Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis
Abstract
1. Introduction
2. Results
2.1. Description of Patients and Controls Samples Used in Different Experiments
2.2. Plaque Psoriasis Patients Have Increased Levels Candida Albicans-Specific IgA and IgG
2.3. Candida Albicans-Induced Th17 and Th9 Responses Are Confined to CLA+ T-cells and Dominated by IL-17F
2.4. Candida Albicans’ Specific IgA Plasma Levels and IL-17 T cell Responses Are Directly Associated in Plaque Psoriasis Patients
2.5. Proteomic Profile of Plasma from Psoriasis Patients according to Anti-CA IgA Levels
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. ELISA
4.3. Circulating Memory T-cell and Epidermal Cell Isolation
4.4. Co-Cultures
4.5. Cytokine Quantification
4.6. Proteomic Study
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkes, J.E.; Chan, T.C.; Krueger, J.G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 2017, 140, 645–653. [Google Scholar] [CrossRef]
- Fry, L.; Baker, B.S. Triggering psoriasis: The role of infections and medications. Clin. Dermatol. 2007, 25, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.; Gilhar, A.; Duek, L.; Berdicevsky, I. Incidence of Candida in psoriasis—A study on the fungal flora of psoriatic patients. Mycoses 2001, 44, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Leibovici, V.; Alkalay, R.; Hershko, K.; Ingber, A.; Westerman, M.; Leviatan-Strauss, N.; Hochberg, M. Prevalence of Candida on the tongue and intertriginous areas of psoriatic and atopic dermatitis patients. Mycoses 2008, 51, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Picciani, B.L.S.; Michalski-Santos, B.; Carneiro, S.; Sampaio, A.L.; Avelleira, J.C.R.; Azulay, D.R.; Pinto, J.M.N.; Dias, E.P. Oral candidiasis in patients with psoriasis: Correlation of oral examination and cytopathological evaluation with psoriasis disease severity and treatment. J. Am. Acad. Dermatol. 2013, 68, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Taheri Sarvtin, M.; Shokohi, T.; Hajheydari, Z.; Yazdani, J.; Hedayati, M.T. Evaluation of candidal colonization and specific humoral responses against Candida albicans in patients with psoriasis. Int. J. Dermatol. 2014, 53, e555–e560. [Google Scholar] [CrossRef] [PubMed]
- Lesan, S.; Toosi, R.; Aliakbarzadeh, R.; Daneshpazhooh, M.; Mahmoudi, L.; Tavakolpour, S.; Mahmoudi, H. Oral Candida colonization and plaque type psoriasis: Is there any relationship? J. Investig. Clin. Dent. 2018, 9, e12335. [Google Scholar] [CrossRef]
- Buslau, M.; Menzel, I.; Holzmann, H. Fungal flora of human faeces in psoriasis and atopic dermatitis. Mycoses 1990, 33, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Bedair, A.A.; Darwazeh, A.M.G.; Al-Aboosi, M.M. Oral Candida colonization and candidiasis in patients with psoriasis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 610–615. [Google Scholar] [CrossRef]
- Soyuer, U.; Kilic, H.; Alpan, O. Anti-Candida antibody levels in psoriasis vulgaris. Cent. Afr. J. Med. 1990, 36, 190–192. [Google Scholar]
- Flytström, I.; Bergbrant, I.M.; Bråred, J.; Brandberg, L.L. Microorganisms in intertriginous psoriasis: No evidence of Candida. Acta Derm. Venereol. 2003, 83, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, T.; Rup, E.; Ziółkowska, A.; Roeske, K.; Macura, A.B.; Bielecki, J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014, 14, 3. [Google Scholar] [CrossRef]
