Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conditions of Phosphorylation
2.2. FT-IR Spectra of Phosphorylated KF
2.3. 31P-NMRSpectrum of Phosphorylated KF
2.4. Thermal Degradation Performance of Phosphorylated KF
2.5. Heat Release Performanceof the Degraded Products of Phosphorylated KF
2.6. Flammability of Phosphorylated KF
2.7. Surface Topography of Unburned and Burned Phosphorylated KFs
2.8. Raman Spectra of Char Residues of Raw and Phosphorylated KFs
3. Materials and Methods
3.1. Materials
3.2. Phosphorylation of KF
3.3. Characterizations and Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DTG | Differential thermogravimetric |
FT-IR | Fourier transform infrared |
KF | Kapok fiber |
NMR | Nuclear magnetic resonance |
HRC | Heat release capacity |
HRR | Heat release rate |
ICP-AES | Inductively coupled plasma-atomic emission spectrometry |
PA | Phytic acid |
PCFC | Pyrolysis combustion flow calorimetry |
pHRR | Peak heat release rate |
SEM | Scanning electron microscope |
TG | Thermogravimetric |
THR | Total heat release |
References
- Zheng, Y.; Wang, J.; Zhu, Y.; Wang, A. Research and application of kapok fiber as an absorbing material: A mini review. J. Environ. Sci. 2015, 27, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Mwaikambo, L.Y.; Bisanda, E.T. The performance of cotton–kapok fabric–polyester composites. Polym. Test. 1999, 18, 181–198. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Wang, A. Recent advances in the potential applications of hollow kapok fiber-based functional materials. Cellulose 2021, 28, 5269–5292. [Google Scholar] [CrossRef]
- Pividal, P.; Rocha, A.M. Thermal behavior of bi-layered needle-punched nonwovens produced from 100% raw kapok fibers. J. Text. Inst. 2020, 112, 928–935. [Google Scholar] [CrossRef]
- Xiang, H.-F.; Wang, D.; Liua, H.-C.; Zhao, N.; Xu, J. Investigation on sound absorption properties of kapok fibers. Chin. J. Polym. Sci. 2013, 31, 521–529. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, W.; Duan, C.; Xiao, H.; Shi, M.; Zhao, N.; Xu, J. Superhydrophobicity determines the buoyancy performance of kapok fiber aggregates. Appl. Surf. Sci. 2013, 266, 225–229. [Google Scholar] [CrossRef]
- Futalan, C.M.; Choi, A.E.S.; Soriano, H.G.O.; Cabacungan, M.K.B.; Millare, J.C. Modification strategies of kapok fiber composites and its application in the adsorption of heavy metal ions and dyes from aqueous solutions: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 2703. [Google Scholar] [CrossRef]
- Wang, F. Comparisons of thermal and evaporative resistances of kapok coats and traditional down coats. Fibers Text. East. Eur. 2010, 18, 75–78. [Google Scholar]
- Venkata Reddy, G.; Venkata Naidu, S.; Shobha Rani, T. Impact properties of kapok based unsaturated polyester hybrid composites. J. Reinf. Plast. Compos. 2008, 27, 1789–1804. [Google Scholar] [CrossRef]
- Chung, B.Y.; Hyeong, M.H.; An, B.C.; Lee, E.M.; Lee, S.S.; Kim, J.-H.; Kim, J.-S.; Kim, T.-H.; Cho, J.-Y. Flame-resistant kapok fiber manufactured using gamma ray. Radiat. Phys. Chem. 2009, 78, 513–515. [Google Scholar] [CrossRef]
- Lyu, L.; Tian, Y.; Lu, J.; Xiong, X.; Guo, J. Flame-retardant and sound-absorption properties of composites based on kapok fiber. Materials 2020, 13, 2845. [Google Scholar] [CrossRef]
- Cashen, N.A.; Markezich, A.R.; Legendre, D.C. The electrostatic properties of THPOH-NH3 flame-retardant cotton fabric as they pertain to potential mill problems and performance properties. Text. Res. J. 1976, 46, 671–672. [Google Scholar] [CrossRef]
- Lam, Y.L.; Kan, C.-W.; Yuen, C.W.M. Objective measurement of hand properties of plasma pre-treated cotton fabrics subjected to flame-retardant finishing catalyzed by zinc oxide. Fibers Polym. 2014, 15, 1880–1886. [Google Scholar] [CrossRef]
- Horrocks, A.R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym. Degrad. Stab. 2011, 96, 377–392. [Google Scholar] [CrossRef]
