Potential of Vitamin B6 Dioxime Analogues to Act as Cholinesterase Ligands
Abstract
:1. Introduction
2. Results
2.1. Pyridoxal Dioximes’ Synthesis
2.2. Reversible Inhibition of AChE and BChE by Pyridoxal Dioximes
2.3. In Silico Analysis and Molecular Docking Studies
2.4. Screening of Pyridoxal Dioximes as Reactivators of VX-, Tabun-, and Paraoxon-Inhibited Cholinesterases
2.5. Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. Synthesis and Structure Determination
4.2. 3-Hydroxy-1-(2-hydroxyimino)-2-phenylethyl)-4-(hydroxyimino)methyl)-5-(hydroxymethyl)-2-methylpyridinium Bromide (1)
4.3. 1-(2-(4-Fluorophenyl)-2-(hydroxyimino)ethyl)-3hydroxy-4-((hydroxyimino)methyl)-2-methylpiridinium Bromide (2)
4.4. 1-(2-(4-Chlorophenyl)-2-(hydroxyimino)ethyl)-3-hydroxy-4-((hydroxyimino)methyl)-2-methylpiridinium Bromide (3)
4.5. 1-(2-(4-Bromorophenyl)-2-(hydroxyimino)ethyl)-3-hydroxy-4-((hydroxyimino)methyl)-2-methylpiridinium Bromide (4)
4.6. 3-Hydroxy-1-(2-hydroxyimino)-2-(4-nitrophenyl)ethyl)-4-(hydroxyimino)methyl)-5-(hydroxymethyl)-2-methylpyridinium Bromide (5)
4.7. 3-Hydroxy-1-(2-hydroxyimino)-2-(2-methoxyphenyl)ethyl)-4-(hydroxyimino)methyl)-5-(hydroxymethyl)-2-methylpyridinium Bromide (6)
4.8. 3-Hydroxy-1-(2-hydroxyimino)-2-(4-phenylphenyl)ethyl)-4-(hydroxyimino)methyl)-5-(hydroxymethyl)-2-methylpyridinium Bromide (7)
4.9. Reagents and Enzymes
4.10. AChE and BChE Reversible Inhibition
4.11. In Silico Predictions
4.12. Reactivation of Phosphylated AChE and BChE with Dioximes
4.13. Cytotoxicity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timperley, C.; Forman, J.; Abdollahi, M.; Al-Amri, A.; Alonso, I.; Baulig, A.; Borrett, V.; Cariño, F.; Curty, C.; Gonzalez, D.; et al. Advice from the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons on isotopically labelled chemicals and stereoisomers in relation to the Chemical Weapons Convention. Pure Appl. Chem. 2018, 90, 1647–1670. [Google Scholar] [CrossRef]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Stribley, J.A.; Ticu, A.; Xie, W.; Schopfer, L.M.; Hammond, P.; Brimijoin, S.; Hinrichs, S.H.; Lockridge, O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 2000, 75, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Zorbaz, T.; Malinak, D.; Hofmanova, T.; Maraković, N.; Žunec, S.; Maček Hrvat, N.; Andrys, R.; Psotka, M.; Zandona, A.; Svobodova, J.; et al. Halogen substituents enhance oxime nucleophilicity for reactivation of cholinesterases inhibited by nerve agents. Eur. J. Med. Chem. 2022, 238, 114377. [Google Scholar] [CrossRef]
- Semenov, V.E.; Zueva, I.V.; Mukhamedyarov, M.A.; Lushchekina, S.V.; Petukhova, E.O.; Gubaidullina, L.M.; Krylova, E.S.; Saifina, L.F.; Lenina, O.A.; Petrov, K.A. Novel acetylcholinesterase inhibitors based on uracil moiety for possible treatment of Alzheimer disease. Molecules 2020, 25, 4191. [Google Scholar] [CrossRef]
