Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans
Abstract
1. Introduction
2. Results
2.1. Polymorphisms in Complex III Genes
2.2. Polymorphisms in Complex IV (Cytochrome Oxidase) Genes
2.3. Polymorphisms in Complex V Genes
2.4. Mutations
3. Discussion
Summary
4. Materials and Methods
4.1. Material
4.2. Methods
- ExPASy Proteomics tools—ProtParam Program—assessment of protein parameters, such as the heoretical isoelectric point (pI), protein stability index, aliphatic index and grand average of hydropathicity [https://www.expasy.org/resources/protparam; accesed on 9 November 2019] [43].
- Pfam version 33.1—assessment of the secondary protein structure, including the number of helices [http://pfam.xfam.org/search#tabview=tab1; accesed on 29 September 2020] [44].
- AGADIR—theoretical prediction of the helix percentage in a given segment of the protein [http://agadir.crg.es/protected/academic/calculation4.jsp; accessed 11 September 2020] [45].
- TMHMM 2.0—assessment of the presence of transmembrane segments in a given protein with a specific sequence of amino acids [http://www.cbs.dtu.dk/services/TMHMM/; accessed on 4 July 2020] [46].
- PSSM Viewer—assessment of the incidence of amino acids in each alignment of a protein sequence [http://www.ncbi.nlm.nih.gov/Class/Structure/pssm/ pssm_viewer; acccesed 20 October 2020] [47].
- SIFT Sequence—assessment of the effects of changing the sequence of amino acid residues on protein function. Score: tolerated change > 0.05, change affecting protein function ≤ 0.05 Score: tolerated change > 0.05, change affecting protein function ≤ 0.05 [https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html; accessed on 2 November 2020] [48].
- MitImpact 3D-predictor APOGGE—mitochondrial database with a predictor assessing the potential pathogenicity of changes. Score: neutral change ≤ 0.5, pathogenic change > 0.5 [https://mitimpact.css-mendel.it/; accessed on 15 October 2020] [49].
- ConSurf-Database—analysis of amino acid conservation in a given protein alignment. Score on a 1–9 scale (1–3 variable region, 4–6 moderately conserved region, 7–9 highly conserved region) and normalised points (variable region < 0, moderately conserved region 0–0.5, highly conserved region > 0.5) [https://consurfdb.tau.ac.il/index.php; accesed on 9 October 2020] [50,51].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tefferi, A.; Lasho, T.L.; Abdel-Wahab, O.; Guglielmelli, P.; Patel, J.; Caramazza, D.; Pieri, L.; Finke, C.M.; Kilpivaara, O.; Wadleigh, M.; et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010, 24, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Canter, J.A.; Kallianpur, A.R.; Parl, F.F.; Millikan, R.C. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 2005, 65, 8028–8033. [Google Scholar] [CrossRef]
- Benit, P.; Lebon, S.; Rustin, P. Respiratory-chain diseases related to complex III deficiency. Biochim. Biophys. Acta 2009, 1793, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.E.; Keatley, K.; Littlewood, D.T.; Meunier, B.; Holt, W.V.; An, Q.; Higgins, S.C.; Polyzoidis, S.; Stephenson, K.F.; Ashkan, K.; et al. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro-Oncology 2015, 17, 942–952. [Google Scholar] [CrossRef]
- Németh, K.; Darvasi, O.; Likó, I. Next-generation sequencing identifies novel mitochondrial variants in pituitary adenomas. J. Endocrinol. Investig. 2019, 42, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Zarrouk Mahjoub, S.; Mehri, S.; Ourda, F.; Finstereret, J.; Ben Arab, S. Novel m.15434C A (p.230L I) Mitochondrial Cytb Gene Missense Mutation Associated with Dilated Cardiomyopathy. Int. Sch. Res. Not. 2012, 2012, 251723. [Google Scholar] [CrossRef]
- MITOMAP: A Human Mitochondrial Genome Database. Available online: http://www.mitomap.org/MITOMAP (accessed on 31 January 2021).