- Takemoto, A.; Cho, O.; Morohoshi, Y.; Sugita, T.; Muto, M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J. Dermatol. 2015, 42, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Paulino, L.C.; Tseng, C.H.; Strober, B.E.; Blaser, M.J. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J. Clin. Microbiol. 2006, 44, 2933–2941. [Google Scholar] [CrossRef] [PubMed]
- Paulino, L.C.; Tseng, C.H.; Blaser, M.J. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 2008, 8, 460–471. [Google Scholar] [CrossRef]
- Koike, Y.; Kuwatsuka, S.; Nishimoto, K.; Motooka, D.; Murota, H. Skin mycobiome of psoriasis patients is retained during treatment with TNF and IL-17 inhibitors. Int. J. Mol. Sci. 2020, 21, 3892. [Google Scholar] [CrossRef]
- Salem, I.; Schrom, K.P.; Chu, S.; Retuerto, M.; Richardson, B.; Margvicius, S.; Cameron, M.; Ghannoum, M.; McCormick, T.; Cooper, K. 362 Psoriatic fungal and bacterial microbiomes identify patient endotypes. J. Invest. Dermatol. 2020, 140, S45. [Google Scholar] [CrossRef]
- Lewis, D.J.; Chan, W.H.; Hinojosa, T.; Hsu, S.; Feldman, S.R. Mechanisms of microbial pathogenesis and the role of the skin microbiome in psoriasis: A review. Clin. Dermatol. 2019, 37, 160–166. [Google Scholar] [CrossRef]
- Pakkanen, S.H.; Kantele, J.M.; Moldoveanu, Z.; Hedges, S.; Häkkinen, M.; Mestecky, J.; Kantele, A. Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin. Vaccine Immunol. 2010, 17, 393–401. [Google Scholar] [CrossRef]
- Squiquera, L.; Galimberti, R.; Morelli, L.; Plotkin, L.; Milicich, R.; Kowalckzuk, A.; Leoni, J. Antibodies to proteins from Pityrosporum ovale in the sera from patients with psoriasis. Clin. Exp. Dermatol. 1994, 19, 289–293. [Google Scholar] [CrossRef]
- Liang, Y.S.; Wen, H.Q.; Xiao, R. Serum levels of antibodies for IgG, IgA, and IgM against the fungi antigen in psoriasis vulgaris. Bull. Hunan Med. Univ. 2003, 28, 638–640. [Google Scholar]
- Sparber, F.; Leibundgut-Landmann, S. Interleukin-17 in antifungal immunity. Pathogens 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.S.; Powles, A.V.; Malkani, A.K.; Lewis, H.; Valdimarsson, H.; Fry, L. Altered cell-mediated immunity to group A haemolytic streptococcal antigens in chronic plaque psoriasis. Br. J. Dermatol. 1991, 125, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.S.; Powles, A.; Garioch, J.J.; Hardman, C.; Fry, L. Differential T-cell reactivity to the round and oval forms of Pityrosporum in the skin of patients with psoriasis. Br. J. Dermatol. 1997, 136, 319–325. [Google Scholar] [CrossRef]
- Kanda, N.; Tani, K.; Enomoto, U.; Nakai, K.; Watanabe, S. The skin fungus-induced Th1- and Th2-related cytokine, chemokine and prostaglandin E2 production in peripheral blood mononuclear cells from patients with atopic dermatitis and psoriasis vulgaris. Clin. Exp. Allergy 2002, 32, 1243–1250. [Google Scholar] [CrossRef]
- Schlapbach, C.; Gehad, A.; Yang, C.; Watanabe, R.; Guenova, E.; Teague, J.E.; Campbell, L.; Yawalkar, N.; Kupper, T.S.; Clark, R.A. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 2014, 6, 219ra8. [Google Scholar] [CrossRef]
- Ruiz-Romeu, E.; Ferran, M.; de Jesús-Gil, C.; García, P.; Sagristà, M.; Casanova, J.M.; Fernández, J.M.; Chiriac, A.; Hóllo, P.; Celada, A.; et al. Microbe-Dependent Induction of IL-9 by CLA+T Cells in Psoriasis and Relationship with IL-17A. J. Invest. Dermatol. 2018, 138, 580–587. [Google Scholar] [CrossRef]
