 2019, 25, 43–51. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Puhr, M.; Hoefer, J.; Schäfer, G.; Erb, H.H.H.; Oh, S.J.; Klocker, H.; Heidegger, I.; Neuwirt, H.; Culig, Z. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 2012, 181, 2188–2201. [Google Scholar] [CrossRef][Green Version]
- Dyshlovoy, S.A.; Tabakmakher, K.M.; Hauschild, J.; Shchekaleva, R.K.; Otte, K.; Guzii, A.G.; Makarieva, T.N.; Kudryashova, E.K.; Fedorov, S.N.; Shubina, L.K.; et al. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar. Drugs 2016, 14, 133. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Rast, S.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Madanchi, R.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Dierlamm, J.; et al. Frondoside A induces AIF-associated caspase-independent apoptosis in Burkitt lymphoma cells. Leuk. Lymphoma 2017, 58, 2905–2915. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Pelageev, D.N.; Hauschild, J.; Sabutskii, Y.E.; Khmelevskaya, E.A.; Krisp, C.; Kaune, M.; Venz, S.; Borisova, K.L.; Busenbender, T.; et al. Inspired by sea urchins: Warburg effect mediated selectivity of novel synthetic non-glycoside 1,4-naphthoquinone-6S-glucose conjugates in prostate cancer. Mar. Drugs 2020, 18, 251. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chou, T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef][Green Version]
- Dyshlovoy, S.A.; Madanchi, R.; Hauschild, J.; Otte, K.; Alsdorf, W.H.; Schumacher, U.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Honecker, F.; et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells. BMC Cancer 2017, 17, 93. [Google Scholar] [CrossRef][Green Version]
- Dyshlovoy, S.A.; Pelageev, D.N.; Hauschild, J.; Borisova, K.L.; Kaune, M.; Krisp, C.; Venz, S.; Sabutskii, Y.E.; Khmelevskaya, E.A.; Busenbender, T.; et al. Successful Targeting of the Warburg Effect in Prostate Cancer by Glucose-Conjugated 1,4-Naphthoquinones. Cancers 2019, 11, 1690. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef][Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
Patient Baseline Characteristics (n = 17) | |
---|---|
Age, years [median (min; max)] | 65 (55;75) |
Primary metastatic at diagnosis [n (%)] | 6 (37) |
Metastatic sites 1 [n %]
| 14 (82) 8 (47) 13 (76) |
Prostate-specific antigen (PSA) 1, ng/mL [median (IQR 2)] | 77 (10–640) |
Alkaline phosphatase 1, µg/L [median (IQR 2)] | 205 (131–440) |
Lactate dehydrogenase (ldh) 1, iu/L [median (IQR 2)] | 903 (285–1728) |
Neurone-specific enolase 1 (NSE), u/L
| 33.2 (19–52) 14 (82) |
Previous treatment regimens
| 4 (3–6) 100 65 82 41 |
Treatment Summary (n = 17) | |
---|---|
Dosage of chemotherapy (cycle 1) Number of cycles received, median (IQR 1)
| 3 (2–6) 140 (132.5–162.5) 2400 (2400–3000) 40 (40–60) 3.5 (1.4–3.8) |
Treatment discontinuation, n (%)
| 12 (71) 8 (47) 4 (24) 5 (39) |
Radiological assessment (at completion of 6 cycles), n (%)
| 2 (11.8) 1 (6) 1 (6) 1 (6) |
PSA response 3 > 30%, n/n PSA elevated at baseline (%) | 6/13 (46) |
LDH reduction 3 > 50%, n/n LDH elevated at baseline (%) | 8/16 (50) |
NSE reduction 3 > 30%, n/n with NSE elevated at baseline (%) | 8/13 (62) |
Cell Line | Drug | |||
---|---|---|---|---|
Cis [µM] | Ifo [mM] | Pac [nM] | Doce [nM] | |
PC3 | 28.63 ± 4.32 | 17.45 ± 3.6 | 290.96 ± 98.37 | 7.49 ± 7.09 |
PC3-DR | 4.71 ± 1.14 | 12.38 ± 3.92 | 552.46 ± 81.58 | 324.9 ± 21.7 |
DU145 | 15.33 ± 7.74 | 12.18 ± 0.812 | 14.93 ± 1.32 | 13.29 ± 1.04 |
DU145-DR | 2.29 ± 1.12 | 8.76 ± 2.49 | 119.2 ± 22.2 | 372.5 ± 53.9 |
LASCPC-01 | 0.94 ± 0.06 | 3.13 ± 0.61 | 7.16 ± 1.49 | - |
22Rv1 | 4.7 ± 1.06 | 4.83 ± 1.82 | 11.51 ± 2.47 | - |
LNCaP | 14.55 ± 6.78 | 4.99 ± 0.82 | 6.02 ± 0.24 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Amsberg, G.; Zilles, M.; Mansour, W.; Gild, P.; Alsdorf, W.; Kaune, M.; Böckelmann, L.; Hauschild, J.; Krisp, C.; Rohlfing, T.; Saygi, C.; Alawi, M.; Zielinski, A.; Langebrake, C.; Oh-Hohenhorst, S.J.; Perner, S.; Tilki, D.; Schlüter, H.; Graefen, M.; Dyshlovoy, S.A.; Bokemeyer, C. Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 14948. https://doi.org/10.3390/ijms232314948
von Amsberg G, Zilles M, Mansour W, Gild P, Alsdorf W, Kaune M, Böckelmann L, Hauschild J, Krisp C, Rohlfing T, Saygi C, Alawi M, Zielinski A, Langebrake C, Oh-Hohenhorst SJ, Perner S, Tilki D, Schlüter H, Graefen M, Dyshlovoy SA, Bokemeyer C. Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences. 2022; 23(23):14948. https://doi.org/10.3390/ijms232314948
Chicago/Turabian Stylevon Amsberg, Gunhild, Mirjam Zilles, Wael Mansour, Philipp Gild, Winfried Alsdorf, Moritz Kaune, Lukas Böckelmann, Jessica Hauschild, Christoph Krisp, Tina Rohlfing, Ceren Saygi, Malik Alawi, Alexandra Zielinski, Claudia Langebrake, Su Jung Oh-Hohenhorst, Sven Perner, Derya Tilki, Hartmut Schlüter, Markus Graefen, Sergey A. Dyshlovoy, and Carsten Bokemeyer. 2022. "Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer" International Journal of Molecular Sciences 23, no. 23: 14948. https://doi.org/10.3390/ijms232314948