- Brandon, M.; Baldi, P.; Wallace, D.C. Mitochondrial mutations in cancer. Oncogene 2006, 25, 4647–4662. [Google Scholar] [CrossRef]
- Lu, J.; Wang, K.; Rodova, M.; Berry, D.; Lezi, E.; Crafter, A.; Barrett, M.; Cardoso, S.M.; Onyango, I.; Parker, W.D.; et al. Polymorphic variation in cytochrome oxidase subunit genes. J. Alzheimer’s Dis. 2010, 21, 141–154. [Google Scholar] [CrossRef]
- McCrow, J.P.; Petersen, D.C.; Louw, M.; Chan, E.K.; Harmeyer, K.; Vecchiarelli, S.; Lyons, R.J.; Bornman, M.S.; Hayes, V.M. Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men. Prostate 2015, 76, 349–358. [Google Scholar] [CrossRef]
- Lueth, M.; Wronski, L.; Giese, A.; Kirschner-Schwabe, R.; Pietsch, T.; von Deimling, A.; Henze, G.; Kurtz, A.; Driever, P.H. Somatic mitochondrial mutations in pilocytic astrocytoma. Cancer Genet. Cytogenet. 2009, 192, 30–35. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Li, D.; Zhang, S.; Guo, Z. Identification of sequence polymorphisms in the mitochondrial cytochrome c oxidase genes as risk factors for hepatocellular carcinoma. J. Clin. Lab. Anal. 2018, 32, e22299. [Google Scholar] [CrossRef] [PubMed]
- Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; et al. MtDNA mutations increase tumorigenicity in prostate cancer. PNAS 2005, 102, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pesini, E.; Mishmar, D.; Brandon, M.; Procaccio, V.; Wallace, D.C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 2004, 303, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A.; Arnold, R.; Petros, J.A. Mitochondrial cytochrome c osidase subunit 1 sequence variation in prostate cancer. Scientifica 2012, 2012, 701810. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Eder, K.; Selak, M.A.; Kalman, B. Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res. 2015, 1595, 127–142. [Google Scholar] [CrossRef]
- Ylikallio, E.; Suomalainen, A. Mechanisms of mitochondrial diseases. Ann. Med. 2012, 44, 41–59. [Google Scholar] [CrossRef]
- Boel De Paepe. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. Int. Sch. Res. Not. 2012, 2012, 217162. [Google Scholar]
- Wallace, D.C.; Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a021220. [Google Scholar] [CrossRef]
- Kirchner, S.C.; Hallagan, S.E.; Farin, F.M.; Dilley, J.; Costa-Mallen, P.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Checkoway, H. Mitochondrial ND1 sequence analysis and association of the T4216C mutation with Parkinson’s disease. Neurotoxicology 2000, 21, 441–446. [Google Scholar]
- Ross, O.A.; McCormack, R.; Maxwell, L.D.; Duguid, R.A.; Quinn, D.J.; Barnett, Y.A.; Rea, I.M.; El-Agnaf, O.M.; Gibson, J.M.; Wallace, A.; et al. mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson’s disease in the Irish. Exp. Gerontol. 2003, 38, 397–405. [Google Scholar] [CrossRef]
- Van der Walt, J.M.; Dementieva, Y.A.; Martin, E.R.; Scott, W.K.; Nicodemus, K.K.; Kroner, C.C.; Welsh-Bohmer, K.A.; Saunders, A.M.; Roses, A.D.; Small, G.W.; et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci. Lett. 2004, 365, 28–32. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Knowledgebase (UniProtKB). Available online: https://www.uniprot.org/ (accessed on 10 February 2021).
