Electrolyzed–Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects
Abstract
:1. Introduction
2. Physicochemical Properties and Biological Effects of Molecular Hydrogen
3. Water Ionizer History and Its Connection with Hydrogen
Observed Benefit from ERW
4. Rejected Hypotheses on ERW
4.1. Alkaline pH
- False Claim 1: An Acidic pH Causes All Diseases
- False Claim 2: Ordinary Sensations as Symptomatic Evidence of a Low pH
- False Claim 3: Drinking Alkaline Water Influences Blood pH and Provides Health Benefits
Irrelevance of Alkaline pH in ERW
4.2. Microclustering
4.3. Oxidation–Reduction Potential
4.4. Atomic Hydrogen
4.5. Platinum Nanoparticles and Elemental Mineral Colloids
4.6. Superiority of ERW to Hydrogen Water?
5. Homing in on Molecular Hydrogen
5.1. H2 Is Exclusively Responsible for Any Observed Therapeutic Effects
5.2. Broad Recognition of the Importance of H2 Still Needed
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Henry, M.; Chambron, J. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW). Water 2013, 5, 2094–2115. [Google Scholar] [CrossRef]
- Jackson, K.; Dressler, N.; Ben-Shushan, R.S.; Meerson, A.; LeBaron, T.W.; Tamir, S. Effects of alkaline-electrolyzed and hydrogen-rich water, in a high-fat-diet nonalcoholic fatty liver disease mouse model. World J. Gastroenterol. 2018, 24, 5095–5108. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Hirano, S.-I.; Sato, B.; Yamamoto, H.; Takefuji, Y.; Satoh, F. Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidents. Med. Gas Res. 2023, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S. Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol. 2015, 555, 289–317. [Google Scholar] [CrossRef]
- Nishimura, N.; Tanabe, H.; Adachi, M.; Yamamoto, T.; Fukushima, M. Colonic hydrogen generated from fructan diffuses into the abdominal cavity and reduces adipose mRNA abundance of cytokines in rats. J. Nutr. 2013, 143, 1943–1949. [Google Scholar] [CrossRef] [Green Version]
- LeBaron, T.W.; Laher, I.; Kura, B.; Slezak, J. Hydrogen gas: From clinical medicine to an emerging ergogenic molecule for sports athletes. Can. J. Physiol. Pharmacol. 2019, 97, 797–807. [Google Scholar] [CrossRef]
- Andersen, L.P.; Werner, M.U.; Rosenkilde, M.M.; Harpsoe, N.G.; Fuglsang, H.; Rosenberg, J.; Gogenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol. 2016, 17, 8. [Google Scholar] [CrossRef] [Green Version]
- Nishimaki, K.; Asada, T.; Ohsawa, I.; Nakajima, E.; Ikejima, C.; Yokota, T.; Kamimura, N.; Ohta, S. Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Curr. Alzheimer Res. 2018, 15, 482–492. [Google Scholar] [CrossRef] [Green Version]
- LeBaron, T.W.; Singh, R.B.; Fatima, G.; Kartikey, K.; Sharma, J.P.; Ostojic, S.M.; Gvozdjakova, A.; Kura, B.; Noda, M.; Mojto, V.; et al. The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. 2020, 13, 889–896. [Google Scholar] [CrossRef]
- Ono, H.; Nishijima, Y.; Ohta, S.; Sakamoto, M.; Kinone, K.; Horikosi, T.; Tamaki, M.; Takeshita, H.; Futatuki, T.; Ohishi, W.; et al. Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection. J. Stroke Cerebrovasc. Dis. 2017, 26, 2587–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwazeer, D.; Liu, F.F.; Wu, X.Y.; LeBaron, T.W. Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 5513868. [Google Scholar] [CrossRef] [PubMed]
- Slezak, J.; Kura, B.; LeBaron, T.W.; Singal, P.K.; Buday, J.; Barancik, M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr. Pharm. Des. 2021, 27, 610–625. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, J.; Zhang, Y. Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 2249749. [Google Scholar] [CrossRef]
- Zoulias, E.; Varkaraki, E.; Lymberopoulos, N.; Christodoulou, C.N.; Karagiorgis, G.N. A review on water electrolysis. Tcjst 2004, 4, 41–71. [Google Scholar]
- Kumon, K. What is functional water? Artif. Organs 1997, 21, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, S.; Kabayama, S.; Nakano, M.; Miura, T.; Kusumoto, K.; Gotoh, M.; Hayashi, H.; Otsubo, K.; Morisawa, S.; Katakura, Y. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem. Biophys. Res. Commun. 1997, 234, 269–274. [Google Scholar] [CrossRef]
- Koseki, S.; Itoh, K. Fundamental properties of electrolyzed water. J. Jpn. Soc. Food Sci. 2000, 47, 390–393. [Google Scholar] [CrossRef]
- Kikuchi, K.; Takeda, H.; Rabolt, B.; Okaya, T.; Ogumi, Z.; Saihara, Y.; Noguchi, H. Hydrogen particles and supersaturation in alkaline water from an Alkali–Ion–Water electrolyzer. J. Electroanal. Chem. 2001, 506, 22–27. [Google Scholar] [CrossRef]
- Kikuchi, K.; Takeda, H.; Rabolt, B.; Okaya, T.; Ogumi, Z.; Saihara, Y.; Noguchi, H. Hydrogen concentration in water from an Alkali-Ion-Water electrolyzer having a platinum-electroplated titanium electrode. J. Appl. Electrochem. 2001, 31, 1301–1306. [Google Scholar] [CrossRef]
- Tanaka, Y.; Uchinashi, S.; Saihara, Y.; Kikuchi, K.; Okaya, T.; Ogumi, Z. Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer. Electrochim. Acta 2003, 48, 4013–4019. [Google Scholar] [CrossRef]