- Kulkarni, S.; Xia, Z.; Yu, S.; Kiratitanavit, W.; Morgan, A.B.; Kumar, J.; Mosurkal, R.; Nagarajan, R. Bio-based flame-retardant coatings based on the synergistic combination of tannic acid and phytic acid for nylon–cottonblends. ACS Appl. Mater. Interfaces 2021, 13, 61620–61628. [Google Scholar] [CrossRef]
- Sykam, K.; Försth, M.; Sas, G.; Restás, Á.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crop. Prod. 2021, 164, 113349. [Google Scholar] [CrossRef]
- Dost, K.; Tokul, O. Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Chim. Acta 2006, 558, 22–27. [Google Scholar] [CrossRef]
- Yang, W.; Tawiah, B.; Yu, C.; Qian, Y.-F.; Wang, L.-L.; Yuen, A.C.-Y.; Zhu, S.-E.; Hu, E.-Z.; Chen, T.B.Y.; Yu, B.; et al. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2018, 110, 227–236. [Google Scholar] [CrossRef]
- Barbalini, M.; Bartoli, M.; Tagliaferro, A.; Malucelli, G. Phytic acid and biochar: An effective all bio-sourced flame retardant formulation for cotton fabrics. Polymers 2020, 12, 811. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.; Kjellin, S.; Larsson, A.-C. Phytic acid-based flame retardants for cotton. Green Mater. 2020, 8, 123–130. [Google Scholar] [CrossRef]
- Gaan, S.; Sun, G.; Gaan, S.; Sun, G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym. Degrad. Stab. 2007, 92, 968–974. [Google Scholar] [CrossRef]
- Horrocks, A.R. Enhancing polymer char formation by reaction with phosphorylated polyols. 1. Cellulose. Polymer 2001, 42, 8025–8033. [Google Scholar] [CrossRef]
- Solovov, R.; Perevoznikova, A.; Seliverstov, A.; Shapagin, A.; Fedoseev, A.; Milyutin, V.; Ershov, B. Physicochemical and sorptive properties of a phosphorylated mercerized cotton fabric. Polymers 2021, 13, 3756. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-B.; Tang, R.-C.; Yu, C.-B. Flame Retardant functionalization of microcrystalline cellulose by phosphorylation reaction with phytic acid. Int. J. Mol. Sci. 2021, 22, 9631. [Google Scholar] [CrossRef] [PubMed]
- Ghanadpour, M.; Carosio, F.; Larsson, P.T.; Wågberg, L. Phosphorylated cellulose nanofibrils: A renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 2015, 16, 3399–3410. [Google Scholar] [CrossRef]
- Kokol, V.; Božič, M.; Vogrinčič, R.; Mathew, A.P. Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr. Polym. 2015, 125, 301–313. [Google Scholar] [CrossRef]
- Ablouh, E.-H.; Brouillette, F.; Taourirte, M.; Sehaqui, H.; El Achaby, M.; Belfkira, A. A highly efficient chemical approach to producing green phosphorylated cellulosic macromolecules. RSC Adv. 2021, 11, 24206–24216. [Google Scholar] [CrossRef]
- Antoun, K.; Ayadi, M.; El Hage, R.; Nakhl, M.; Sonnier, R.; Gardiennet, C.; Le Moigne, N.; Besserer, A.; Brosse, N. Renewable phosphorous-based flame retardant for lignocellulosic fibers. Ind. Crop. Prod. 2022, 186, 115265. [Google Scholar] [CrossRef]
- Blanchard, E.J.; Graves, E.E. Phosphorylation of cellulose with some phosphonic acid derivatives. Text. Res. J. 2003, 73, 22–26. [Google Scholar] [CrossRef]
- Hou, G.; Zhao, S.; Peng, L.; Fang, Z.; Isogai, A. A systematic study for the structures and properties of phosphorylated pulp fibers prepared under various conditions. Cellulose 2022, 29, 7365–7376. [Google Scholar] [CrossRef]
- Fu, F.; Xu, M.; Wang, H.; Wang, Y.; Ge, H.; Zhou, J. Improved synthesis of cellulose carbamates with minimum urea based on an easy scale-up method. ACS Sustain. Chem. Eng. 2015, 3, 1510–1517. [Google Scholar] [CrossRef]
- Heinze, U.; Klemm, D.; Unger, E.; Pieschel, F. New starch phosphate carbamides of high swelling ability: Synthesis and characterization. StarchStärke 2003, 55, 55–60. [Google Scholar] [CrossRef]
- Khalil, M.I.; Farag, S.; Mostafa, K.M.; Hebeish, A. Some studies on starch carbamate. StarchStärke 1994, 46, 312–316. [Google Scholar] [CrossRef]
- Nam, S.; Condon, B.D.; Parikh, D.V.; Zhao, Q.; Cintrón, M.S.; Madison, C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym. Degrad. Stab. 2011, 96, 2010–2018. [Google Scholar] [CrossRef]
