Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol Registration
2.2. Study Search
2.3. Study Selection
2.3.1. Publication Type
2.3.2. Inclusion and Exclusion Criteria
- (1)
- Patients met the Diagnostic and Statistical Manual of Mental Disorders (DSM) 3rd, 4th, or 5th edition criteria for BD or the International Classification of Disease diagnostic (ICD) criteria for BD.
- (2)
- HCs did not have any mental illnesses according to these same references.
- (3)
- BD patients met the criteria for a major depressive episode or clinical remission.
- (4)
- BD patients and HCs were between the ages of 18 and 65 years.
- (5)
- The regions of interest (ROI) targeted were the mPFC, dlPFC, vlPFC or wmPFC, ACC, and/or hippocampi.
- (1)
- BD patients and HCs had any other history of psychiatric or neurological conditions, head injuries, or addictive co-morbidities (except for smoking).
- (2)
- The 1H-MRS technique was not used.
- (3)
- The following metabolites were not quantified: NAA, Glu, Glx, and Gln.
- (4)
- None of the ROIs were targeted.
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Included Studies
3.2. Meta-Analysis
3.2.1. BD Patients in Major Depressive Episode
3.2.2. BD Patients in Clinical Remission
3.3. Sensitivity-Analysis and Subgroup Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Merikangas, K.R.; Jin, R.; He, J.P.; Kessler, R.C.; Lee, S.; Sampson, N.A.; Viana, M.C.; Andrade, L.H.; Hu, C.; Karam, E.G.; et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 2011, 68, 241–251. [Google Scholar] [CrossRef]
- Perlis, R.H.; Ostacher, M.; Patel, J.K.; Marangell, L.B.; Zhang, H.; Wisniewski, S.; Ketter, T.A.; Miklowitz, D.J.; Otto, M.; Gyulai, L.; et al. Predictors of recurrence in bipolar disorder: Primary outcomes from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am. J. Psychiatry 2006, 163, 217–224. [Google Scholar] [CrossRef]
- Phillips, M.L.; Swartz, H.A. A Critical Appraisal of Neuroimaging Studies of Bipolar Disorder: Toward a New Conceptualization of Underlying Neural Circuitry and a Road Map for Future Research. Am. J. Psychiatry 2014, 171, 829–843. [Google Scholar] [CrossRef]
- Henry, C.; Phillips, M.; Leibenluft, E.; M’Bailara, K.; Houenou, J.; Leboyer, M. Emotional dysfunction as a marker of bipolar disorders. Front. Biosci. 2012, 4, 2622–2630. [Google Scholar] [CrossRef]
- Strakowski, S.M.; Adler, C.M.; Almeida, J.; Altshuler, L.L.; Blumberg, H.; Chang, K.D.; DelBello, M.P.; Frangou, S.; McIntosh, A.; Phillips, M.L.; et al. The functional neuroanatomy of bipolar disorder: A consensus model. Bipolar Disord. 2012, 14, 313–325. [Google Scholar] [CrossRef]
- Vita, A.; De Peri, L.; Sacchetti, E. Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: A meta-analysis of magnetic resonance imaging studies. Bipolar Disord. 2009, 11, 807–814. [Google Scholar] [CrossRef]
- Pompili, M.; Innamorati, M.; Mann, J.J.; Oquendo, M.A.; Lester, D.; Del Casale, A.; Serafini, G.; Rigucci, S.; Romano, A.; Tamburello, A.; et al. Periventricular white matter hyperintensities as predictors of suicide attempts in bipolar disorders and unipolar depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Mahon, K.; Burdick, K.E.; Szeszko, P.R. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci. Biobehav. Rev. 2010, 34, 533–554. [Google Scholar] [CrossRef] [PubMed]
- Favre, P.; Pauling, M.; Stout, J.; Hozer, F.; Sarrazin, S.; Abé, C.; Alda, M.; Alloza, C.; Alonso-Lana, S.; Andreassen, O.A.; et al. Widespread white matter microstructural abnormalities in bipolar disorder: Evidence from mega- and meta-analyses across 3033 individuals. Neuropsychopharmacology 2019, 44, 2285–2293. [Google Scholar] [CrossRef]
- Ellison-Wright, I.; Bullmore, E. Anatomy of bipolar disorder and schizophrenia: A meta-analysis. Schizophr. Res. 2010, 117, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Fornito, A.; Yücel, M.; Pantelis, C. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol. Psychiatry 2010, 67, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Walder, K.; McGee, S.L.; Dean, O.M.; Tye, S.J.; Maes, M.; Berk, M. A model of the mitochondrial basis of bipolar disorder. Neurosci. Biobehav. Rev. 2017, 74, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr. Res. 2017, 187, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.R.; Arun, P.; Ariyannur, P.S.; Namboodiri, A.M.A. N-Acetylaspartate reductions in brain injury: Impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front. Neuroenergetics 2013, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M.A. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. N-acetylaspartate and N-acetylaspartylglutamate: Neurobiology and clinical significance. Neurology 2008, 70, 1353–1357. [Google Scholar] [CrossRef]
- Kraguljac, N.V.; Reid, M.; White, D.; Jones, R.; Hollander, J.D.; Lowman, D.; Lahti, A.C. Neurometabolites in schizophrenia and bipolar disorder—A systematic review and meta-analysis. Psychiatry Res. 2012, 203, 111–125. [Google Scholar] [CrossRef]
- Yildiz-Yesiloglu, A.; Ankerst, D.P. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: A meta-analysis. Psychiatry Res. 2006, 147, 1–25. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Glutamate: A truly functional amino acid. Amino Acids. 2013, 45, 413–418. [Google Scholar] [CrossRef]
- Clark, J.F.; Doepke, A.; Filosa, J.A.; Wardle, R.L.; Lu, A.; Meeker, T.; Pyne-Geithman, G.J. N-acetylaspartate as a reservoir for glutamate. Med. Hypotheses 2006, 67, 506–512. [Google Scholar] [CrossRef]