- De Jesús-Gil, C.; San Nicolás, L.S.; Ruiz-Romeu, E.; Ferran, M.; Soria-Martinez, L.; Chiriac, A.; Celada, A.; Pujol, R.M.; Santamaria-Babí, L.F. Specific IgA and CLA+ T-cell IL-17 response to Streptococcus pyogenes in psoriasis. J. Invest. Dermatol. 2020, 140, 1364–1370. [Google Scholar] [CrossRef]
- Rademaker, M.; Agnew, K.; Anagnostou, N.; Andrews, M.; Armour, K.; Baker, C.; Foley, P.; Gebauer, K.; Gupta, M.; Marshman, G.; et al. Psoriasis and infection. A clinical practice narrative. Australas. J. Dermatol. 2019, 60, 91–98. [Google Scholar] [CrossRef]
- Thomas, J.; Küpper, M.; Batra, R.; Jargosch, M.; Atenhan, A.; Baghin, V.; Krause, L.; Lauffer, F.; Biedermann, T.; Theis, F.J.; et al. Is the humoral immunity dispensable for the pathogenesis of psoriasis? J. Eur. Acad. Dermatology Venereol. 2019, 33, 115–122. [Google Scholar] [CrossRef]
- Tarkowski, A.; Moldoveanu, Z.; Koopman, W.J.; Radl, J.; Haaijman, J.J.; Mestecky, J. Cellular origins of human polymeric and monomeric IgA: Enumeration of single cells secreting polymeric IgA1 and IgA2 in peripheral blood, bone marrow, spleen, gingiva and synovial tissue. Clin. Exp. Immunol. 1991, 85, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Vossenkämper, A.; Blair, P.A.; Safinia, N.; Fraser, L.D.; Das, L.; Sanders, T.J.; Stagg, A.J.; Sanderson, J.D.; Taylor, K.; Chang, F.; et al. A role for gut-associated lymphoid tissue in shaping the human b cell repertoire. J. Exp. Med. 2013, 210, 1665–1674. [Google Scholar] [CrossRef]
- Pietrzak, A.; Grywalska, E.; Socha, M.; Roli, J.; Franciszkiewicz-pietrzak, K.; Rudnicka, L.; Rudzki, M.; Krasowska, D. Prevalence and Possible Role of Candida Species in Patients with Psoriasis: A Systematic Review and Meta-Analysis. Mediators Inflamm. 2018, 2018, 9602362. [Google Scholar] [CrossRef] [PubMed]
- Ferran, M.; Romeu, E.R.; Rincón, C.; Sagristà, M.; Giménez Arnau, A.M.; Celada, A.; Pujol, R.M.; Holló, P.; Jókai, H.; Santamaria-Babí, L.F. Circulating CLA+ T lymphocytes as peripheral cell biomarkers in T-cell-mediated skin diseases. Exp. Dermatol. 2013, 22, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Hurabielle, C.; Link, V.M.; Bouladoux, N.; Han, S.; Dean, E. Immunity to commensal skin fungi promotes psoriasiform skin inflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 16465–16474. [Google Scholar] [CrossRef]
- Nakae, S.; Komiyama, Y.; Nambu, A.; Sudo, K.; Iwase, M.; Homma, I.; Sekikawa, K.; Asano, M.; Iwakura, Y. Antigen-specific T cell sensitization is impaired in Il-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002, 17, 375–387. [Google Scholar] [CrossRef]
- Nakae, S.; Nambu, A.; Sudo, K.; Iwakura, Y. Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice. J. Immunol. 2003, 171, 6173–6177. [Google Scholar] [CrossRef]
- Shibui, A.; Shimura, E.; Nambu, A.; Yamaguchi, S.; Leonard, W.J.; Okumura, K.; Sugano, S.; Sudo, K.; Nakae, S. Th17 cell-derived IL-17 is dispensable for B cell antibody production. Cytokine 2012, 59, 108–114. [Google Scholar] [CrossRef]
- Ferretti, E.; Ponzoni, M.; Doglioni, C.; Pistoia, V. IL-17 superfamily cytokines modulate normal germinal center B cell migration. J. Leukoc. Biol. 2016, 100, 913–918. [Google Scholar] [CrossRef]
- Wilson, R.P.; McGettigan, S.E.; Dang, V.D.; Kumar, A.; Cancro, M.P.; Nikbakht, N.; Stohl, W.; Debes, G.F. IgM Plasma Cells Reside in Healthy Skin and Accumulate with Chronic Inflammation. J. Invest. Dermatol. 2019, 139, 2477–2487. [Google Scholar] [CrossRef]