- Suflet, D.M.; Chitanu, G.C.; Popa, V.I. Phosphorylation of polysaccharides: New results on synthesis and characterisation of phosphorylated cellulose. React. Funct. Polym. 2006, 66, 1240–1249. [Google Scholar] [CrossRef]
- Yu, S.; Xia, Z.; Kiratitanavit, W.; Kulkarni, S.; Kumar, J.; Mosurkal, R.; Nagarajan, R. Facile microwave assisted flame retardant treatment for cotton fabric using a biobased industrial byproduct: Phytic acid. Cellulose 2021, 28, 10655–10674. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, W.-J.; Zhou, Q.-K.; Gao, T.-Y.; Xu, G.-M.; Tai, Q.-L.; Zhu, S.-E.; Lu, H.-D.; Yuen, R.K.; Yang, W.; et al. Highly thermo-stable resveratrol-based flame retardant for enhancing mechanical and fire safety properties of epoxy resins. Chem. Eng. J. 2022, 450, 138475. [Google Scholar] [CrossRef]
- Shi, Y.; Belosinschi, D.; Brouillette, F.; Belfkira, A.; Chabot, B. Phosphorylation of Kraft fibers with phosphate esters. Carbohydr. Polym. 2014, 106, 121–127. [Google Scholar] [CrossRef]
- Cade-Menun, B. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 2005, 66, 359–371. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Wicklein, B.; Carosio, F.; Wågberg, L. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 2018, 10, 4085–4095. [Google Scholar] [CrossRef] [Green Version]
- Granja, P.L.; Pouységu, L.; Pétraud, M.; De Jéso, B.; Baquey, C.; Barbosa, M.A. Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J. Appl. Polym. Sci. 2001, 82, 3341–3353. [Google Scholar] [CrossRef]
- Wanrosli, W.; Rohaizu, R.; Ghazali, A. Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose. Carbohydr. Polym. 2011, 84, 262–267. [Google Scholar] [CrossRef]
- Bradbury, A.G.W.; Sakai, Y.; Shafizadeh, F. A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 1979, 23, 3271–3280. [Google Scholar] [CrossRef]
- Daneluti, A.L.M.; Matos, J.D.R. Study of thermal behavior of phytic acid. Braz. J. Pharm. Sci. 2013, 49, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Draman, S.F.S.; Daik, R.; Latif, F.A.; El-Sheikh, S.M. Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose. BioResources 2013, 9, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Bernt, I. Fine-tuning of paper characteristics by incorporation of viscose fibers. Lenzing. Ber. 2011, 89, 78–85. [Google Scholar]
- Roggenstein, W. Viscose fibers with new functional qualities. Lenzing. Ber. 2011, 89, 72–77. [Google Scholar]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. [Google Scholar] [CrossRef]
Sample | The First Weight Loss | The Second Weight Loss | |||||
---|---|---|---|---|---|---|---|
To (°C) | Te (°C) | Tmax (°C) | Residue at Tmax (%) | Residue at Te (%) | Residue at 500 °C (%) | Residue at 700 °C (%) | |
In N2 | |||||||
KF | 282 | 359 | 344.6 | 40.7 | 30.7 | 16.7 | 8.3 |
KFPA-2 | 213 | 287 | 277.3 | 64.5 | 56.2 | 39.8 | 30.2 |
KFPA-4 | 212 | 271 | 266.5 | 65.9 | 61.1 | 46.6 | 36.4 |
KFPA-6 | 218 | 270 | 267.1 | 68.3 | 63.7 | 49.1 | 42.6 |
In air | |||||||
KF | 276 | 330 | 319.5 | 40.2 | 28.5 | 0.4 | 0.4 |
KFPA-2 | 220 | 276 | 270.8 | 64.3 | 57.0 | 24.5 | 4.6 |
KFPA-4 | 210 | 267 | 262.6 | 67.9 | 62.2 | 33.3 | 3.7 |
KFPA-6 | 214 | 263 | 260.5 | 66.6 | 62.2 | 32.2 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.-L.; Tang, R.-C. Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy. Int. J. Mol. Sci. 2022, 23, 14950. https://doi.org/10.3390/ijms232314950
Jiang X-L, Tang R-C. Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy. International Journal of Molecular Sciences. 2022; 23(23):14950. https://doi.org/10.3390/ijms232314950
Chicago/Turabian StyleJiang, Xin-Lin, and Ren-Cheng Tang. 2022. "Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy" International Journal of Molecular Sciences 23, no. 23: 14950. https://doi.org/10.3390/ijms232314950
APA StyleJiang, X.-L., & Tang, R.-C. (2022). Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy. International Journal of Molecular Sciences, 23(23), 14950. https://doi.org/10.3390/ijms232314950