- Du, J.; Gray, N.A.; Falke, C.A.; Chen, W.; Yuan, P.; Szabo, S.T.; Einat, H.; Manji, H.K. Modulation of synaptic plasticity by antimanic agents: The role of AMPA glutamate receptor subunit 1 synaptic expression. J. Neurosci. 2004, 24, 6578–6589. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Frye, M.A.; Tsai, G.E.; Huggins, T.; Coyle, J.T.; Post, R.M. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol. Psychiatry 2007, 61, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Blacker, C.J.; Lewis, C.P.; Frye, M.A.; Veldic, M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res. 2017, 257, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.X.D.; Lau, I.Y.; Graham, S.; Sim, K. Neurobiological evidence for thalamic, hippocampal and related glutamatergic abnormalities in bipolar disorder: A review and synthesis. Neurosci. Biobehav. Rev. 2009, 33, 336–354. [Google Scholar] [CrossRef]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M.; et al. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-Analysis in Clinical Trials Revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Andrade, C. Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis: As Simple as It Gets. J. Clin. Psychiatry 2020, 81, 20f13681. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.A.D.M.S.; Tamada, R.S.; Issler, C.K.; Caetano, S.C.; Cerri, G.G.; de Castro, C.C.; Lafer, B. A 1HMRS study of the anterior cingulate gyrus in euthymic bipolar patients. Hum. Psychopharmacol. 2006, 21, 215–220. [Google Scholar] [CrossRef]
- Atmaca, M.; Yildirim, H. Altered neurochemical ingredient of hippocampus in patients with bipolar depression. Depress Res. Treat. 2012, 2012, 485249. [Google Scholar] [CrossRef][Green Version]
- Brady, R.O.; Cooper, A.; Jensen, J.E.; Tandon, N.; Cohen, B.; Renshaw, P.; Keshavan, M.; Öngür, D. A longitudinal pilot proton MRS investigation of the manic and euthymic states of bipolar disorder. Transl. Psychiatry 2012, 2, e160. [Google Scholar] [CrossRef]
- Colla, M.; Schubert, F.; Bubner, M.; Heidenreich, J.O.; Bajbouj, M.; Seifert, F.; Luborzewski, A.; Heuser, I.; Kronenberg, G. Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol. Psychiatry 2009, 14, 647, 696–704. [Google Scholar] [CrossRef]
- Corcoran, M.; Hawkins, E.L.; O’Hora, D.; Whalley, H.C.; Hall, J.; Lawrie, S.M.; Dauvermann, M.R. Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav. 2020, 10, e01616. [Google Scholar] [CrossRef]
- Croarkin, P.E.; Thomas, M.A.; Port, J.D.; Baruth, J.M.; Choi, D.-S.; Abulseoud, O.A.; Frye, M.A. N-acetylaspartate normalization in bipolar depression after lamotrigine treatment. Bipolar Disord. 2015, 17, 450–457. [Google Scholar] [CrossRef]
- Cumurcu, B.E.; Karlidag, R.; Sarac, K.; Unal, S.; Ozcan, C.; Erkorkmaz UCerebral, M.R. spectroscopy evaluation of the neuroprotective effects of lithium and olanzapine in bipolar affective disorder patients. Neurol. Psychiatry Brain Res. 2008, 15, 27–32. [Google Scholar]
- Deicken, R.F.; Pegues, M.P.; Anzalone, S.; Feiwell, R.; Soher, B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am. J. Psychiatry 2003, 160, 873–882. [Google Scholar] [CrossRef]
- Ehrlich, A.; Schubert, F.; Pehrs, C.; Gallinat, J. Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Res. 2015, 233, 73–80. [Google Scholar] [CrossRef]
- Haarman, B.C.M.B.; Burger, H.; Doorduin, J.; Renken, R.J.; Sibeijn-Kuiper, A.J.; Marsman, J.-B.C.; de Vries, E.F.; de Groot, J.C.; Drexhage, H.A.; Mendes, R.; et al. Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder—A combined magnetic resonance imaging and positron emission tomography study. Brain Behav. Immun. 2016, 56, 21–33. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Moore, C.M.; Deckersbach, T.; Tilley, C.A.; Ostacher, M.; Sachs, G.S.; Nierenberg, A.A. Galantamine-ER for cognitive dysfunction in bipolar disorder and correlation with hippocampal neuronal viability: A proof-of-concept study. CNS Neurosci. Ther. 2009, 15, 309–319. [Google Scholar] [CrossRef]
- Kalaycı, D.; Ozdel, O.; Sözeri-Varma, G.; Kıroğlu, Y.; Tümkaya, S. A proton magnetic resonance spectroscopy study in schizoaffective disorder: Comparison of bipolar disorder and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 37, 176–181. [Google Scholar] [CrossRef]
- Kubo, H.; Nakataki, M.; Sumitani, S.; Iga, J.-I.; Numata, S.; Kameoka, N.; Watanabe, S.-Y.; Umehara, H.; Kinoshita, M.; Inoshita, M.; et al. 1H-magnetic resonance spectroscopy study of glutamate-related abnormality in bipolar disorder. J. Affect. Disord. 2017, 208, 139–144. [Google Scholar] [CrossRef]
- Lai, S.; Zhong, S.; Shan, Y.; Wang, Y.; Chen, G.; Luo, X.; Chen, F.; Zhang, Y.; Shen, S.; Huang, H.; et al. Altered biochemical metabolism and its lateralization in the cortico-striato-cerebellar circuit of unmedicated bipolar II depression. J. Affect. Disord. 2019, 259, 82–90. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zhang, Y.; Guan, J.; Zhang, J.; Xu, C.; Shen, Z.; Xiao, B.; Liang, C.; Chen, K.; et al. Differential neurometabolite alterations in brains of medication-free individuals with bipolar disorder and those with unipolar depression: A two-dimensional proton magnetic resonance spectroscopy study. Bipolar Disord. 2016, 18, 583–590. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhong, S.; Wang, B.; Liao, X.; Lai, S.; Jia, Y. A comparison of neurometabolites between remitted bipolar disorder and depressed bipolar disorder: A proton magnetic resonance spectroscopy study. J. Affect. Disord. 2017, 211, 153–161. [Google Scholar] [CrossRef]
- Malhi, G.S.; Ivanovski, B.; Wen, W.; Lagopoulos, J.; Moss, K.; Sachdev, P. Measuring mania metabolites: A longitudinal proton spectroscopy study of hypomania. Acta Psychiatr. Scand. 2007, 434, 57–66. [Google Scholar] [CrossRef]
- Mellen, E.J.; Harper, D.G.; Ravichandran, C.; Jensen, E.; Silveri, M.; Forester, B.P. Lamotrigine Therapy and Biomarkers of Cerebral Energy Metabolism in Older Age Bipolar Depression. Am. J. Geriatr. Psychiatry 2019, 27, 783–793. [Google Scholar] [CrossRef]
- Michael, N.; Erfurth, A.; Pfleiderer, B. Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder. Psychiatry Res. 2009, 172, 78–81. [Google Scholar] [CrossRef]