- Čadež, T.; Grgičević, A.; Ahmetović, R.; Barić, D.; Maček Hrvat, N.; Kovarik, Z.; Škorić, I. Benzobicyclo[3.2.1]octene Derivatives as a New Class of Cholinesterase Inhibitors. Molecules 2020, 25, 4872. [Google Scholar] [CrossRef]
- Dhuguru, J.; Zviagin, E.; Skouta, R. FDA-Approved Oximes and Their Significance in Medicinal Chemistry. Pharmaceuticals 2022, 15, 66. [Google Scholar] [CrossRef]
- Kassa, J. Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. J. Toxicol. Clin. Toxicol. 2002, 40, 803–816. [Google Scholar] [CrossRef]
- Shtyrlin, Y.G.; Petukhov, A.S.; Strelnik, A.D.; Shtyrlin, N.V.; Iksanova, A.G.; Pugachev, M.V.; Pavelyev, R.S.; Dzyurkevich, M.S.; Garipov, M.R.; Balakin, K.V. Chemistry of pyridoxine in drug design. Russ. Chem. Bull. Int. Ed. 2019, 68, 911–945. [Google Scholar] [CrossRef]
- Mooney, S.; Leuendorf, J.-E.; Hendrickson, C.; Hellmann, H. Vitamin B6: A Long Known Compound of Surprising Complexity. Molecules 2009, 14, 329–351. [Google Scholar] [CrossRef]
- Greiner, H.E.; Haase, A.F.; Seyfried, C.A. Neurochemical studies on the mechanism of action of pyritinol. Pharmacopsychiatry 1988, 21, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.E. An Evaluation of Pyrisuccideanol Maleate (Nadex) in the Treatment of Mild to Moderate Depression in Patients Aged 55 Years and Over, Presenting in General Practice. J. Int. Med. Res. 1981, 9, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Tarrade, T.; Guinot, P. Efficacy and tolerance of cicletanine, a new antihypertensive agent: Overview of 1226 treated patients. Drugs Exp. Clin. Res. 1988, 14, 205–214. [Google Scholar] [PubMed]
- Takanaka, C.; Singh, B.N. Barucainide, a novel class Ib antiarrhythmic agent with a slow kinetic property: Electrophysiologic observations in isolated canine and rabbit cardiac muscle. Am. Heart J. 1990, 119, 1050–1060. [Google Scholar] [CrossRef]
- Noël, G.; Jeanmart, M.; Reinhardt, B. Treatment of the Organic Brain Syndrome in the Elderly. Neuropsychobiology 1983, 10, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Trent Brewer, C.; Yang, L.; Edwards, A.; Lu, Y.; Low, J.; Wu, J.; Chen, T. The isoniazid metabolites hydrazine and pyridoxal isonicotinoyl hydrazone modulate heme biosynthesis. Toxicol. Sci. 2019, 168, 209–224. [Google Scholar] [CrossRef]
- Ellis, S.; Kalinowski, D.S.; Leotta, L.; Huang, M.L.H.; Jelfs, P.; Sintchenko, V.; Richardson, D.R.; Triccas, J.A. Potent antimycobacterial activity of the pyridoxal isonicotinoyl hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: A lipophilic transport vehicle for isonicotinic acid hydrazide. Mol. Pharmacol. 2014, 85, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Kalia, J.; Raines, R.T. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 2008, 47, 7523–7526. [Google Scholar] [CrossRef] [Green Version]