- Debes, G.F.; McGettigan, S.E. Skin-Associated B Cells in Health and Inflammation. J. Immunol. 2019, 202, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Salazar, V.A.; Arranz-Trullén, J.; Prats-Ejarque, G.; Torrent, M.; Andreu, D.; Pulido, D.; Boix, E. Insight into the antifungal mechanism of action of human RNase N-terminus derived peptides. Int. J. Mol. Sci. 2019, 20, 4558. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, T.; Ljungberg, C.; Boye Kjellerup, R.; Iversen, L.; Johansen, C. IL-17F regulates psoriasis-associated genes through IκBζ. Exp. Dermatol. 2017, 26, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, T.; Iversen, L.; Johansen, C. The human IL-17A/F heterodimer regulates psoriasis-associated genes through IκBζ. Exp. Dermatol. 2018, 27, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Yu, F.S.X. Chitinase 3-like 1 promotes candida albicans killing and preserves corneal structure and function by controlling host antifungal responses. Infect. Immun. 2015, 83, 4154–4164. [Google Scholar] [CrossRef]
- Cederlund, A.; Agerberth, B.; Bergman, P. Specificity in killing pathogens is mediated by distinct repertoires of human neutrophil peptides. J. Innate Immun. 2010, 2, 508–521. [Google Scholar] [CrossRef]
- Nalmpantis, D.; Gatou, A.; Fragkioudakis, I.; Margariti, A.; Skoura, L.; Sakellari, D. Azurocidin in gingival crevicular fluid as a potential biomarker of chronic periodontitis. J. Periodontal Res. 2020, 55, 209–214. [Google Scholar] [CrossRef]
- Günther, C.; Bello-Fernandez, C.; Kopp, T.; Kund, J.; Carballido-Perrig, N.; Hinteregger, S.; Fassl, S.; Schwärzler, C.; Lametschwandtner, G.; Stingl, G.; et al. CCL18 Is Expressed in Atopic Dermatitis and Mediates Skin Homing of Human Memory T Cells. J. Immunol. 2005, 174, 1723–1728. [Google Scholar] [CrossRef]
- Fujita, H.; Shemer, A.; Suárez-Fariñas, M.; Johnson-Huang, L.M.; Tintle, S.; Cardinale, I.; Fuentes-Duculan, J.; Novitskaya, I.; Carucci, J.A.; Krueger, J.G.; et al. Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J. Allergy Clin. Immunol. 2011, 128, 574–582.e1-12. [Google Scholar] [CrossRef]
- Kim, H.O.; Cho, S.I.; Chung, B.Y.; Ahn, H.K.; Park, C.W.; Lee, C.H. Expression of CCL1 and CCL18 in atopic dermatitis and psoriasis. Clin. Exp. Dermatol. 2012, 37, 521–526. [Google Scholar] [CrossRef]
- Davanian, H.; Stranneheim, H.; Båge, T.; Lagervall, M.; Jansson, L.; Lundeberg, J.; Yucel-Lindberg, T. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing. PLoS ONE 2012, 7, e46440. [Google Scholar] [CrossRef] [PubMed]
- De-La-Torre, J.; Quindós, G.; Marcos-Arias, C.; Marichalar-Mendia, X.; Gainza, M.L.; Eraso, E.; Acha-Sagredo, A.; Aguirre-Urizar, J.M. Oral Candida colonization in patients with chronic periodontitis. Is there any relationship? Rev. Iberoam. Micol. 2018, 35, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Vieira Colombo, A.P.; Magalhães, C.B.; Hartenbach, F.A.R.R.; Martins do Souto, R.; Maciel da Silva-Boghossian, C. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microb. Pathog. 2015, 94, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gu, H.; Xie, S.; Su, Y. Periodontitis in patients with psoriasis: A systematic review and meta-analysis. Oral Dis. 2020. [Google Scholar] [CrossRef]