- Shirahata, S.; Hamasaki, T.; Teruya, K. Advanced research on the health benefit of reduced water. Trends Food Sci. Technol. 2012, 23, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Fujiyama, Y.; Kitahora, T. Alkaline electrolytic water (alkali ions water) for drinking water in medicine. In Mizu No Tokusei to Atarashii Riyo Gijutsu; Enu-Ti-Esu: Tokyo, Japan, 2004; pp. 348–457. [Google Scholar]
- Tashiro, H.; Kitahora, T.; Fujiyama, Y.; Banba, T. Clinical evaluation of alkali-ionized water for chronic diarrhea-placebo-controlled double blind study. Dig. Absorpt. 2000, 23, 52–56. [Google Scholar]
- Yan, P.; Daliri, E.B.; Oh, D.H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Kim, D.H.; Kim, S.K.; Song, S.B.; Uh, Y.; Jin, D.; Qi, X.F.; Teng, Y.C.; Lee, K.J. The melamine excretion effect of the electrolyzed reduced water in melamine-fed mice. Food Chem. Toxicol. 2011, 49, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Kawamura, M. Clinical Applications of Electrolyzed-Reduced Water. In Animal Cell Technology: Basic & Applied Aspects; Shirahata, S., Teruya, K., Katakura, Y., Eds.; Springer: Dordrecht, The Netherlands, 2002; Volume 12, pp. 31–36. [Google Scholar]
- Hanaoka, K. Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J. Appl. Electrochem. 2001, 31, 1307–1313. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Kabayama, S.H.; Takaki, M.; Teruya, K.; Otubo, K.; Morisawa, S.; Shirahata, S. Suppression of Oxidative Stress-Induced Apoptosis of Neuronal Cells by Electrolyzed-Reduced Water. Anim. Cell Technol. Meets Genom. 2005, 2, 257–260. [Google Scholar]
- Park, E.J.; Ryoo, K.; Lee, Y.; Lee, J.; Lee, M. Protective effect of electrolyzed reduced water on the paraquat-induced oxidative damage of human lymphocyte DNA. J. Korean Soc. Appl. Biol. Chem. 2005, 48, 155–160. [Google Scholar]
- Lee, M.Y.; Kim, Y.K.; Ryoo, K.K.; Lee, Y.B.; Park, E.J. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Appl. Biochem. Biotechnol. 2006, 135, 133–144. [Google Scholar] [CrossRef]
- Oda, M.; Kusumoto, K.; Teruya, K.; Hara, T.; Maki, T.; Kabayama, S.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Hayashi, H.; et al. Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In Animal Cell Technology: Products from Cells, Cells as Products, Proceedings of the 16th ESACT Meeting, Lugano, Switzerland, 25–29 April 1999; Springer: Dordrecht, The Netherlands, 2002; pp. 425–427. [Google Scholar]
- Li, Y.; Nishimura, T.; Teruya, K.; Maki, T.; Komatsu, T.; Hamasaki, T.; Kashiwagi, T.; Kabayama, S.; Shim, S.Y.; Katakura, Y.; et al. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species. Cytotechnology 2002, 40, 139–149. [Google Scholar] [CrossRef]
- Naito, Y.; Takagi, T.; Uchiyama, K.; Tomatsuri, N.; Matsuyama, K.; Fujii, T.; Yagi, N.; Yoshida, N.; Yoshikawa, T. Chronic administration with electrolyzed alkaline water inhibits aspirin-induced gastric mucosal injury in rats through the inhibition of tumor necrosis factor-alpha expression. J. Clin. Biochem. Nutr. 2002, 32, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Hamaskai, T.; Sugihara, K.; Teruya, S.; Kabayama, Y.; Katakura, K.; Otsubo, S.; Morisawa, S.; Shirahata, S. The suppressive effect of electrolyzed reduced water on lipid peroxidation. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Fifteenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fuchu, Japan, 11–15 November 2002; Springer: Dordrecht, The Netherlands, 2003; Volume 13, pp. 381–385. [Google Scholar]
- Jin, D.; Ryu, S.H.; Kim, H.W.; Yang, E.J.; Lim, S.J.; Ryang, Y.S.; Chung, C.H.; Park, S.K.; Lee, K.J. Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci. Biotechnol. Biochem. 2006, 70, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GU, H.Y.; Itokawa, Y.; Maenaka, T.; Nakamura, T.; Oshima, M.; Hasegawa, T.; Suzuki, I.; Ishida, T. Anti-oxidation Effect and Anti Type 2 Diabetic Effect in Active Hydrogen Water. Med. Biol. 2006, 150, 384–392. [Google Scholar]
- Yokoyama, J.-m.K.a.K. Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korea. J. Lab. Anim. Sci. 1997, 13, 187–190. [Google Scholar]
- Shirahata, S.; Nishimura, T.; Kabayama, S.; Aki, D.; Teruya, K.; Otsubo, K.; Morisawa, S.; Ishii, Y.; Gadek, Z.; Katakura, Y. Anti-oxidative water improves diabetes. In Animal Cell Technology: From Target to Market, Proceedings of the 17th ESACT Meeting, Tylösand, Sweden, 10–14 June 2001; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Komatsu, T.; Katakura, Y.; Teruya, K.; Otsubo, K.; Morisawa, S.; Shirahata, S. Electrolyzed reduced water induces differentiation in K-562 human leukemia cells. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Fifteenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fuchu, Japan, 11–15 November 2002; Springer: Dordrecht, The Netherlands, 2003; pp. 387–391. [Google Scholar]
- Jun, Y.; Teruya, K.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Shirahata, S. Suppression of invasion of cancer cells and angio-genesis by electrolyzed reduced water. In In Vitro Cellular & Developmental Biology; Springer: Dordrecht, The Netherlands, 2004; Volume 40. [Google Scholar]