- Gašo-Sokač, D.; Katalinić, M.; Kovarik, Z.; Bušić, V.; Kovač, S. Synthesis and evaluation of novel analogues of vitamin B6 as reactivators of tabun and paraoxon inhibited acetylcholinesterase. Chem. Biol. Interact. 2010, 187, 234–237. [Google Scholar] [CrossRef]
- Bušić, V.; Katalinić, M.; Šinko, G.; Kovarik, Z.; Gašo-Sokač, D. Pyridoxal oxime derivative potency to reactivate cholinesterases inhibited by organophosphorus compounds. Toxicol. Lett. 2016, 262, 114–122. [Google Scholar] [CrossRef]
- Čalić, M.; Bosak, A.; Kuča, K.; Kovarik, Z. Interactions of butane, but-2-ene or xylene-like linked bispyridinium para-aldoximes with native and tabun-inhibited human cholinesterases. Chem. Biol. Interact. 2008, 175, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Čalić, M.; Lucić Vrdoljak, A.; Radić, B.; Jelić, D.; Jun, D.; Kuča, K.; Kovarik, Z. In vitro and in vivo evaluation of pyridinium oximes: Mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicology 2006, 219, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, M.; Kovarik, Z. Reactivation of tabun-inhibited acetylcholinesterase investigated by two oximes and mutagenesis. Croat. Chem. Acta 2012, 85, 209–212. [Google Scholar] [CrossRef]
- Masaki, M.; Fukui, K.; Ohta, M. The reaction of α-halo oximes with triphenylphosphine. Formation of imidoyl bromide and of oximinophosphonium salts by a novel catalytic effect of bases. J. Org. Chem. 1967, 32, 3564–3568. [Google Scholar] [CrossRef]
- Smith, J.H.; Kaiser, E.T. Nucleophilic reaction of α-bromoacetophenone oxime. Preparation of anti-acetophenone oxime. J. Org. Chem. 1974, 39, 728–730. [Google Scholar] [CrossRef]
- Smith, J.H.; Heidema, J.H.; Kaiser, E.T.; Wetherington, J.B.; Moncrief, J.W. Synthesis and structure determination of a thermally labile anti-alkyl aryl ketoxime. J. Am. Chem. Soc. 1972, 94, 9276–9277. [Google Scholar] [CrossRef]
- Wimalasena, K.; Haisen, D.C. Nucleophilic substitution reactions of phenacyl bromide oxime: Effect of the solvent and the basicity of the nucleophile. J. Org. Chem. 1994, 59, 6472–6475. [Google Scholar] [CrossRef]
- Gašo-Sokač, D. Synthesis of Analogues of Vitamine B6 (Potentional Reactivators of Inhibited Acetylcholinesterase). Ph.D. Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, 24 September 2009. [Google Scholar]
- Zorbaz, T.; Braïki, A.; Maraković, N.; Renou, J.; de la Mora, E.; Maček Hrvat, N.; Katalinić, M.; Silman, I.; Sussman, J.L.; Mercey, G.; et al. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration. Chem. Eur. J. 2018, 5, 9675–9691. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRX 2005, 2, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Balázs, N.; Bereczki, D.; Kovács, T. Cholinesterase inhibitors and memantine for the treatment of Alzheimer and non-Alzheimer dementias. Ideggyogy Sz. 2021, 74, 379–387. [Google Scholar] [CrossRef]
- Alzheimer’s Disease International. Available online: https://www.alzint.org/about/dementia-facts-figures/ (accessed on 19 August 2022).
