Analysis of Cryopreservation Protocols and Their Harmful Effects on the Endothelial Integrity of Human Corneas
Abstract
:1. Introduction
2. Results
2.1. Endothelial cell Viability of Cryopreserved Corneas
2.2. General Corneal Structural Integrity
2.3. Stromal Collagen Distribution of TK-Cryopreserved Corneas
2.4. Endothelial Integrity of TK-Cryopreserved Corneas
2.5. Parameters of TK-Cryoprotectant Solutions
2.6. Sample Cooling Profile of TK protocol
2.7. DMSO Removal of TK-Cryopreserved Corneas
3. Discussion
4. Materials and Methods
4.1. Corneal Samples
4.2. Cryoprotectant Solutions
4.3. Addition of Cryoprotectant Agents and the Cooling Process
4.4. Warming Process and the Removal of Cryoprotectant Agents
4.5. Endothelial Cell Viability Assays
4.6. Measurement of the DMSO Concentration in Thawed Corneas
4.7. Histomorphological Corneal Assessments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Directorate for the Quality of Medicines and Healthcare. Chapter 16. Ocular tissue. In Guide to the Quality and Safety of Tissues and Cells for Human Application; Council of Europe: Strasbourg, France, 2017; pp. 185–195. [Google Scholar]
- Armitage, W. Preservation of Human Cornea. Transfus. Med. Hemotherapy 2011, 38, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Canals, M.; Garcia, J.; Potau, J.M.; Dalmases, C.; Costa-Vila, J.; Miralles, A. Optimization of a method for the cryopreservation of rabbit corneas: Attempted application to human corneas. Cell Tissue Bank. 2000, 1, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Capella, J.A.; Kaufman, H.E.; Robbins, J.E. Preservation of viable corneal tissue. Cryobiology 1965, 2, 116–121. [Google Scholar] [CrossRef]
- O’Neill, P.; Mueller, F.O.; Trevor-Roper, P.D. On the preservation of corneae at −196 degrees C. for full-thickness homografts in man and dog. Br. J. Ophthalmol. 1967, 51, 13–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.J. Clinical cryobiology of tissues: Preservation of corneas. Cryobiology 1986, 23, 323–353. [Google Scholar] [CrossRef]
- Rich, S.J.; Armitage, W.J. Corneal tolerance of vitrifiable concentrations of propane-1,2-diol. Cryobiology 1991, 28, 159–170. [Google Scholar] [CrossRef]
- Taylor, M.J.; Hunt, C.J. Tolerance of corneas to multimolar dimethyl sulfoxide at 0 degrees C. Implications for cryopreservation. Investig. Ophthalmol. Vis. Sci. 1989, 30, 400–412. [Google Scholar]
- Walcerz, D.B.; Taylor, M.J.; Busza, A.L. Determination of the kinetics of permeation of dimethyl sulfoxide in isolated corneas. Cell Biophys. 1995, 26, 79–102. [Google Scholar] [CrossRef]
- Routledge, C.; Armitage, W.J. Cryopreservation of cornea: A low cooling rate improves functional survival of endothelium after freezing and thawing. Cryobiology 2003, 46, 277–283. [Google Scholar] [CrossRef]
- Armitage, W.J. Survival of corneal endothelium following exposure to a vitrification solution. Cryobiology 1989, 26, 318–327. [Google Scholar] [CrossRef]
- Bourne, W.M.; Nelson, L.R. Human corneal studies with a vitrification solution containing dimethyl sulfoxide, formamide, and 1,2-propanediol. Cryobiology 1994, 31, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Armitage, W.J.; Hall, S.C.; Routledge, C. Recovery of endothelial function after vitrification of cornea at −110 °C. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2160–2164. [Google Scholar]
- Brockbank, K.G.M.; Chen, Z.Z.; Song, Y.C. Vitrification of porcine articular cartilage. Cryobiology 2010, 60, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockbank, K.G.M.; Chen, Z.; Greene, E.D.; Campbell, L.H. Vitrification of heart valve tissues. Methods Mol. Biol. 2015, 1257, 399–421. [Google Scholar] [CrossRef] [PubMed]