- Larman, T.C.; DePalma, S.R.; Hadjipanayis, A.G.; Cancer Genome Atlas Research Network; Protopopov, A.; Zhang, J.; Gabriel, S.B.; Chin, L.; Seidman, C.E.; Kucherlapati, R.; et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc. Natl. Acad. Sci. USA 2012, 109, 14087–14091. [Google Scholar] [CrossRef] [PubMed]
- Grzybowska-Szatkowska, L.; Slaska, B. Mitochondrial DNA and carcinogenesis (Review). Mol. Med. Rep. 2012, 6, 923–930. [Google Scholar] [CrossRef]
- Blein, S.; Barjhoux, L.; GENESIS Investigators; Damiola, F.; Dondon, M.G.; Eon-Marchais, S.; Marcou, M.; Caron, O.; Lortholary, A.; Buecher, B.; et al. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2. PLoS ONE 2015, 10, e0136192. [Google Scholar] [CrossRef] [PubMed]
- Mulyani, R.; Destiarani, W.; Rahmawati, U.M.; Yusuf, M.; Subroto, T.; Iman, P.M. An Investigation of the Effect of T15458C and T15663C Mutations in the CYB Gene on Respiration via an In silico Method. J. Proteom. Bioinform. 2020, 13, 1–8. [Google Scholar]
- Guan, M.X.; Enriquez, J.A.; Fischel-Ghodsian, N.; Puranam, R.S.; Lin, C.P.; Maw, M.A.; Attardi, G. The Deafness-associated mtDNA 7445 mutation, which affects tRNA Ser(UCN) precursor processing, has long-range effects on NADH dehydrogenase ND6 subunit gene expression. Mol. Cell. Biol. 1998, 18, 5868–5879. [Google Scholar] [CrossRef]
- Kozakiewicz, P.; Grzybowska-Szatkowska, L.; Ciesielka, M.; Rzymowska, J. The Role of Mitochondria in Carcinogenesis. Int. J. Mol. 2021, 22, 5100. [Google Scholar] [CrossRef]
- Earp, M.A.; Brooks-Wilson, A.; Cook, L.; Le, N. Inherited common variants in mitochondrial DNA and invasive serous epithelial ovarian cancer risk. BMC Res. Notes 2013, 6, 425. [Google Scholar] [CrossRef]
- Ghaffarpour, M.; Mahdian, R.; Fereidooni, F.; Kamalidehghan, B.; Moazami, N.; Houshmand, M. The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int. 2014, 14, 21. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Klemba, A.; Krawczyk, T.; Zdrozny, M.; Arnold, R.S.; Bartnik, E.; Petros, J.A. Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol. Rep. 2010, 23, 531–535. [Google Scholar]
- Grzybowska-Szatkowska, L.; Ślaska, B.; Rzymowska, J.; Brzozowska, A.; Floriańczyk, B. Novel mitochondrial mutations in the ATP6 and ATP8 genes in patients with breast cancer. Mol. Med. Rep. 2014, 10, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Aikhionbare, F.O.; Mehrabi, S.; Kumaresan, K.; Zavareh, M.; Olatinwo, M.; Odunsi, K.; Partridge, E. Mitochondrial DNA sequence variants in epithelial ovarian tumor subtypes and stages. J. Carcinog. 2007, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, M.; Montazeri, M.; Kuchekian, N.; Noohi, F.; Nozar, G.; Zamani, A. Is 8860 variation a rare polymorphism or associated as a secondary effect in HCM disease? Arch. Med. Sci. 2011, 7, 242–426. [Google Scholar] [CrossRef]
- Kirk, R.; Furlong, R.A.; Amos, W.; Cooper, G.; Rubinsztein, J.S.; Walsh, C.; Paykel, E.S.; Rubinsztein, D.C. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. Am. J. Hum. Genet. 1999, 65, 508–518. [Google Scholar] [CrossRef]
- Mostafaie, N.; Rossmanith, W.; Hombauer, H.; Dechat, T.; Raffelsberger, T.; Bauer, K.; Worofka, B.; Kittl, E.; Hofmann, J.; Hejtman, M.; et al. Mitochondrial genotype and risk for Alzheimer’s disease: Cross-sectional data from the Vienna-Transdanube-Aging ‘‘VITA’’ study. J. Neural. Transm. 2004, 111, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Grzybowska-Szatkowska, L.; Slaska, B. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J. Appl. Genet. 2014, 55, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.W.; de Andrade, M.; Boardman, L.A.; Cunningham, J.M.; Thibodeau, S.N.; Petersen, G.M. Mitochondrial genetic polymorphisms and pancreatic cancer risk. Cancer Epidemiol. Biomarkers Prev. 2007, 17, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Guney, A.I.; Ergec, D.; Tavukcu, H.H.; Koc, G.; Kirac, D.; Ulucan, K.; Javadova, D.; Turkeri, L. Detection of mitochondrial DNA mutations in nonmuscle invasive bladder cancer. Genet. Test. Mol. Biomarkers 2012, 16, 672–679. [Google Scholar] [CrossRef]