- Kovarik, Z.; Lucić Vrdoljak, A.; Berend, S.; Katalinić, M.; Kuča, K.; Musilek, K.; Radić, B. Evaluation of oxime K203 as antidote in tabun poisoning. Arh. Hig. Rada Toksikol. 2009, 60, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovarik, Z.; Čalić, M.; Bosak, A.; Šinko, G.; Jelić, D. In vitro evaluation of aldoxime interactions with human acetylcholinesterase. Croat. Chem. Acta 2008, 81, 47–57. [Google Scholar]
- Maček Hrvat, N.; Kovarik, Z. Counteracting poisoning with chemical warfare nerve agents. Arch. Ind. Hyg. Toxicol. 2020, 71, 266–284. [Google Scholar] [CrossRef]
- Katalinić, M.; Bosak, A.; Kovarik, Z. Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol. Biotechnol. 2014, 52, 64–67. [Google Scholar]
- Bosak, A.; Opsenica, D.M.; Šinko, G.; Zlatar, M.; Kovarik, Z. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chem. Biol. Interact. 2019, 308, 101–109. [Google Scholar] [CrossRef]
- Zorbaz, T.; Malinak, D.; Mraković, N.; Maček Hrvat, N.; Zandona, A.; Novotny, M.; Skarka, A.; Andrys, R.; Benkova, M.; Soukup, O.; et al. Pyridinium oximes with ortho-positioned chlorine moiety exhibit improved physico- chemical properties and efficient reactivation of human acetylcholinesterase inhibited by several nerve agents. J. Med. Chem. 2018, 61, 10753–10766. [Google Scholar] [CrossRef]
- Mlakić, M.; Čadež, T.; Barić, D.; Puček, I.; Ratković, A.; Marinić, Ž.; Lasić, K.; Kovarik, Z.; Škorić, I. New uncharged 2-thienostilbene oximes as reactivators of organophosphate-inhibited cholinesterases. Pharmaceuticals 2021, 14, 1147. [Google Scholar] [CrossRef]
- Maček Hrvat, N.; Kalisiak, J.; Šinko, G.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Kovarik, Z. Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked athrough anti-triazoles, as reactivators of phosphylated cholinesterases. Toxicol. Lett. 2020, 321, 83–89. [Google Scholar] [CrossRef]
- Zandona, A.; Katalinić, M.; Šinko, G.; Radman Kastelic, A.; Primožič, I.; Kovarik, Z. Targeting organophosphorus compounds poisoning by novel quinuclidine-3 oximes: Development of butyrylcholinesterase-based bioscavengers. Arch. Toxicol. 2020, 94, 3157–3171. [Google Scholar] [CrossRef]
- Chambers, J.E.; Dail, M.B.; Meek, E.C. Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 2020, 175, 108201. [Google Scholar] [CrossRef]
- Zorbaz, T.; Mišetić, P.; Probst, N.; Žunec, S.; Zandona, A.; Mendaš, G.; Micek, V.; Maček Hrvat, N.; Katalinić, M.; Braïki, A.; et al. Pharmacokinetic evaluation of brain penetrating morpholine-3-hydroxy-2-pyridine oxime as an antidote for nerve agent poisoning. ACS Chem. Neurosci. 2020, 11, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Yan-Jye, S.; Momper, J.; Hou, W.; Camacho-Hernandez, G.A.; Radic, Z.; Rosenberg, Y.; Kovarik, Z.; Sit, R.; Sharpless, K.B. Assessment of ionizable, zwitterionic oximes as reactivating antidotal agents for organophosphate exposure. Chem. Biol. Interact. 2019, 308, 194–197. [Google Scholar] [CrossRef]