- Molina, V.; Sánchez, J.; Sanz, J.; Reig, S.; Benito, C.; Leal, I.; Sarramea, F.; Rebolledo, R.; Palomo, T.; Desco, M. Dorsolateral prefrontal N-acetyl-aspartate concentration in male patients with chronic schizophrenia and with chronic bipolar disorder. Eur. Psychiatry 2007, 22, 505–512. [Google Scholar] [CrossRef]
- Rocha, M.V.; Nery-Fernandes, F.; Guimaraes, J.L.; Quarantini, L.D.C.; De Oliveira, I.R.; Ladeia-Rocha, G.G.; Jackowski, A.P.; Neto, C.D.A.; Miranda-Scippa, A. Normal Metabolic Levels in Prefrontal Cortex in Euthymic Bipolar I Patients with and without Suicide Attempts. Neural Plast. 2015, 2015, 165180. [Google Scholar] [CrossRef]
- Scherk, H.; Backens, M.; Schneider-Axmann, T.; Kemmer, C.; Usher, J.; Reith, W.; Falkai, P.; Gruber, O. Neurochemical pathology in hippocampus in euthymic patients with bipolar I disorder. Acta Psychiatr. Scand. 2008, 117, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Scherk, H.; Backens, M.; Schneider-Axmann, T.; Usher, J.; Kemmer, C.; Reith, W.; Falkai, P.; Gruber, O. Cortical neurochemistry in euthymic patients with bipolar I disorder. World J. Biol. Psychiatry 2009, 10, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Senaratne, R.; Milne, A.M.; MacQueen, G.M.; Hall, G.B.C. Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: A proton magnetic resonance spectroscopy study. Psychiatry Res. 2009, 172, 205–209. [Google Scholar] [CrossRef]
- Smaragdi, A.; Chavez, S.; Lobaugh, N.J.; Meyer, J.H.; Kolla, N.J. Differential levels of prefrontal cortex glutamate+glutamine in adults with antisocial personality disorder and bipolar disorder: A proton magnetic resonance spectroscopy study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Soeiro-De-Souza, M.G.; Henning, A.; Machado-Vieira, R.; Moreno, R.A.; Pastorello, B.F.; Leite, C.D.C.; Vallada, H.; Otaduy, M.C.G. Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur. Neuropsychopharmacol. 2015, 25, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Soeiro-De-Souza, M.G.; Otaduy, M.C.G.; Machado-Vieira, R.; Moreno, R.A.; Nery, F.G.; Leite, C.; Lafer, B. Anterior Cingulate Cortex Glutamatergic Metabolites and Mood Stabilizers in Euthymic Bipolar I Disorder Patients: A Proton Magnetic Resonance Spectroscopy Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Soeiro-De-Souza, M.G.; Otaduy, M.C.G.; Machado-Vieira, R.; Moreno, R.A.; Nery, F.G.; Leite, C.; Lafer, B. Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: A 1H-MRS study. J. Affect. Disord. 2018, 241, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Winsberg, M.E.; Sachs, N.; Tate, D.L.; Adalsteinsson, E.; Spielman, D.; Ketter, T.A. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol. Psychiatry 2000, 47, 475–481. [Google Scholar] [CrossRef]
- Zanetti, M.V.; Otaduy, M.C.; de Sousa, R.T.; Gattaz, W.F.; Busatto, G.F.; Leite, C.C.; Machado-Vieira, R. Bimodal effect of lithium plasma levels on hippocampal glutamate concentrations in bipolar II depression: A pilot study. Int. J. Neuropsychopharmacol. 2014, 18, pyu058. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, Y.; Lai, S.; Liu, T.; Liao, X.; Chen, G.; Jia, Y. Associations between executive function impairment and biochemical abnormalities in bipolar disorder with suicidal ideation. J. Affect. Disord. 2018, 241, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Wang, Y.; Zhao, G.; Xiang, Q.; Ling, X.; Liu, S.; Huang, L.; Jia, Y. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: A proton magnetic resonance spectroscopy study. J. Affect. Disord. 2014, 168, 380–386. [Google Scholar] [CrossRef]
- Soeiro-De-Souza, M.; Scotti-Muzzi, E.; Fernandes, F.; De Sousa, R.; Leite, C.; Otaduy, M.; Machado-Vieira, R. Anterior cingulate cortex neuro-metabolic changes underlying lithium-induced euthymia in bipolar depression: A longitudinal 1H-MRS study. Eur. Neuropsychopharmacol. 2021, 49, 93–100. [Google Scholar] [CrossRef]
- Signoretti, S.; Marmarou, A.; Tavazzi, B.; Dunbar, J.; Amorini, A.M.; Lazzarino, G.; Vagnozzi, R. The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J. Neurotrauma 2004, 21, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.B.; Clark, J.B. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem. J. 1979, 184, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Bates, T.E.; Strangward, M.; Keelan, J.; Davey, G.P.; Munro, P.M.; Clark, J.B. Inhibition of N-acetylaspartate production: Implications for 1H MRS studies in vivo. Neuroreport 1996, 7, 1397–1400. [Google Scholar] [CrossRef]
- Padamsey, Z.; Foster, W.J.; Emptage, N.J. Intracellular Ca2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019, 25, 208–226. [Google Scholar] [CrossRef]
- Smith, G.M.; Gallo, G. The Role of Mitochondria in Axon Development and Regeneration. Dev. Neurobiol. 2018, 78, 221–237. [Google Scholar] [CrossRef]
- Schloesser, R.J.; Huang, J.; Klein, P.S.; Manji, H.K. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008, 33, 110–133. [Google Scholar] [CrossRef]
- Houenou, J.; Frommberger, J.; Carde, S.; Glasbrenner, M.; Diener, C.; Leboyer, M.; Wessa, M. Neuroimaging-based markers of bipolar disorder: Evidence from two meta-analyses. J. Affect. Disord. 2011, 132, 344–355. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, W.-Z.; Yuan, P.-X.; Huang, L.-D.; Jiang, Y.-M.; Zhao, Z.-H.; Manji, H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 1999, 72, 879–882. [Google Scholar] [CrossRef]
- Chong, S.J.F.; Low, I.C.C.; Pervaiz, S. Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 2014, 19, 39–48. [Google Scholar] [CrossRef]
- Moore, G.J.; Bebchuk, J.M.; Hasanat, K.; Chen, G.; Seraji-Bozorgzad, N.; Wilds, I.B.; Faulk, M.W.; Koch, S.; Glitz, D.A.; Jolkovsky, L.; et al. Lithium increases N-acetyl-aspartate in the human brain: In vivo evidence in support of bcl-2’s neurotrophic effects? Biol. Psychiatry 2000, 48, 1–8. [Google Scholar] [CrossRef]