- Saitoh, Y.; Okayasu, H.; Xiao, L.; Harata, Y.; Miwa, N. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol. Res. 2008, 17, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, R.; Teruya, K.; Katakura, Y.; Osada, K.; Hamasaki, T.; Kashiwagi, T.; Komatsu, T.; Li, Y.; Ye, J.; Ichikawa, A.; et al. Electrolyzed Reduced Water Supplemented with Platinum Nanoparticles Suppresses Promotion of Two-stage Cell Transformation. Cytotechnology 2005, 47, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Teruya, K.; Katakura, Y.; Otsubo, K.; Morisawa, S.; Xu, Q.; Shirahata, S. Suppression of two-stage cell transformation by electrolyzed reduced water containing platinum nanoparticles. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Ninth Annual Meeting of the Japanese Association for Animal Cell Technology, Yokohama, Japan, 1–4 September 1996; Springer: Dordrecht, The Netherlands, 2006; Volume 14, pp. 113–119. [Google Scholar]
- Hanaoka, K.; Sun, D.; Lawrence, R.; Kamitani, Y.; Fernandes, G. The mechanism of the enhanced antioxidant effects against superoxide anion radicals of reduced water produced by electrolysis. Biophys. Chem. 2004, 107, 71–82. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- Rheem, K.E.; Lim, Y.R.; Lee, B.S.; Lee, S.K.; Seong, K.M.; Hyun, D.H.; Min, K.J. Does alkaline-reduced hexagonal water delay the aging process in Drosophila? Geriatr. Gerontol. Int. 2012, 12, 151–154. [Google Scholar] [CrossRef]
- Hayashi, H. Water, The Chemisty of LIfe. Explore 1995, 6, 28–31. [Google Scholar]
- Hatto, M.; Sakai, Y.; Ohtsuka, H. The physiological property and function of the electrolyzed-ionized calcium Aquamax on water molecular clusters fractionization. Artif. Organs 1997, 21, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V. Selective stimulation of the growth of anaerobic microflora in the human intestinal tract by electrolyzed reducing water. Med. Hypotheses 2005, 64, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Shinohara, A.; Yoshimura, Y. Studies on the Physicochemical Properties and Existence of Water Products (as Drinks) Advertised as Having Smaller Cluster Sizes of H2O Molecules than Those of Regular Water. J. Health Sci. 2010, 56, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Siswantoro, E.; Purwanto, N.H.; Sutomo. Effectiveness of Alkali Water Consumption to Reduce Blood Sugar Levels in Diabetes Mellitus Type 2. J. Diabetes Mellit. 2017, 07, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Okouchi, S.; Suzuki, M.; Sugano, K.; Kagamimori, S.; Ikeda, S. Water Desirable for the Human Body in Terms of Oxidation-Reduction Potential (ORP) to pH Relationship. J. Food Sci. 2002, 67, 1594–1598. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Bagrii, V.A.; Mel’nik, L.A.; Chebotareva, R.D.; Bashtan, S.Y. The use of redox potential in water treatment processes. J. Water Chem. Technol. 2010, 32, 1–9. [Google Scholar] [CrossRef]
- Parker, P. Ionized Water Protocols; Simple Health Network: New York, NY, USA, 2012. [Google Scholar]
- Huang, K.C.; Hsu, S.P.; Yang, C.C.; Ou-Yang, P.; Lee, K.T.; Morisawa, S.; Otsubo, K.; Chien, C.T. Electrolysed-reduced water dialysate improves T-cell damage in end-stage renal disease patients with chronic haemodialysis. Nephrol. Dial. Transpl. 2010, 25, 2730–2737. [Google Scholar] [CrossRef]
- McCauley, B. The Miraculous Properties of Ionized Water; Scelzi Enterprises Inc.: Fresno, CA, USA, 2008. [Google Scholar]
- Hiraoka, A.; Shinohara, A. Effects of drinking a water product supplemented with the platinum nanocolloid on the oxidative stress and functions of liver and kidney. Biomed. Res. Trace Elem. 2009, 20, 186. [Google Scholar]
- LeBaron, T.W.; Sharpe, R. ORP should not be used to estimate or compare concentrations of aqueous H2: An in silico analysis and narrative synopsis. Front. Food Sci. Technol. 2022, 2, 26. [Google Scholar] [CrossRef]
- Hiraoka, A.; Takemoto, M.; Suzuki, T.; Shinohara, A.; Chiba, M.; Shirao, M.; Yoshimura, Y. Studies on the Properties and Real Existence of Aqueous Solution Systems that are Assumed to Have Antioxidant Activities by the Action of “Active Hydrogen”. J. Health Sci. 2004, 50, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•OH−) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.C. Quantitative Chemical Analysis; Macmillan: New York, NY, USA, 2010. [Google Scholar]
- Mohr, R. The Healing Power of Kangen Water; Blurb, Incorporated: San Francisco, CA, USA, 2016. [Google Scholar]
- Uchino, T.; Nakaji, K.; Yamanaka, S.; Okumura, T. Physical properties of water exposed to the electric field. Sci. Bull. Fac. Agric. Kyushu. Univ. 1999, 54, 61–67. [Google Scholar]
- Hiraoka, A. Studies on the Real Existence of Water Products Consumed as Drinks for Health. J. Kyorin Med. Soc. 2012, 43, 17–26. [Google Scholar]
- Beattie, J.K.; Djerdjev, A.M.; Gray-Weale, A.; Kallay, N.; Lützenkirchen, J.; Preočanin, T.; Selmani, A. pH and the surface tension of water. J. Colloid Interface Sci. 2014, 422, 54–57. [Google Scholar] [CrossRef]
- Barattiero, P. Reclaiming Your Health with Hydrogen Water. 2022. Available online: https://thebiohackerbabes.com/151-reclaiming-your-health-with-hydrogen-water/ (accessed on 15 October 2022).