- Sit, R.; Kovarik, Z.; Maček Hrvat, N.; Žunec, S.; Green, C.; Fokin, V.V.; Sharpless, K.B.; Radić, Z.; Taylor, P. Pharmacology, pharmacokinetics and tissue disposition of zwitterionic hydroxyiminoacetamido alkylamines as reactivating antidotes for organophosphate exposure. J. Pharmacol. Exp. Ther. 2018, 367, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Benfenati, E.; Gini, G.; Hoffmann, S.; Luttik, R. Comparing in vivo, in vitro and in silico methods and integrated strategies for chemical assessment: Problems and prospects. Altern Lab Anim. 2010, 38, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Zorbaz, T.; Kovarik, Z. Neuropharmacology: Oxime antidotes for organophosphate pesticide and nerve agent poisoning. Period. Biol. 2020, 121–122, 35–54. [Google Scholar] [CrossRef]
- Wondrak, G.T.; Jacobson, E.L. Vitamin B6: Beyond coenzyme functions. Subcell Biochem. 2012, 56, 291–300. [Google Scholar] [CrossRef]
- Eyer, P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev. 2003, 22, 165–190. [Google Scholar] [CrossRef]
- Handl, J.; Malinak, D.; Capek, J.; Andrys, R.; Rousarova, E.; Hauschke, M.; Bruckova, L.; Cesla, P.; Rousar, T.; Musilek, K. Effects of Charged Oxime Reactivators on the HK-2 Cell Line in Renal Toxicity Screening. Chem. Res. Toxicol. 2021, 34, 699–703. [Google Scholar] [CrossRef]
- Artyomov, V.A.; Shestopalov, A.M.; Litvinov, V.P. Synthesis of Imidazol[1,2-α]pyridines from Pyridines and p-Bromophenacyl Bromide O-methyloxime. Synthesis 1996, 8, 927–929. [Google Scholar] [CrossRef]
- Reiner, E.; Bosak, A.; Simeon-Rudolf, V. Activity of cholinesterases in human whole blood measured with acetylthiocholine as substrate and ethopropazine as selective inhibitor of plasma butyrylcholinesterase. Arh. Hig. Rada Toksikol. 2004, 55, 1–4. [Google Scholar]
- Šinko, G.; Katalinić, M.; Kovarik, Z. para- and ortho-pyridinium aldoximes in reaction with acetylthiocholine. FEBS Lett. 2006, 580, 3167–3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, A.; Downs, C.E. The inhibition of arginase by amino acids. J. Biol. Chem. 1945, 157, 427–446. [Google Scholar] [CrossRef]
- SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
- Koska, J.; Spassov, V.Z.; Maynard, A.J.; Yan, L.; Austin, N.; Flook, P.K.; Venkatachalam, C.M. Fully automated molecular mechanics based induced fit protein−ligand docking method. J. Chem. Inf. Model. 2008, 48, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef] [PubMed]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, T.; Brazzolotto, X.; Macdonald, I.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Colletier, J.-P.; Weik, M.; Jiang, H.; Moult, J.; Silman, I.; Sussman, J.L. Flexibility of aromatic residues in the active site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys. J. 2008, 95, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Šinko, G. Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chem. Biol. Interact. 2019, 308, 216–223. [Google Scholar] [CrossRef]
- Komatović, K.; Matošević, A.; Terzić-Jovanović, N.; Žunec, S.; Šegan, S.; Zlatović, M.; Maraković, N.; Bosak, A. Opsenica DM. 4-Aminoquinoline-Based Adamantanes as Potential Anticholinesterase Agents in Symptomatic Treatment of Alzheimer’s Disease. Pharmaceutics 2022, 14, 1305. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. New and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Maček Hrvat, N.; Zorbaz, T.; Šinko, G.; Kovarik, Z. The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Toxicol. Lett. 2018, 293, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Zandona, A.; Maraković, N.; Mišetić, P.; Madunić, J.; Miš, K.; Padovan, J.; Pirkmajer, S.; Katalinić, M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch. Toxicol. 2021, 95, 2737–2754. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Compound | -R | Yield (%) | Ratio of Isomers * |