- Scheffold, A.; Bacher, P.; LeibundGut-Landmann, S. T cell immunity to commensal fungi. Curr. Opin. Microbiol. 2020, 58, 116–123. [Google Scholar] [CrossRef]
- Santamaria Babi, L.F.; Perez Soler, M.T.; Hauser, C.; Blaser, K. Skin-homing T cells in human cutaneous allergic inflammation. Immunol. Res. 1995, 14, 317–324. [Google Scholar] [CrossRef]
Plaque | Guttate | p Value | ||
---|---|---|---|---|
Number of patients | 31 | 21 | NA | |
Age (mean ± SD) | 46.65 (11.97) | 32.65 (10.92) | *** | |
PASI (mean ± SD) | 13.74 (5.99) | 7.23 (2.91) | *** | |
HLA-Cw*6 % (n) | Positive | 32.26 (10) | 85.71 (18) | NA |
Negative | 61.29 (19) | 14.29 (3) | NA | |
UK | 6.45 (2) | - | NA |
Anti-CA IgA | Anti-CA IgG | |||||||
---|---|---|---|---|---|---|---|---|
Coculture Condition | Cytokine | Spearman ρ | p Value | Spearman ρ | p Value | |||
Plaque psoriasis (n = 31) | CLA+T/EPI | IL-17F | 0.3735 | 0.0385 | * | −0.0842 | 0.6525 | ns |
IL-17A | 0.4798 | 0.0063 | ** | 0.0349 | 0.8521 | ns | ||
IL-9 | 0.2363 | 0.2006 | ns | 0.1250 | 0.5028 | ns | ||
IFN-γ | 0.1872 | 0.3219 | ns | 0.0116 | 0.9515 | ns | ||
CLA−T/EPI | IL-17F | 0.5028 | 0.0039 | ** | −0.0267 | 0.8864 | ns | |
IL-17A | 0.4714 | 0.0074 | ** | 0.0625 | 0.7383 | ns | ||
IL-9 | 0.2558 | 0.1724 | ns | 0.1183 | 0.5264 | ns | ||
IFN-γ | −0.0073 | 0.9690 | ns | −0.0589 | 0.7573 | ns | ||
Healthy controls (n = 12) | CLA+T/EPI | IL-17F | −0.4496 | 0.1681 | ns | 0.0458 | 0.9015 | ns |
IL-17A | −0.4307 | 0.1622 | ns | −0.0392 | 0.9061 | ns | ||
IL-9 | −0.5691 | 0.0591 | ns | 0.0734 | 0.8288 | ns | ||
IFN-γ | −0.2203 | 0.5015 | ns | −0.3885 | 0.2227 | ns | ||
CLA−T/EPI | IL-17F | 0.2197 | 0.5192 | ns | 0.2197 | 0.5192 | ns | |
IL-17A | −0.1706 | 0.5948 | ns | 0.2538 | 0.4246 | ns | ||
IL-9 | −0.2527 | 0.4394 | ns | 0.0161 | 0.9697 | ns | ||
IFN-γ | −0.0275 | 0.9394 | ns | 0.4773 | 0.1258 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesús-Gil, C.; Sans-de San Nicolàs, L.; Ruiz-Romeu, E.; Ferran, M.; Soria-Martínez, L.; García-Jiménez, I.; Chiriac, A.; Casanova-Seuma, J.M.; Fernández-Armenteros, J.M.; Owens, S.; et al. Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis. Int. J. Mol. Sci. 2021, 22, 1519. https://doi.org/10.3390/ijms22041519
de Jesús-Gil C, Sans-de San Nicolàs L, Ruiz-Romeu E, Ferran M, Soria-Martínez L, García-Jiménez I, Chiriac A, Casanova-Seuma JM, Fernández-Armenteros JM, Owens S, et al. Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis. International Journal of Molecular Sciences. 2021; 22(4):1519. https://doi.org/10.3390/ijms22041519
Chicago/Turabian Stylede Jesús-Gil, Carmen, Lídia Sans-de San Nicolàs, Ester Ruiz-Romeu, Marta Ferran, Laura Soria-Martínez, Irene García-Jiménez, Anca Chiriac, Josep Manel Casanova-Seuma, Josep Manel Fernández-Armenteros, Sherry Owens, and et al. 2021. "Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis" International Journal of Molecular Sciences 22, no. 4: 1519. https://doi.org/10.3390/ijms22041519
APA Stylede Jesús-Gil, C., Sans-de San Nicolàs, L., Ruiz-Romeu, E., Ferran, M., Soria-Martínez, L., García-Jiménez, I., Chiriac, A., Casanova-Seuma, J. M., Fernández-Armenteros, J. M., Owens, S., Celada, A., Howell, M. D., Pujol, R. M., & Santamaria-Babí, L. F. (2021). Interplay between Humoral and CLA+ T Cell Response against Candida albicans in Psoriasis. International Journal of Molecular Sciences, 22(4), 1519. https://doi.org/10.3390/ijms22041519