- Forslund, T.; Koistinen, A.; Anttinen, J.; Wagner, B.; Miettinen, M. Forty years abuse of baking soda, rhabdomyolysis, glomerulonephritis, hypertension leading to renal failure: A case report. Clin. Med. Case Rep. 2008, 1, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Min. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef]
- Kozisek, F. Regulations for calcium, magnesium or hardness in drinking water in the European Union member states. Regul. Toxicol. Pharmacol. 2020, 112, 104589. [Google Scholar] [CrossRef]
- Koseki, M.; Fujiki, S.; Tanaka, Y.; Noguchi, H.; Nishikawa, T. Effect of water hardness on the taste of alkaline electrolyzed water. J. Food Sci. 2005, 70, S249–S253. [Google Scholar] [CrossRef]
- Koseki, M.; Tanaka, Y.; Noguchi, H.; Nishikawa, T. Effect of pH on the taste of alkaline electrolyzed water. J. Food Sci. 2007, 72, S298–S302. [Google Scholar] [CrossRef]
- Shirahata, S.; Kabayama, S.; Kusumoto, K.; Gotoh, M.; Teruya, K.; Otsubo, K.; Morisawa, J.S.; Hayashi, H.; Katakura, K. Electrolyzed Reduced Water Which Can Scavenge Active Oxygen Species Supresses Cell Growth and Regulates Gene Expression of Animal Cells. In New Developments and New Applications in Animal Cell Technology, Proceedings of the 15th ESACT Meeting, Tours, France, 7–11 September 1997; Springer: Dordrecht, The Netherlands, 1998; pp. 93–96. [Google Scholar]
- Hamasaki, T.; Kashiwagi, T.; Imada, T.; Nakamichi, N.; Aramaki, S.; Toh, K.; Morisawa, S.; Shimakoshi, H.; Hisaeda, Y.; Shirahata, S. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008, 24, 7354–7364. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, Y.; Hamasaki, T.; Nakamichi, N.; Komatsu, T.; Kashiwagi, T.; Teruya, K.; Nishikawa, R.; Kawahara, T.; Osada, K.; et al. Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol. Pharm. Bull. 2008, 31, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Tian, H.; Kinjo, T.; Hamasaki, T.; Tomimatsu, K.; Nakamichi, N.; Teruya, K.; Kabayama, S.; Shirahata, S. Extension of the lifespan of Caenorhabditis elegans by the use of electrolyzed reduced water. Biosci. Biotechnol. Biochem. 2010, 74, 2011–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Tian, H.; Hamasaki, T.; Abe, M.; Nakamichi, N.; Kiichiro, T.; Katakura, Y.; Morisawa, S.; Shirahata, S. Electrolyzed reduced water prolongs caenorhabditis elegans lifespan. In Animal Cell Technology: Basic & Applied Aspects, Proceedings of the Seventeenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Nagoya, Japan, 15–18 November 2004; Springer: Dordrecht, The Netherlands, 2010; Volume 16, pp. 289–293. [Google Scholar]
- Li, Y.; Hamasaki, T.; Nakamichi, N.; Kashiwagi, T.; Komatsu, T.; Ye, J.; Teruya, K.; Abe, M.; Yan, H.; Kinjo, T.; et al. Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 2011, 63, 119–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, T.; Ye, J.; Yan, H.; Hamasaki, T.; Nakanishi, H.; Toh, K.; Nakamichi, N.; Kabayama, S.; Teruya, K.; Shirahata, S. Suppressive effects of electrochemically reduced water on matrix metalloproteinase-2 activities and in vitro invasion of human fibrosarcoma HT1080 cells. Cytotechnology 2012, 64, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Spulber, S.; Edoff, K.; Hong, L.; Morisawa, S.; Shirahata, S.; Ceccatelli, S. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS ONE 2012, 7, e42078. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Park, S.K. Electrolyzed-reduced water increases resistance to oxidative stress, fertility, and lifespan via insulin/IGF-1-like signal in C. elegans. Biol. Res. 2013, 46, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, T.; Yan, H.; Hamasaki, T.; Kinjo, T.; Nakamichi, N.; Teruya, K.; Kabayama, S.; Shirahata, S. Electrochemically reduced water protects neural cells from oxidative damage. Oxid. Med. Cell. Longev. 2014, 2014, 869121. [Google Scholar] [CrossRef]
- Tsai, C.F.; Hsu, Y.W.; Chen, W.K.; Ho, Y.C.; Lu, F.J. Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells due to electrolyzed-reduced water and glutathione. Biosci. Biotechnol. Biochem. 2009, 73, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, K.-K.; Lee, Y.-B.; Lee, J.-K.; Lee, M.-Y. Permeability and dissolvability of cathodic electrolyzed water for electrophoretic gel and green tea components. J. Korea Acad. Ind. Coop. Soc. 2005, 6, 87–93. [Google Scholar]
- Gouda, M.; Bekhit, A.E.-D.; Tang, Y.; Huang, Y.; Huang, L.; He, Y.; Li, X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021, 73, 105538. [Google Scholar] [CrossRef] [PubMed]