---|---|---|---|
1 | -H | 75 | 30:70 |
2 | -F | 43 | 20:80 |
3 | -Cl | 68 | 0:100 |
4 | -Br | 71 | 0:100 |
5 | -NO2 | 54 | 20:80 |
6 | -2-OCH3 | 53 | 0:100 |
7 | -Ph | 76 | 0:100 |
Compound | R- | Ki ± SE (µM) | Ki (AChE)/Ki (BChE) | |
---|---|---|---|---|
AChE | BChE | Selectivity | ||
1 | 4-H | 93 ± 13 | 123 ± 6 | 0.75 |
2 | 4-F | 340 ± 27 | 244 ± 124 | 1.39 |
3 | 4-Cl | 157 ± 34 | 420 ± 40 | 0.37 |
4 | 4-Br | 258 ± 46 | 236 ± 54 | 1.09 |
5 | 4-NO2 | 200 ± 13 | 322 ± 46 | 0.62 |
6 | 2-OCH3 | 251 ± 35 | 150 ± 13 | 1.67 |
7 | 4-Ph | 380 ± 35 | 112 ± 24 | 3.39 |
HI-6 1 | / | 46 ± 4 | 420 ± 100 | 9.13 |
OP | Compound | R- | kobs (min−1) | Reactmax (%) |
---|---|---|---|---|
1 | 4-H | 0.0006 | 50 | |
2 | 4-F | 0.0019 | 65 | |
3 | 4-Cl | 0.0016 | 55 | |
VX | 4 | 4-Br | 0.0008 | 45 |
5 | 4-NO2 | 0.0004 | 25 | |
6 | 2-OCH3 | 0.0005 | 30 | |
7 | 4-Ph | 0.0015 | 60 | |
1 | 4-H | 0.0019 | 70 | |
2 | 4-F | 0.0011 | 70 | |
Paraoxon | 3 | 4-Cl | 0.0029 | 60 |
4 | 4-Br | 0.0090 | 60 | |
5 | 4-NO2 | 0.0008 | 20 | |
6 | 2-OCH3 | 0.0021 | 75 | |
7 | 4-Ph | 0.0029 | 75 |
OP | Compound | R- | kobs (min−1) | Reactmax (%) |
---|---|---|---|---|
1 | 4-H | 0.0022 | 70 | |
2 | 4-F | 0.0025 | 70 | |
3 | 4-Cl | 0.0026 | 50 | |
VX | 4 | 4-Br | 0.0020 | 30 |
5 | 4-NO2 | 0.0012 | 60 | |
6 | 2-OCH3 | 0.0013 | 65 | |
7 | 4-Ph | 0.0025 | 90 | |
1 | 4-H | 0.0006 | 50 | |
2 | 4-F | 0.0011 | 60 | |
Paraoxon | 3 | 4-Cl | 0.0010 | 45 |
4 | 4-Br | 0.0006 | 25 | |
5 | 4-NO2 | 0.0006 | 35 | |
6 | 2-OCH3 | 0.0007 | 50 | |
7 | 4-Ph | 0.0011 | 70 |
Compound | R- | IC50 (μM) | |
---|---|---|---|
SH-SY5Y | HEK293 | ||
1 | 4-H | ≥800 | ≤800 |
2 | 4-F | ≥800 | ≥800 |
3 | 4-Cl | ≥800 | 758 ± 10 |
4 | 4-Br | ≥800 | ≤800 |
5 | 4-NO2 | ≥800 | ≥800 |
6 | 2-OCH3 | ≥800 | ≥800 |
7 | 4-Ph | ≥800 | ≥800 |
HI-6 | / | ≥800 | ≥800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gašo Sokač, D.; Zandona, A.; Roca, S.; Vikić-Topić, D.; Lihtar, G.; Maraković, N.; Bušić, V.; Kovarik, Z.; Katalinić, M. Potential of Vitamin B6 Dioxime Analogues to Act as Cholinesterase Ligands. Int. J. Mol. Sci. 2022, 23, 13388. https://doi.org/10.3390/ijms232113388
Gašo Sokač D, Zandona A, Roca S, Vikić-Topić D, Lihtar G, Maraković N, Bušić V, Kovarik Z, Katalinić M. Potential of Vitamin B6 Dioxime Analogues to Act as Cholinesterase Ligands. International Journal of Molecular Sciences. 2022; 23(21):13388. https://doi.org/10.3390/ijms232113388
Chicago/Turabian StyleGašo Sokač, Dajana, Antonio Zandona, Sunčica Roca, Dražen Vikić-Topić, Gabriela Lihtar, Nikola Maraković, Valentina Bušić, Zrinka Kovarik, and Maja Katalinić. 2022. "Potential of Vitamin B6 Dioxime Analogues to Act as Cholinesterase Ligands" International Journal of Molecular Sciences 23, no. 21: 13388. https://doi.org/10.3390/ijms232113388