- Brauch, R.A.; Adnan El-Masri, M.; Parker, J.C.; El-Mallakh, R.S. Glial cell number and neuron/glial cell ratios in postmortem brains of bipolar individuals. J. Affect. Disord. 2006, 91, 87–90. [Google Scholar] [CrossRef]
- Liu, L.; Schulz, S.C.; Lee, S.; Reutiman, T.J.; Fatemi, S.H. Hippocampal CA1 pyramidal cell size is reduced in bipolar disorder. Cell. Mol. Neurobiol. 2007, 27, 351–358. [Google Scholar] [CrossRef]
- Konradi, C.; Eaton, M.; MacDonald, M.L.; Walsh, J.; Benes, F.M.; Heckers, S. Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder. Arch. Gen. Psychiatry 2004, 61, 300. [Google Scholar] [CrossRef]
- Schubert, K.O.; Föcking, M.; Cotter, D.R. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: Potential roles in GABAergic interneuron pathology. Schizophr. Res. 2015, 167, 64–72. [Google Scholar] [CrossRef]
- Lowy, M.T.; Gault, L.; Yamamoto, B.K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem. 1993, 61, 1957–1960. [Google Scholar] [CrossRef]
- Scotti-Muzzi, E.; Umla-Runge, K.; Soeiro-de-Souza, M.G. Anterior cingulate cortex neurometabolites in bipolar disorder are influenced by mood state and medication: A meta-analysis of 1H-MRS studies. Eur. Neuropsychopharmacol. 2021, 47, 62–73. [Google Scholar] [CrossRef]
- Taylor, M.J. Could glutamate spectroscopy differentiate bipolar depression from unipolar? J. Affect. Disord. 2014, 167, 80–84. [Google Scholar] [CrossRef]
- Vogt, B. Cingulate Neurobiology and Disease; OUP: Oxford, UK, 2009. [Google Scholar]
- Matelli, M.; Luppino, G.; Rizzolatti, G. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 1991, 311, 445–462. [Google Scholar] [CrossRef]
- Silverstone, P.H.; Wu, R.H.; O’Donnell, T.; Ulrich, M.; Asghar, S.J.; Hanstock, C.C. Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum. Psychopharmacol. Clin. Exp. 2002, 17, 321–327. [Google Scholar] [CrossRef]
- Wu, R.H.; O’Donnell, T.; Ulrich, M.; Asghar, S.J.; Hanstock, C.C.; Silverstone, P.H. Brain choline concentrations may not be altered in euthymic bipolar disorder patients chronically treated with either lithium or sodium valproate. Ann. Gen. Psychiatry 2004, 3, 13. [Google Scholar] [CrossRef]
- Dager, S.R.; Friedman, S.D.; Parow, A.; Demopulos, C.; Stoll, A.L.; Lyoo, I.K.; Dunner, D.L.; Renshaw, P.F. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch. Gen. Psychiatry 2004, 61, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.D.; Dager, S.R.; Parow, A.; Hirashima, F.; Demopulos, C.; Stoll, A.L.; Lyoo, I.K.; Dunner, D.L.; Renshaw, P.F. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol. Psychiatry 2004, 56, 340–348. [Google Scholar] [CrossRef]
- Brambilla, P.; Stanley, J.A.; Nicoletti, M.A.; Sassi, R.B.; Mallinger, A.G.; Frank, E.; Kupfer, D.; Keshavan, M.S.; Soares, J.C. 1H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. J. Affect Disord. 2005, 86, 61–67. [Google Scholar] [CrossRef]
- Port, J.D.; Unal, S.S.; Mrazek, D.A.; Marcus, S.M. Metabolic alterations in medication-free patients with bipolar disorder: A 3T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Res. Neuroimaging 2008, 162, 113–121. [Google Scholar] [CrossRef]
- Kaufman, R.E.; Ostacher, M.J.; Marks, E.H.; Simon, N.M.; Sachs, G.S.; Jensen, J.E.; Renshaw, P.F.; Pollack, M.H. Brain GABA levels in patients with bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 427–434. [Google Scholar] [CrossRef]
- Nery, F.G.; Stanley, J.A.; Chen, H.H.; Hatch, J.P.; Nicoletti, M.A.; Monkul, E.S.; Lafer, B.; Soares, J.C. Bipolar Disorder Comorbid With Alcoholism: A 1h Magnetic Resonance Spectroscopy Study. J. Psychiatr. Res. 2010, 44, 278–285. [Google Scholar] [CrossRef]
- Öngür, D.; Prescot, A.P.; Jensen, J.E.; Rouse, E.D.; Cohen, B.M.; Renshaw, P.F.; Olson, D.P. T2 relaxation time abnormalities in bipolar disorder and schizophrenia. Magn. Reason. Med. 2010, 63, 1–8. [Google Scholar] [CrossRef]
- Frey, B.N.; Walss-Bass, C.; Stanley, J.A.; Nery, F.G.; Matsuo, K.; Nicoletti, M.A.; Hatch, J.P.; Bowden, C.L.; Escamilla, M.A.; Soares, J.C. Brain-derived neurotrophic factor val66met polymorphism affects prefrontal energy metabolism in bipolar disorder. NeuroReport 2007, 18, 1567–1570. [Google Scholar] [CrossRef]
- Frey, B.N.; Stanley, J.A.; Nery, F.G.; Serap Monkul, E.; Nicoletti, M.A.; Chen, H.H.; Hatch, J.P.; Caetano, S.C.; Ortiz, O.; Kapczinski, F.; et al. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: An in vivo 1H MRS study. Bipolar Disord. 2007, 9, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.N.; Stanley, J.A.; Nicoletti, M.A.; Hatch, J.P.; Soares, J.C. Corrected values of brain metabolites for the article: ‘Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: An in vivo 1H MRS study’. Bipolar Disord. 2008, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Lagopoulos, J.; Hermens, D.F.; Tobias-Webb, J.; Duffy, S.; Naismith, S.L.; White, D.; Scott, E.; Hickie, I.B. In vivo glutathione levels in young persons with bipolar disorder: A magnetic resonance spectroscopy study. J. Psychiatr. Res. 2013, 47, 412–417. [Google Scholar] [CrossRef]
- Chitty, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. Investigating the role of glutathione in mismatch negativity: An insight into NMDA receptor disturbances in bipolar disorder. Clin. Neurophysiol. 2015, 126, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Atagün, M.I.; Şıkoğlu, E.M.; Soykan, Ç.; Süleyman, C.S.; Ulusoy-Kaymak, S.; Çayköylü, A.; Algın, O.; Phillips, M.L.; Öngür, D.; Moore, C.M. Perisylvian GABA levels in schizophrenia and bipolar disorder. Neurosci. Lett. 2016, 637, 70–74. [Google Scholar] [CrossRef]