- Varum, F.; Hatton, G.; Basit, A. Food, physiology and drug delivery. Int. J. Pharm. 2013, 457, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Chaw, C.S.; Yazaki, E.; Evans, D.F. The effect of pH change on the gastric emptying of liquids measured by electrical impedance tomography and pH-sensitive radiotelemetry capsule. Int. J. Pharm. 2001, 227, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Dahms, F.; Fingerhut, B.P.; Nibbering, E.T.J.; Pines, E.; Elsaesser, T. Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy. Science 2017, 357, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschelli, S.; Gatta, D.M.; Pesce, M.; Ferrone, A.; Patruno, A.; de Lutiis, M.A.; Grilli, A.; Felaco, M.; Croce, F.; Speranza, L. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-kappaB/iNOS Pathway in U937 Cell Line under Altered Redox State. Int. J. Mol. Sci. 2016, 17, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siefermann, K.R.; Liu, Y.; Lugovoy, E.; Link, O.; Faubel, M.; Buck, U.; Winter, B.; Abel, B. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2010, 2, 274–279. [Google Scholar] [CrossRef]
- Renault, J.P.; Vuilleumier, R.; Pommeret, S. Hydrated electron production by reaction of hydrogen atoms with hydroxide ions: A first-principles molecular dynamics study. J. Phys. Chem. A 2008, 112, 7027–7034. [Google Scholar] [CrossRef]
- Gantchev, T.G.; Hunting, D.J. Probing the interactions of the solvated electron with DNA by molecular dynamics simulations: II. bromodeoxyuridine-thymidine mismatched DNA. J. Mol. Model. 2009, 15, 9–23. [Google Scholar] [CrossRef]
- Smit, R.H.; Noat, Y.; Untiedt, C.; Lang, N.D.; van Hemert, M.C.; van Ruitenbeek, J.M. Measurement of the conductance of a hydrogen molecule. Nature 2002, 419, 906–909. [Google Scholar] [CrossRef] [Green Version]
- Shirahata, S.; Hamasaki, T.; Haramaki, K.; Nakamura, T.; Abe, M.; Yan, H.; Kinjo, T.; Nakamichi, N.; Kabayama, S.; Teruya, K. Anti-diabetes effect of water containing hydrogen molecule and Pt nanoparticles. BMC Proc. 2011, 5, P18. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, A.; Sasaki, S.; Yamada, T.; Shinohara, A.; Chiba, M. Effects of Drinking a Water Product with Anti-Oxidant Activities In Vitro on the Blood Levels of Biomarker Substances for the Oxidative Stress. J. Health Sci. 2006, 52, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Albert, L.; Cox, M. Lehinger Principles of Biochemistry, 5th ed.; Macmillan: New York, NY, USA, 2008. [Google Scholar]
- Donald, W.A.; Leib, R.D.; O’Brien, J.T.; Williams, E.R. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy. Chemistry 2009, 15, 5926–5934. [Google Scholar] [CrossRef] [PubMed]
- Esswein, A.J.; Nocera, D.G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Takahashi, M.; Shimizu, T.; Shirasawa, T.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing Dev. 2008, 129, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Kajita, M.; Kim, J.; Kanayama, A.; Takahashi, K.; Mashino, T.; Miyamoto, Y. In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 2009, 20, 455105. [Google Scholar] [CrossRef] [PubMed]
- Kajita, M.; Hikosaka, K.; Iitsuka, M.; Kanayama, A.; Toshima, N.; Miyamoto, Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic. Res. 2007, 41, 615–626. [Google Scholar] [CrossRef]
- Hamasaki, T.; Harada, G.; Nakamichi, N.; Kabayama, S.; Teruya, K.; Fugetsu, B.; Gong, W.; Sakata, I.; Shirahata, S. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. PLoS ONE 2017, 12, e0171192. [Google Scholar] [CrossRef]
- Yan, H.; Kashiwaki, T.; Hamasaki, T.; Kinjo, T.; Teruya, K.; Kabayama, S.; Shirahata, S. The neuroprotective effects of electrolyzed reduced water and its model water containing molecular hydrogen and Pt nanoparticles. BMC Proc. 2011, 5, P69. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.X.; Gu, J.L.; Cao, J.M. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomed. 2019, 14, 5595–5609. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Kinjo, T.; Tian, H.; Hamasaki, T.; Teruya, K.; Kabayama, S.; Shirahata, S. Mechanism of the lifespan extension of Caenorhabditis elegans by electrolyzed reduced water--participation of Pt nanoparticles. Biosci. Biotechnol. Biochem. 2011, 75, 1295–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, M.; Kabayama, S.; Terawaki, H.; Nakayama, K.; Kato, K.; Sato, T.; Ito, S. Less-oxidative hemodialysis solution rendered by cathode-side application of electrolyzed water. Hemodial. Int. 2007, 11, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.M.; Fadriquela, A.; Jeong, Y.J.; Kim, C.-S.; Kim, S.-K. Alkaline Reduced Water Attenuates Oxidative Stress-Induced Mitochondrial Dysfunction and Innate Immune Response Triggered by Intestinal Epithelial Dysfunction. Processes 2021, 9, 1828. [Google Scholar] [CrossRef]