- Galber, C.; Acosta, M.J.; Minervini, G.; Giorgio, V. The role of mitochondrial ATP synthase in cancer. Biol. Chem. 2020, 401, 1199–1214. [Google Scholar] [CrossRef]
- Berhe, S.; Heeney, M.M.; Campagna, D.R.; Thompson, J.F.; White, E.J.; Ross, T.; Peake, R.; Hanrahan, J.D.; Rodriguez, V.; Renaud, D.L.; et al. Recurrent heteroplasmy for the MT-ATP6 p.Ser148Asn (m.8969G>A) mutation in patients with syndromic congenital sideroblastic anemia of variable clinical severity. Haematologica 2018, 103, e561–e563. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.; Tosatto, S.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, V.; Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Mol. Biol. 1994, 1, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Sonnhammer, E.L.L.; von Heijne, G.; Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the International Conference on Intelligent Systems for Molecular Biology, Montréal, QC, Canada, 28 June–1 July 1998; pp. 175–182. [Google Scholar]
- Sanchez-Garcia, R.; Sorzano, C.; Carazo, J.M.; Segura, J. 3DCONS-DB: A Database of Position-Specific Scoring Matrices in Protein Structures. Molecules 2017, 22, 2230. [Google Scholar] [CrossRef] [PubMed]
- Bris, C.; Goudenege, D.; Desquiret-Dumas, V.; Charif, M.; Colin, E.; Bonneau, D.; Amati-Bonneau, P.; Lenaers, G.; Reynier, P.; Procaccio, V. Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing. Front. Genet. 2008, 9, 632. [Google Scholar] [CrossRef]
- Castellana, S.; Fusilli, C.; Mazzoccoli, G.; Biagini, T.; Capocefalo, D.; Carella, M.; Vescovi, A.L.; Mazza, T. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLoS Comput. Biol. 2017, 13, e1005628. [Google Scholar] [CrossRef]
- Goldenberg, O.; Erez, E.; Nimrod, G.; Ben-Tal, N. The ConSurf-DB: Pre-calculated evolutionary conservation profiles of protein structures. Nucleic Acids Res. 2009, 37, D323–D327. [Google Scholar] [CrossRef]
- Glaser, F.; Pupko, T.; Paz, I.; Bell, R.E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N. ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003, 19, 163–164. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozakiewicz, P.; Grzybowska-Szatkowska, L.; Ciesielka, M.; Całka, P.; Osuchowski, J.; Szmygin, P.; Jarosz, B.; Ślaska, B. Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int. J. Mol. Sci. 2022, 23, 12131. https://doi.org/10.3390/ijms232012131
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Całka P, Osuchowski J, Szmygin P, Jarosz B, Ślaska B. Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. International Journal of Molecular Sciences. 2022; 23(20):12131. https://doi.org/10.3390/ijms232012131
Chicago/Turabian StyleKozakiewicz, Paulina, Ludmiła Grzybowska-Szatkowska, Marzanna Ciesielka, Paulina Całka, Jacek Osuchowski, Paweł Szmygin, Bożena Jarosz, and Brygida Ślaska. 2022. "Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans" International Journal of Molecular Sciences 23, no. 20: 12131. https://doi.org/10.3390/ijms232012131
APA StyleKozakiewicz, P., Grzybowska-Szatkowska, L., Ciesielka, M., Całka, P., Osuchowski, J., Szmygin, P., Jarosz, B., & Ślaska, B. (2022). Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. International Journal of Molecular Sciences, 23(20), 12131. https://doi.org/10.3390/ijms232012131