- Machado-Vieira, R.; Zanetti, M.V.; Otaduy, M.C.; De Sousa, R.T.; Soeiro-de-Souza, M.G.; Costa, A.C.; Carvalho, A.F.; Leite, C.C.; Busatto, G.F.; Zarate, C.A., Jr.; et al. Increased Brain Lactate During Depressive Episodes and Reversal Effects by Lithium Monotherapy in Drug-Naive Bipolar Disorder: A 3-T 1H-MRS Study. J. Clin. Psychopharmacol. 2017, 37, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ozdel, O.; Kalayci, D.; Sözeri-Varma, G.; Kiroğlu, Y.; Tümkaya, S.; Toker-Uğurlu, T. Neurochemical metabolites in the medial prefrontal cortex in bipolar disorder: A proton magnetic resonance spectroscopy study. Neural. Regen. Res. 2012, 7, 2929–2936. [Google Scholar] [PubMed]
- Silveira, L.E.; Bond, D.J.; MacMillan, E.L.; Kozicky, J.M.; Muralidharan, K.; Bücker, J.; Rosa, A.R.; Kapczinski, F.; Yatham, L.N. Hippocampal neurochemical markers in bipolar disorder patients following the first-manic episode: A prospective 12-month proton magnetic resonance spectroscopy study. Aust. N. Z. J. Psychiatry 2017, 51, 65–74. [Google Scholar] [CrossRef]
- Cao, B.; Stanley, J.A.; Selvaraj, S.; Mwangi, B.; Passos, I.C.; Zunta-Soares, G.B.; Soares, J.C. Evidence of altered membrane phospholipid metabolism in the anterior cingulate cortex and striatum of patients with bipolar disorder I: A multi-voxel 1H MRS study. J. Psychiatr. Res. 2016, 81, 48–55. [Google Scholar] [CrossRef]
- Aydin, B.; Yurt, A.; Gökmen, N.; Renshaw, P.; Olson, D.; Yildiz, A. Trait-related alterations of N-acetyl-aspartate in euthymic bipolar patients: A longitudinal proton magnetic resonance spectroscopy study. J. Affect. Disord. 2016, 206, 315–320. [Google Scholar] [CrossRef]
- Galińska-Skok, B.; Konarzewska, B.; Kubas, B.; Tarasów, E.; Szulc, A. Neurochemical alterations in anterior cingulate cortex in bipolar disorder: A proton magnetic resonance spectroscopy study (1H-MRS). Psychiatr. Polska 2016, 50, 839–848. [Google Scholar] [CrossRef]
- Cao, B.; A Stanley, J.; Passos, I.C.; Mwangi, B.; Selvaraj, S.; Zunta-Soares, G.B.; Soares, J.C. Elevated Choline-Containing Compound Levels in Rapid Cycling Bipolar Disorder. Neuropsychopharmacology 2017, 42, 2252–2258. [Google Scholar] [CrossRef]
- Bond, D.J.; E Silveira, L.; Macmillan, E.L.; Torres, I.J.; Lang, D.J.; Su, W.; Honer, W.G.; Lam, R.W.; Yatham, L.N. Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl. Psychiatry 2017, 7, e1071. [Google Scholar] [CrossRef]
- Prisciandaro, J.J.; Tolliver, B.K.; Prescot, A.P.; Brenner, H.M.; Renshaw, P.F.; Brown, T.R.; Anton, R.F. Unique prefrontal GABA and glutamate disturbances in co-occurring bipolar disorder and alcohol dependence. Transl. Psychiatry 2017, 7, e1163. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kaufman, M.J.; Cohen, B.M.; Jensen, J.E.; Coyle, J.T.; Du, F.; Öngür, D. In Vivo Brain Glycine and Glutamate Concentrations in Patients With First-Episode Psychosis Measured by Echo Time–Averaged Proton Magnetic Resonance Spectroscopy at 4T. Biol. Psychiatry 2018, 83, 484–491. [Google Scholar] [CrossRef]
- Galińska-Skok, B.; Małus, A.; Konarzewska, B.; Rogowska-Zach, A.; Milewski, R.; Tarasów, E.; Szulc, A.; Waszkiewicz, N. Choline Compounds of the Frontal Lobe and Temporal Glutamatergic System in Bipolar and Schizophrenia Proton Magnetic Resonance Spectroscopy Study. Dis. Markers 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Hermens, D.F.; Hatton, S.N.; Lee, R.S.C.; Naismith, S.L.; Duffy, S.L.; Amminger, G.P.; Kaur, M.; Scott, E.M.; Lagopoulos, J.; Hickie, I.B. In vivo imaging of oxidative stress and fronto-limbic white matter integrity in young adults with mood disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 268, 145–156. [Google Scholar] [CrossRef]
- Hajek, T.; Calkin, C.; Blagdon, R.; Slaney, C.; Alda, M. Type 2 diabetes mellitus: A potentially modifiable risk factor for neuro-chemical brain changes in bipolar disorders. Biol. Psychiatry 2015, 77, 295–303. [Google Scholar] [CrossRef]
- King, S.; Jelen, L.A.; Horne, C.M.; Cleare, A.; Pariante, C.M.; Young, A.H.; Stone, J.M. Inflammation, Glutamate, and Cognition in Bipolar Disorder Type II: A Proof of Concept Study. Front. Psychiatry 2019, 10, 66. [Google Scholar] [CrossRef]
- Bustillo, J.R.; Jones, T.; Qualls, C.; Chavez, L.; Lin, D.; Lenroot, R.K.; Gasparovic, C. Proton magnetic resonance spectroscopic imaging of gray and white matter in bipolar-I and schizophrenia. J. Affect. Disord. 2019, 246, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Venkatasubramanian, P.N.; Bárány, M.; Davis, J.M. Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr. Res. 1992, 8, 43–49. [Google Scholar] [CrossRef]
- Stoll, A.L.; Renshaw, P.F.; Sachs, G.S.; Guimaraes, A.R.; Miller, C.; Cohen, B.M.; Lafer, B.; Gonzalez, R.G. The human brain resonance of choline-containing compounds is similar in patients receiving lithium treatment and controls: An in vivo proton magnetic resonance spectroscopy study. Biol. Psychiatry 1992, 32, 944–949. [Google Scholar] [CrossRef]
- Moore, C.M.; Breeze, J.L.; A Gruber, S.; Babb, S.M.; Frederick, B.D.; A Villafuerte, R.; Stoll, A.L.; Hennen, J.; A Yurgelun-Todd, D.; Cohen, B.M.; et al. Choline, myoinositol and mood in bipolar disorder: A proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord. 2000, 2, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, A.; Frye, M.; Callicott, J.; Mattay, V.S.; Rakow, R.; Shelton-Repella, J.; Post, R.; Weinberger, D.R. Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging. Biol. Psychiatry 2003, 53, 906–913. [Google Scholar] [CrossRef]
- Silverstone, P.H.; Wu, R.H.; O’Donnell, T.; Ulrich, M.; Asghar, S.J.; Hanstock, C.C. Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients. Int. Clin. Psychopharmacol. 2003, 18, 73–79. [Google Scholar] [CrossRef]
- Silverstone, P.H.; Asghar, S.J.; O’Donnell, T.; Ulrich, M.; Hanstock, C.C. Lithium and valproate protect against dextro-amphetamine induced brain choline concentration changes in bipolar disorder patients. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2004, 5, 38–44. [Google Scholar] [CrossRef]