- LeBaron, T.W.; Kura, B.; Kalocayova, B.; Tribulova, N.; Slezak, J. A New Approach for the Prevention and Treatment of Cardiovascular Disorders. Molecular Hydrogen Significantly Reduces the Effects of Oxidative Stress. Molecules 2019, 24, 2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penders, J.; Kissner, R.; Koppenol, W.H. ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radic. Biol. Med. 2014, 75, 191–194. [Google Scholar] [CrossRef]
- Li, Q.; Xie, F.; Yi, Y.; Zhao, P.; Zhang, X.; Zhang, X.; Zhang, X.; Ma, X. Hydroxyl-radical scavenging activity of hydrogen does not significantly contribute to its biological function. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ohta, S. Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011, 17, 2241–2252. [Google Scholar] [CrossRef] [Green Version]
- Hara, F.; Tatebe, J.; Watanabe, I.; Yamazaki, J.; Ikeda, T.; Morita, T. Molecular Hydrogen Alleviates Cellular Senescence in Endothelial Cells. Circ. J. 2016, 80, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, T.; Sato, B.; Rikitake, M.; Seo, T.; Kurokawa, R.; Hara, Y.; Naritomi, Y.; Hara, H.; Nagao, T. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: An open-label pilot study. Med. Gas Res. 2012, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Shang, G.; Tanaka, Y.; Saihara, Y.; Hou, L.; Velasquez, N.; Liu, W.; Lu, Y. Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water. BMC Complement. Altern. Med. 2014, 14, 81. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wu, Q.F.; Wan, Y.; Song, S.D.; Xu, J.; Xu, X.S.; Chang, H.L.; Tai, M.H.; Dong, Y.F.; Liu, C. Protective role of hydrogen-rich water on aspirin-induced gastric mucosal damage in rats. World J. Gastroenterol. 2014, 20, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-W. Alkaline Reduced Water Produced by UMQ Showed Anti-Cancer and Anti-Diabetic Effect. 2004. Available online: https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE00975340 (accessed on 17 November 2022).
- Lee, K.-J.; Park, S.-K.; Kim, J.-W.; Kim, G.-Y.; Ryang, Y.S.; Kim, G.-H.; Cho, H.-C.; Kim, S.-K.; Kim, H.-W. Anticancer Effect of Alkaline Reduced Water. J. Int. Soc. Life Inf. Sci. 2004, 22, 302–305. [Google Scholar]
- Yanagihara, T.; Arai, K.; Miyamae, K.; Sato, B.; Shudo, T.; Yamada, M.; Aoyama, M. Electrolyzed hydrogen-saturated water for drinking use elicits an antioxidative effect: A feeding test with rats. Biosci. Biotechnol. Biochem. 2005, 69, 1985–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobue, S.; Yamai, K.; Ito, M.; Ohno, K.; Ito, M.; Iwamoto, T.; Qiao, S.; Ohkuwa, T.; Ichihara, M. Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol. Cell. Biochem. 2015, 403, 231–241. [Google Scholar] [CrossRef]
- Hiraoka, A.; Inaba, H.; Suzuki, E.; Kasai, K.; Suzuki, H.; Shinohara, A.; Shirao, M.; Kubo, K.; Yoshimura, Y. In Vitro Physicochemical Properties of Neutral Aqueous Solution Systems (Water Products as Drinks) Containing Hydrogen Gas, 2-Carboxyethyl Germanium Sesquioxide, and Platinum Nanocolloid as Additives. J. Health Sci. 2010, 56, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, Y.; Harata, Y.; Mizuhashi, F.; Nakajima, M.; Miwa, N. Biological safety of neutral-pH hydrogen-enriched electrolyzed water upon mutagenicity, genotoxicity and subchronic oral toxicity. Toxicol. Ind. Health 2010, 26, 203–216. [Google Scholar] [CrossRef]
- Ignacio, R.M.; Yoon, Y.-S.; Sajo, M.E.J.; Kim, C.-S.; Kim, D.-H.; Kim, S.-K.; Lee, K.-J. The balneotherapy effect of hydrogen reduced water on UVB-mediated skin injury in hairless mice. Mol. Cell. Toxicol. 2013, 9, 15–21. [Google Scholar] [CrossRef]
- Ito, M.; Hirayama, M.; Yamai, K.; Goto, S.; Ito, M.; Ichihara, M.; Ohno, K. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med. Gas Res. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Nagata, S.; Tanaka, Y.; Saihara, Y.; Ogumi, Z. Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis. J. Electroanal. Chem. 2007, 600, 303–310. [Google Scholar] [CrossRef]
- Fujita, K.; Seike, T.; Yutsudo, N.; Ohno, M.; Yamada, H.; Yamaguchi, H.; Sakumi, K.; Yamakawa, Y.; Kido, M.A.; Takaki, A.; et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS ONE 2009, 4, e7247. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Kawamura, T.; Masutani, K.; Peng, X.; Sun, Q.; Stolz, D.B.; Pribis, J.P.; Billiar, T.R.; Sun, X.; Bermudez, C.A.; et al. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc. Res. 2012, 94, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.J.; Nakayama, M.; Mori, T.; Hao, K.; Terawaki, H.; Katoh, J.; Kabayama, S.; Ito, S. Amelioration of cardio-renal injury with aging in dahl salt-sensitive rats by H2-enriched electrolyzed water. Med. Gas Res. 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frajese, G.V.; Benvenuto, M.; Mattera, R.; Giampaoli, S.; Ambrosin, E.; Bernardini, R.; Giganti, M.G.; Albonici, L.; Dus, I.; Manzari, V.; et al. Electrochemically Reduced Water Delays Mammary Tumors Growth in Mice and Inhibits Breast Cancer Cells Survival In Vitro. Evid. Based Complement. Altern. Med. 2018, 2018, 4753507. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Tanaka, Y.; Saihara, Y.; Ando, D.; Goto, Y.; Katayama, A. Effect of hydrogen saturated alkaline electrolyzed water on urinary oxidative stress markers after an acute exercise: A randomized controlled trial. Anti-aging Med 2008, 4, 117–122. [Google Scholar]
- Ignacio, R.M.; Kwak, H.S.; Yun, Y.U.; Sajo, M.E.; Yoon, Y.S.; Kim, C.S.; Kim, S.K.; Lee, K.J. The Drinking Effect of Hydrogen Water on Atopic Dermatitis Induced by Dermatophagoides farinae Allergen in NC/Nga Mice. Evid. Based Complement. Alternat. Med. 2013, 2013, 538673. [Google Scholar] [CrossRef] [PubMed]
- Ignacio, R.M.; Kang, T.Y.; Kim, C.S.; Kim, S.K.; Yang, Y.C.; Sohn, J.H.; Lee, K.J. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice. Biol. Pharm. Bull. 2013, 36, 1052–1059. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Sajo, M.E.; Ignacio, R.M.; Kim, S.K.; Kim, C.S.; Lee, K.J. Positive Effects of hydrogen water on 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice. Biol. Pharm. Bull. 2014, 37, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Yano, S.; Wang, J.; Kabayama, S.; Hara, T. Electrolyzed Hydrogen Water Protects against Ethanol-Induced Cytotoxicity by Regulating Aldehyde Metabolism-Associated Enzymes in the Hepatic Cell Line HepG2. Antioxidants 2021, 10, 801. [Google Scholar] [CrossRef]
- Delos Reyes, F.S.L.G.; Mamaril, A.C.C.; Matias, T.J.P.; Tronco, M.K.V.; Samson, G.R.; Javier, N.D.; Fadriquela, A.; Antonio, J.M.; Sajo, M.E.J.V. The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes. Processes 2021, 9, 1876. [Google Scholar] [CrossRef]
- Chen, B.K.; Wang, C.K. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022, 27, 1222. [Google Scholar] [CrossRef]
- Ogawa, S.; Ohsaki, Y.; Shimizu, M.; Nako, K.; Okamura, M.; Kabayama, S.; Tabata, K.; Tanaka, Y.; Ito, S. Electrolyzed hydrogen-rich water for oxidative stress suppression and improvement of insulin resistance: A multicenter prospective double-blind randomized control trial. Diabetol. Int. 2022, 13, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Fadriquela, A.; Antonio, J.M.; Kim, C.-S.; Cho, I.-Y.; Kim, K.-E.; An, W.-S.; Jang, H.-Y.; Bajgai, J.; Lee, K.-J. Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults. Processes 2022, 10, 1543. [Google Scholar] [CrossRef]
- Mohd Zamli Tajudin, M.H.; Hamirudin, A.H. Effects of alkaline water intake on health: A systematic literature review. Int. J. Allied Health Sci. 2020, 4, 1284–1298. [Google Scholar]
- Bajgai, J.; Kim, C.-S.; Rahman, M.H.; Jeong, E.-S.; Jang, H.-Y.; Kim, K.-E.; Choi, J.; Cho, I.-Y.; Lee, K.-J.; Lee, M. Effects of Alkaline-Reduced Water on Gastrointestinal Diseases. Processes 2022, 10, 87. [Google Scholar] [CrossRef]
- Rias, Y.A.; Kurniawan, A.L.; Chang, C.W.; Gordon, C.J.; Tsai, H.T. Synergistic Effects of Regular Walking and Alkaline Electrolyzed Water on Decreasing Inflammation and Oxidative Stress, and Increasing Quality of Life in Individuals with Type 2 Diabetes: A Community Based Randomized Controlled Trial. Antioxidants 2020, 9, 946. [Google Scholar] [CrossRef] [PubMed]
Claimed Physio-Chemical Properties of ERW | References | Comment | References |
---|---|---|---|
Falsifiable | |||
Contains high levels of dissolved hydrogen gas | [22] | H2 level varies significantly, but it is the exclusive reason for the benefits | [2] |
Contains high levels of dissolved oxygen gas | [57] | No, contains less O2, but even if it had more, it would not be therapeutic | [22] |
Contains platinum nanoparticles (PtNPs) | [22] | Unlikely except for (1) continuous electrolysis and (2) when high voltage is applied. PtNPs may be toxic | [58] |
Negative oxidation–reduction potential | [22] | Yes, from the dissolved H2 gas | [59] |
Contains “active” atomic hydrogen | [22] | No, scientifically impossible and has been directly investigated and refuted | [60,61] |
Contains mineral hydrides | [22] | No, scientifically impossible and has been directly investigated and refuted | [60,61] |
Contains abundant free electrons | [52,55,57] | No, scientifically impossible and has been directly investigated and refuted | [60,61] |