- Blasi, G.; Bertolino, A.; Brudaglio, F.; Sciota, D.; Altamura, M.; Antonucci, N.; Scarabino, T.; Weinberger, D.R.; Nardini, M. Hippocampal neurochemical pathology in patients at first episode of affective psychosis: A proton magnetic resonance spectroscopic imaging study. Psychiatry Res. 2004, 131, 95–105. [Google Scholar] [CrossRef]
- Wang, P.W.; Sailasuta, N.; Chandler, R.A.; Ketter, T.A. Magnetic resonance spectroscopic measurement of cerebral gamma-aminobutyric acid concentrations in patients with bipolar disorders. Acta Neuropsychiatr. 2006, 18, 120–126. [Google Scholar] [CrossRef]
- Scherk, H.; Backens, M.; Schneider-Axmann, T.; Kraft, S.; Kemmer, C.; Usher, J.; Reith, W.; Falkai, P.; Meyer, J.; Gruber, O. Dopamine transporter genotype influences N-acetyl-aspartate in the left putamen. World J. Biol. Psychiatry 2009, 10, 524–530. [Google Scholar] [CrossRef]
- Bhagwagar, Z.; Wylezinska, M.; Jezzard, P.; Evans, J.; Ashworth, F.; Sule, A.; Matthews, P.M.; Cowen, P.J. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol. Psychiatry 2007, 61, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Brady, R.O., Jr.; McCarthy, J.M.; Prescot, A.P.; Jensen, J.E.; Cooper, A.J.; Cohen, B.M.; Renshaw, P.F.; Öngür, D. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013, 15, 434–439. [Google Scholar] [CrossRef]
- Godlewska, B.R.; Yip, S.W.; Near, J.; Goodwin, G.M.; Cowen, P.J. Cortical glutathione levels in young people with bipolar disorder: A pilot study using magnetic resonance spectroscopy. Psychopharmacology 2013, 231, 327–332. [Google Scholar] [CrossRef]
- Hermens, D.F.; Naismith, S.L.; Chitty, K.M.; Lee, R.S.; Tickell, A.; Duffy, S.L.; Paquola, C.; White, D.; Hickie, I.B.; Lagopoulos, J. Cluster analysis reveals abnormal hippocampal neurometabolic profiles in young people with mood disorders. Eur. Neuropsychopharmacol. 2015, 25, 836–845. [Google Scholar] [CrossRef]
- Zhang, W.; Nery, F.G.; Tallman, M.J.; Patino, L.R.; Adler, C.M.; Strawn, J.R.; Fleck, D.E.; Barzman, D.H.; Sweeney, J.A.; Strakowski, S.M.; et al. Individual prediction of symptomatic converters in youth offspring of bipolar parents using proton magnetic resonance spectroscopy. Eur. Child Adolesc. Psychiatry 2020, 30, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Jelen, L.A.; King, S.; Horne, C.M.; Lythgoe, D.J.; Young, A.H.; Stone, J.M. Functional magnetic resonance spectroscopy in patients with schizophrenia and bipolar affective disorder: Glutamate dynamics in the anterior cingulate cortex during a working memory task. Eur. Neuropsychopharmacol. 2018, 29, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, M.; Yildirim, H.; Ozdemir, H.; Ogur, E.; Tezcan, E. Hippocampal 1H MRS in patients with bipolar disorder taking valproate versus valproate plus quetiapine. Psychol. Med. 2006, 37, 121–129. [Google Scholar] [CrossRef]
- Scherk, H.; Backens, M.; Zill, P.; Schneider-Axmann, T.; Wobrock, T.; Usher, J.; Reith, W.; Falkai, P.; Möller, H.-J.; Bondy, B.; et al. SNAP-25 genotype influences NAA/Cho in left hippocampus. J. Neural Transm. 2008, 115, 1513–1518. [Google Scholar] [CrossRef]
- Gruber, O.; Hasan, A.; Scherk, H.; Wobrock, T.; Schneider-Axmann, T.; Ekawardhani, S.; Schmitt, A.; Backens, M.; Reith, W.; Meyer, J.; et al. Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: In vivo evidence for effects on the glutamate system. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 262, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Shahana, N.; DelBello, M.; Chu, W.-J.; Jarvis, K.; Fleck, D.; Welge, J.; Strakowski, S.; Adler, C. Neurochemical alteration in the caudate: Implications for the pathophysiology of bipolar disorder. Psychiatry Res. Neuroimaging 2011, 193, 107–112. [Google Scholar] [CrossRef]
- Howells, F.M.; Ives-Deliperi, V.L.; Horn, N.R.; Stein, D.J. Increased thalamic phospholipid concentration evident in bipolar I disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 41, 1–5. [Google Scholar] [CrossRef]
- Chu, W.-J.; DelBello, M.P.; Jarvis, K.B.; Norris, M.M.; Kim, M.-J.; Weber, W.; Lee, J.-H.; Strakowski, S.M.; Adler, C.M. Magnetic resonance spectroscopy imaging of lactate in patients with bipolar disorder. Psychiatry Res. Neuroimaging 2013, 213, 230–234. [Google Scholar] [CrossRef]
- Chitty, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. Hippocampal glutamatergic/NMDA receptor functioning in bipolar disorder: A study combining mismatch negativity and proton magnetic resonance spectroscopy. Psychiatry Res. 2015, 233, 88–94. [Google Scholar] [CrossRef]
- Soeiro-De-Souza, M.G.; Pastorello, B.F.; Leite, C.D.C.; Henning, A.; Moreno, R.A.; Otaduy, M.C.G. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder:1H-MRS Study. Int. J. Neuropsychopharmacol. 2016, 19, pyw032. [Google Scholar] [CrossRef] [PubMed]
- Scotti-Muzzi, E.; Chile, T.; Moreno, R.; Pastorello, B.F.; Leite, C.D.C.; Henning, A.; Otaduy, M.C.G.; Vallada, H.; Soeiro-De-Souza, M.G. ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: Possible in vivo neurometabolite explanation for mood stabilization. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 271, 537–547. [Google Scholar] [CrossRef]
- Adler, C.M.; DelBello, M.P.; Weber, W.A.; Jarvis, K.B.; Welge, J.; Chu, W.J.; Rummelhoff, E.; Kim, M.J.; Lee, J.H.; Strakowski, S.M. Neurochemical effects of quetiapine in patients with bipolar mania: A proton magnetic resonance spectroscopy study. J. Clin. Psychopharmacol. 2013, 33, 528–532. [Google Scholar] [CrossRef]
- Gigante, A.D.; Lafer, B.; Yatham, L.N. 1H-MRS of hippocampus in patients after first manic episode. World J. Biol. Psychiatry 2013, 15, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Soeiro-de-Souza, M.G.; Salvadore, G.; Moreno, R.A.; Otaduy, M.C.; Chaim, K.T.; Gattaz, W.F.; Zarate, C.A.; Machado-Vieira, R. Bcl-2 rs956572 Polymorphism is Associated with Increased Anterior Cingulate Cortical Glutamate in Euthymic Bipolar I Disorder. Neuropsychopharmacology 2012, 38, 468–475. [Google Scholar] [CrossRef]
- Atagün, M.; Şıkoğlu, E.; Can, S.; Karakaş-Uğurlu, G.; Ulusoy-Kaymak, S.; Çayköylü, A.; Algın, O.; Phillips, M.; Moore, C.; Öngür, D. Investigation of Heschl’s gyrus and planum temporale in patients with schizophrenia and bipolar disorder: A proton magnetic resonance spectroscopy study. Schizophr. Res. 2014, 161, 202–209. [Google Scholar] [CrossRef]
- Atagün, M.I.; Şıkoğlu, E.M.; Can, S.S.; Uğurlu, G.K.; Kaymak, S.U.; Çayköylü, A.; Algın, O.; Phillips, M.L.; Moore, C.M.; Öngür, D. Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: A proton magnetic resonance spectroscopy study. J. Affect. Disord. 2018, 235, 15–19. [Google Scholar] [CrossRef]
- Deicken, R.F.; Eliaz, Y.; Feiwell, R.; Schuff, N. Increased thalamic N-acetyl-aspartate in male patients with familial bipolar I disorder. Psychiatry Res. 2001, 106, 35–45. [Google Scholar] [CrossRef]
- Veldic, M.; Millischer, V.; Port, J.D.; Ho, A.M.; Jia, Y.F.; Geske, J.R.; Biernacka, J.M.; Backlund, L.; McElroy, S.L.; Bond, D.J.; et al. Genetic variant in SLC1A2 is associated with elevated anterior cingulate cortex glutamate and lifetime history of rapid cycling. Transl. Psychiatry 2019, 9, 149. [Google Scholar] [CrossRef]
- Hajek, T.; Bauer, M.; Pfennig, A.; Cullis, J.; Ploch, J.; O’Donovan, C.; Bohner, G.; Klingebiel, R.; Young, L.; MacQueen, G.; et al. Large positive effect of lithium on prefrontal cortex N-acetyl-aspartate in patients with bipolar disorder: 2-centre study. J. Psychiatry Neurosci. 2012, 37, 185–192. [Google Scholar] [CrossRef] [PubMed]
- A Frye, M.; Watzl, J.; Banakar, S.; O’Neill, J.; Mintz, J.; Davanzo, P.; Fischer, J.; Chirichigno, J.W.; Ventura, J.; Elman, S.; et al. Increased Anterior Cingulate/Medial Prefrontal Cortical Glutamate and Creatine in Bipolar Depression. Neuropsychopharmacology 2007, 32, 2490–2499. [Google Scholar] [CrossRef]
- Xu, J.; Dydak, U.; Harezlak, J.; Nixon, J.; Dzemidzic, M.; Gunn, A.D.; Karne, H.S.; Anand, A. Neurochemical abnormalities in unmedicated bipolar depression and mania: A 2D 1H MRS investigation. Psychiatry Res. Neuroimaging 2013, 213, 235–241. [Google Scholar] [CrossRef]
- Sarramea Crespo, F.; Luque, R.; Prieto, D.; Sau, P.; Albert, C.; Leal, I.; De Luxan, A.; Osuna, M.I.; Ruiz, M.; Galán, R.; et al. Biochemical changes in the cingulum in patients with schizophrenia and chronic bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 394–401. [Google Scholar] [CrossRef]
- Machado-Vieira, R.; Gattaz, W.F.; Zanetti, M.V.; De Sousa, R.T.; Carvalho, A.F.; Soeiro-De-Souza, M.G.; Leite, C.C.; Otaduy, M.C. A Longitudinal (6-week) 3T 1H-MRS Study on the Effects of Lithium Treatment on Anterior Cingulate Cortex Metabolites in Bipolar Depression. Eur. Neuropsychopharmacol. 2015, 25, 2311–2317. [Google Scholar] [CrossRef]
- Lai, S.; Zhong, S.; Zhang, Y.; Wang, Y.; Zhao, H.; Chen, G.; Chen, F.; Shen, S.; Huang, H.; Jia, Y. Association of altered thyroid hormones and neurometabolism to cognitive dysfunction in unmedicated bipolar II depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 105, 110027. [Google Scholar] [CrossRef]
- Bio, D.S.; Moreno, R.A.; Garcia-Otaduy, M.C.; Nery, F.; Lafer, B.; Soeiro-De-Souza, M.G. Altered brain creatine cycle metabolites in bipolar I disorder with childhood abuse: A 1H magnetic resonance spectroscopy study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 109, 110233. [Google Scholar] [CrossRef]
- Kato, T.; Hamakawa, H.; Shioiri, T.; Murashita, J.; Takahashi, Y.; Takahashi, S.; Inubushi, T. Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J. Psychiatry Neurosci. 1996, 21, 248–254. [Google Scholar]
- Hamakawa, H.; Kato, T.; Murashita, J.; Kato, N. Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. Eur. Arch. Psychiatry Clin. Neurosci. 1998, 248, 53–58. [Google Scholar] [CrossRef]
- Ohara, K.; Isoda, H.; Suzuki, Y.; Takehara, Y.; Ochiai, M.; Takeda, H.; Igarashi, Y.; Ohara, K. Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiatry Res. 1998, 84, 55–60. [Google Scholar] [CrossRef]
- Lai, S.; Zhong, S.; Liao, X.; Wang, Y.; Huang, J.; Zhang, S.; Sun, Y.; Zhao, H.; Jia, Y. Biochemical abnormalities in basal ganglia and executive dysfunction in acute- and euthymic-episode patients with bipolar disorder: A proton magnetic resonance spectroscopy study. J. Affect. Disord. 2018, 225, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Lai, S.; Yue, J.; Wang, Y.; Shan, Y.; Liao, X.; Chen, J.; Li, Z.; Chen, G.; Chen, F.; et al. The characteristic of cognitive impairments in patients with bipolar II depression and its association with N-acetyl-aspartate of the prefrontal white matter. Ann. Transl. Med. 2020, 8, 1457. [Google Scholar] [CrossRef]
- Poletti, S.; Mazza, M.G.; Vai, B.; Lorenzi, C.; Colombo, C.; Benedetti, F. Proinflammatory Cytokines Predict Brain Metabolite Concentrations in the Anterior Cingulate Cortex of Patients With Bipolar Disorder. Front. Psychiatry 2020, 11, 590095. [Google Scholar] [CrossRef]
- Hamakawa, H.; Kato, T.; Shioiri, T.; Inubushi, T.; Kato, N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol. Med. 1999, 29, 639–644. [Google Scholar] [CrossRef]
- Bond, D.J.; Silveira, L.E.; Torres, I.J.; Lam, R.W.; Yatham, L.N. Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: A longitudinal magnetic resonance spectroscopy study. Psychol. Med. 2021, 1–9. [Google Scholar] [CrossRef]
- Bustillo, J.R.; Mayer, E.G.; Upston, J.; Jones, T.; Garcia, C.; Sheriff, S.; Maudsley, A.; Tohen, M.; Gasparovic, C.; Lenroot, R. Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Front. Psychiatry 2021, 12, 660850. [Google Scholar] [CrossRef]
- Jabbari-Zadeh, F.; Cao, B.; Stanley, J.A.; Liu, Y.; Wu, M.-J.; Tannous, J.; Lopez, M.; Sanches, M.; Mwangi, B.; Zunta-Soares, G.B.; et al. Evidence of altered metabolism of cellular membranes in bipolar disorder comorbid with post-traumatic stress disorder. J. Affect. Disord. 2021, 289, 81–87. [Google Scholar] [CrossRef]