The “hydroxyl ions” are the cloudy antioxidants in ERW that produce the negative ORP | [57] | No, OH− (hydroxide) ions make the pH alkaline, the cloudiness is H2 gas, and OH− is not an antioxidant; indeed, removing an e− would make it the most reactive hydroxyl radical (•OH) | [62] |
Minerals in ERW are more bioavailable | [57] | No, in fact, they may be less bioavailable because the alkaline pH reduces their solubility, which is why there are often calcium precipitates in ERW. | [62] |
ERW boils and freezes significantly differently from normal water | [57] | No, if the solute and ion concentration are the same per molal boiling point elevation and freezing point depression. Has been investigated and refuted. | [62] |
Altered water structure, different hydrogen bond angle, hexagonal water, microclustered water, etc. | [52,57,63] | No, scientifically impossible in the context of bulk liquid water. The claim has also been directly investigated and refuted | [47,51,64,65] |
Reduced surface tension | [57] | No, additionally pH does not significantly influence surface tension. This claim has also been directly investigated and refuted | [66] |
Electrically charged as indicated by negative ORP | [57] | No, ERW is electrically neutral (obeys the law of electroneutrality); the negative ORP is due to H2 gas (see text) | [62] |
The alkaline pH is responsible for the benefits | [55,57] | No, scientifically implausible and many favorable ERW studies have specifically refuted this claim | [2] |
Unfalsifiable | |||
ERW is energetically enhanced | [57] | Unknown what these types of claims mean. However, since the benefits of ERW are eliminated once H2 is removed, then the exact meaning or number of these metaphysical claims is irrelevant. | |
ERW is “imbued with frequencies” during the process of electrolysis | [67] |
Half-Cell Reduction Reaction | E° (V) | ||
---|---|---|---|
Pt2+ (aq) | +2e− | →Pt (s) | 1.18 |
Pd2+ (aq) | +2e− | →Pd (s) | 0.92 |
Ag+ (aq) | +e− | →Ag (s) | 0.80 |
Fe3+ (aq) | +e− | →Fe2+ (aq) | 0.77 |
Cu2+ (aq) | +2e− | →Cu (s) | 0.34 |
* 2H+ (aq) | +2e− | →H2 (g) | 0.000 |
† 2H+ (aq) | +2e− | →H2 (g) | −0.83 |
Na+ (aq) | +½H2 (g) +e− | →NaH (s) | −2.37 |
Mg2+ (aq) | +2e− | →Mg (s) | −2.38 |
Na+ (aq) | +e− | →Na (s) | −2.71 |
Ca2+ (aq) | +2e− | →Ca (s) | −2.87 |
St2+ (aq) | +2e− | →St (s) | −2.89 |
Li+ (aq) | +e− | →Li (s) | −3.04 |
Procedure | Conclusion | References |
---|---|---|
Aspirin-induced gastric mucosal injury. Groups: (1) ERW, (2) same pH, (3) same minerals, (4) same pH and minerals | Only ERW was effective, demonstrating that molecular hydrogen, not the minerals or pH, is what is important in ERW | [34,114,115] |
Neutral-pH ERW was provided to rats injected with a free radical inducer, 2-azobis-amidinopropane dihydrochloride | Despite the neutral pH, ERW exerted significant antioxidant protection, which indicates the importance of molecular hydrogen | [118] |
Studies neutralized pH before adding to cell culture | Eliminates the alkaline pH property from contributing to the benefits | [29,33,35,40,43,44,73,74,75,76,77,78,79,80,81,82,89] |
Animal studies in which neutralized pH ERW was given with high levels of H2. | Eliminates the alkaline pH as a contributor to the benefits | [35,92,93,94,133] |
Water with a negative ORP produced with magnesium metal instead of electrolysis. | Eliminates any “magical” properties induced by electrolysis, while ensuring the presence of H2 | [125,126] |
High-fat diet-induced liver disease. Groups: (1) control, (2) low-H2 ERW, (3) high-H2 ERW | Only the high H2 ERW group had any benefits, despite the low H2 also having an alkaline pH and negative ORP | [125,126] |
Use of ERW with high pH, but an ORP that was barely negative (e.g., only −200 mV) | No observed benefits because the level of H2 was neither high enough to give a more negative ORP nor to provide any biological effects. | [2,52] multa nimis * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LeBaron, T.W.; Sharpe, R.; Ohno, K. Electrolyzed–Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. Int. J. Mol. Sci. 2022, 23, 14750. https://doi.org/10.3390/ijms232314750
LeBaron TW, Sharpe R, Ohno K. Electrolyzed–Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. International Journal of Molecular Sciences. 2022; 23(23):14750. https://doi.org/10.3390/ijms232314750
Chicago/Turabian StyleLeBaron, Tyler W., Randy Sharpe, and Kinji Ohno. 2022. "Electrolyzed–Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects" International Journal of Molecular Sciences 23, no. 23: 14750. https://doi.org/10.3390/ijms232314750