- Maximo, J.O.; Briend, F.; Armstrong, W.P.; Kraguljac, N.V.; Lahti, A.C. Salience network glutamate and brain connectivity in medication-naïve first episode patients—A multimodal magnetic resonance spectroscopy and resting state functional connectivity MRI study. NeuroImage Clin. 2021, 32, 102845. [Google Scholar] [CrossRef]
- Whitton, A.E.; Kumar, P.; Treadway, M.T.; Rutherford, A.V.; Ironside, M.L.; Foti, D.; Fitzmaurice, G.; Du, F.; Pizzagalli, D.A. Mapping Disease Course Across the Mood Disorder Spectrum Through a Research Domain Criteria Framework. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 706–715. [Google Scholar] [CrossRef]
Study (Year) | Field Strength (Tesla) | TE (ms) | TR (ms) | Acquisition Sequence | CRLB Threshold | Creatine Scaling | Patients (n) | Controls (n) | Age | Gender (Male/Female) | Metabolite | ROI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amaral (2006) [31] | 1.5 | 144 | 1500 | PRESS | Cr-scaling | 13 | 15 | 34.54 | 6/7 | NAA | pACC | |
Brady (2012) [33] | 4 | 30–500 | 2000 | JPRESS | <25% | Cr-scaling | 7 | 6 | 39.70 | 3/4 | NAA, Glu | pACC |
Colla (2009) [34] | 3 | 80 | 3000 | PRESS | 21 | 19 | 54.20 | 10/11 | NAA, Glu | Hipp | ||
Corcoran (2020) [35] | 3 | 80 | 3000 | PRESS | <15% | 17 | 41 | 44.64 | 11/6 | Glu | dACC, dlPFC | |
Cumurcu (2008) [37] | X | 136 | 2000 | PRESS | Cr-scaling | 10 | 10 | 33.10 | 5/5 | NAA | Hipp, dlPFC | |
Deicken (2003) [38] | 1.5 | 135 | 1800 | 15 | 20 | 39.30 | 15/0 | NAA | Hipp | |||
Ehrlich (2015) [39] | 3 | 80 | 3000 | PRESS | <20% | 21 | 42 | 45.90 | 8/13 | NAA, Glu, Gln | Hipp, dACC | |
Haarman (2016) [40] | 3 | 144 | 2000 | PRESS | <20% | 22 | 24 | 44.50 | 10/12 | NAA | Hipp | |
Iosifescu (2009) [41] | 4 | 30 | 2000 | PRESS | <15% | 20 | 10 | 40.70 | 14/6 | NAA | Hipp | |
Kalayci (2012) [42] | 1.5 | 35 and 144 | 3000 | PRESS | 15 | 15 | 38.87 | 9/6 | NAA | dlPFC | ||
Kubo (2016) [43] | 3 | 18 | 5000 | STEAM | 14 | 23 | 45.00 | NAA, Glu, Gln | dACC | |||
Liu (2017) [46] | 3 | 144 | 1000 | PRESS | Cr-scaling | 22 | 24 | 26.82 | 5/17 | NAA | wmPFC | |
Mahli (2007) [47] | 1.5 | 80 | 1500 | STEAM | 9 | 9 | 40.78 | 2/7 | NAA | pACC, wmPFC | ||
Molina (2007) [50] | 1.5 | 136 | 1500 | PRESS | Cr-scaling | 13 | 10 | 37.80 | 13/0 | NAA | dlPFC | |
Rocha (2015) [51] | 1.5 | 30 | 1500 | PRESS | 21 | 22 | 42.00 | 5/16 | NAA | mOFC | ||
Scherk (2008) [52] | 1.5 | 30 | 1500 | PRESS | Cr-scaling | 13 | 13 | 31.45 | 6/7 | NAA | Hipp | |
Scherk (2009) [53] | 1.5 | 30 | 1500 | PRESS | Cr-scaling | 33 | 29 | 43.86 | 15/18 | NAA | dACC, dlPFC | |
Senaratne (2009) [54] | 3 | 35 | 2000 | PRESS | <20% | 12 | 12 | 42.10 | 3/9 | NAA, Glx | Hipp, mPFC | |
Soiero-De Souza (2015) [56] | 3 | 31–231 | 1600 | JPRESS | <20% | Cr-scaling | 50 | 38 | 31.70 | 19/31 | Glu, Gln | dACC |
Soeiro-De-Souza (2018) [57] | 3 | 80 | 1500 | PRESS | <20% | Cr-scaling | 128 | 80 | 32.04 | 42/86 | Glu, Glx | pACC |
Soiero-De Souza (2018) [58] | 3 | 80 | 1500 | PRESS | <20% | 129 | 79 | 32.00 | 44/85 | NAA | pACC | |
Winberg (2000) [59] | 1.5 | 35 | 2000 | PRESS | Cr-scaling | 20 | 20 | 37.90 | 9/11 | NAA | dlPFC |
Study (Year) | Field Strength (Tesla) | TE (ms) | TR (ms) | Acquisition Sequence | CRLB Threshold | Creatine Scaling | Patients (n) | Controls (n) | Age | Gender (Male/Female) | Metabolite | ROI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Atmaca (2012) [32] | 1.5 | Cr-scaling | 16 | 16 | 28.10 | 12/4 | NAA | Hipp | ||||
Croarkin (2015) [36] | 1.5 | 30 | 2000 | L-COSY | Cr-scaling | 15 | 9 | Glu, Glx, NAA | ACC | |||
Lai (2019) [44] | 3 | 144 | 1000 | PRESS | Cr-scaling | 40 | 40 | 24.88 | 17/23 | NAA | dACC, wmPFC | |
Li (2016) [45] | 3 | 30 | 1500 | PRESS | <20% | 13 | 20 | 31.00 | 6/7 | NAA, Glx | dACC, mPFC | |
Liu (2017) [46] | 3 | 144 | 1000 | PRESS | Cr-scaling | 22 | 22 | 24.36 | 6/16 | NAA | wmPFC | |
Mellen (2019) [48] | 4 | 30–500 | 2000 | JPRESS | Cr-scaling | 23 | 14 | 62.00 | 14/9 | NAA, Glu | pACC | |
Michael (2009) [49] | 1.5 | 20 | 2500 | STEAM | <20% | 6 | 6 | 51.60 | 1/5 | NAA, Glx | dlPFC | |
Smaragdi (2019) [55] | 3 | 35 | 1500 | PRESS | 16 | 21 | 37.00 | 9/7 | NAA, Glx | dACC, dlPFC | ||
Zanetti (2014) [60] | 3 | 35 | 1500 | PRESS | <20% | 19 | 17 | 28.70 | 6/13 | NAA, Glu | Hipp | |
Zhong (2018) [61] | 3 | 144 | 1000 | PRESS | Cr-scaling | 42 | 43 | 26.62 | 17/25 | NAA | dACC, wmPFC | |
Zhong (2014) [62] | 1.5 | 144 | 1000 | PRESS | Cr-scaling | 20 | 13 | 30.55 | 9/11 | NAA | Hipp, pACC, wmPFC | |
Soiero-De-Souza (2021) [63] | 3 | 80 | 1500 | PRESS | <20% | Cr-scaling | 28 | 28 | 28.30 | 7/21 | NAA, Glx, Glu | ACC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabert, J.; Allauze, E.; Pereira, B.; Chassain, C.; De Chazeron, I.; Rotgé, J.-Y.; Fossati, P.; Llorca, P.-M.; Samalin, L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int. J. Mol. Sci. 2022, 23, 8974. https://doi.org/10.3390/ijms23168974
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé J-Y, Fossati P, Llorca P-M, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. International Journal of Molecular Sciences. 2022; 23(16):8974. https://doi.org/10.3390/ijms23168974
Chicago/Turabian StyleChabert, Jonathan, Etienne Allauze, Bruno Pereira, Carine Chassain, Ingrid De Chazeron, Jean-Yves Rotgé, Philippe Fossati, Pierre-Michel Llorca, and Ludovic Samalin. 2022. "Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies" International Journal of Molecular Sciences 23, no. 16: 8974. https://doi.org/10.3390/ijms23168974
APA StyleChabert, J., Allauze, E., Pereira, B., Chassain, C., De Chazeron, I., Rotgé, J.-Y., Fossati, P., Llorca, P.-M., & Samalin, L. (2022). Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. International Journal of Molecular Sciences, 23(16), 8974. https://doi.org/10.3390/ijms23168974