- Armitage, W.J.; Rich, S.J. Vitrification of organized tissues. Cryobiology 1990, 27, 483–491. [Google Scholar] [CrossRef]
- Armitage, W.J. Cryopreservation for Corneal Storage. Dev. Ophthalmol. 2009, 43, 63–69. [Google Scholar] [CrossRef]
- Canals, M.; Costa-Vila, J.; Potau, J.M.; Merindano, M.D.; Ruano, D. Morphological study of cryopreserved human corneal endothelium. Cells Tissues Organs 1999, 164, 37–45. [Google Scholar] [CrossRef]
- Rich, S.J.; Armitage, W.J. Propane-1,2-diol as a potential component of a vitrification solution for corneas. Cryobiology 1990, 27, 42–54. [Google Scholar] [CrossRef]
- Bonanno, J.A. Molecular mechanisms underlying the corneal endothelial pump. Exp. Eye Res. 2012, 95, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Joyce, N.C. Proliferative capacity of corneal endothelial cells. Exp. Eye Res. 2012, 95, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Halberstadt, M.; Böhnke, M.; Athmann, S.; Hagenah, M. Cryopreservation of Human Donor Corneas with Dextran. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5110–5115. [Google Scholar] [CrossRef] [Green Version]
- Wusteman, M.C.; Simmonds, J.; Vaughan, D.; Pegg, D.E. Vitrification of Rabbit Tissues with Propylene Glycol and Trehalose. Cryobiology 2008, 56, 62–71. [Google Scholar] [CrossRef]
- Hagenah, M.; Böhnke, M. Corneal cryopreservation with chondroitin surfate. Cryobiology 1993, 30, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Brunette, I.; Le François, M.; Tremblay, M.C.; Guertin, M.C. Corneal Transplant Tolerance of Cryopreservation. Cornea 2001, 20, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Nelson, L.R.; Mitooka, K.; Bourne, W.M. Transplantation of cryopreserved human corneas in a xenograft model. Cryobiology 2002, 44, 142–149. [Google Scholar] [CrossRef]
- Wusteman, M.C.; Armitage, J.W.; Wang, L.H.; Busza, A.L.; Pegg, D.E. Cryopreservation studies with porcine corneas. Curr. Eye Res. 1999, 19, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Wusteman, M.C.; Boylan, S.; Pegg, D.E. Cryopreservation of rabbit corneas in dimethyl sulfoxide. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1934–1943. [Google Scholar]
- Taylor, M.J.; Hunt, C.J. A new preservation solution for storage of corneas at low temperatures. Curr. Eye Res. 1985, 4, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Brockbank, K.G. Removal of potentially cytotoxic DMSO from cell therapy cryopreservation formulations. MOJ Cell Sci. Rep. 2016, 3, 119–120. [Google Scholar] [CrossRef] [Green Version]
- Díaz Rodríguez, R.; Van Hoeck, B.; De Gelas, S.; Blancke, F.; Ngakam, R.; Bogaerts, K.; Jashari, R. Determination of residual dimethylsulfoxide in cryopreserved cardiovascular allografts. Cell Tissue Bank. 2017, 18, 263–270. [Google Scholar] [CrossRef]
- Elliott, J.A.W. Intracellular ice formation: The enigmatic role of cell-cell junctions. Biophys. J. 2013, 105, 1935–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, P.W.; Taylor, M.J.; Hunt, C.J.; Pegg, D.E. The Effect of Polyvinylpyrrolidone and the Cooling Rate during Corneal Cryopreservation. Cryobiology 1993, 30, 135–157. [Google Scholar] [CrossRef]
- Müller, L.J.; Pels, E.; Schurmans, L.R.H.M.; Vrensen, G.F.J.M. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp. Eye Res. 2004, 78, 493–501. [Google Scholar] [CrossRef]
- Nioi, M.; Napoli, P.E.; Demontis, R.; Locci, E.; Fossarello, M.; D’Aloja, E. Morphological analysis of corneal findings modifications after death: A preliminary OCT study on an animal model. Exp. Eye Res. 2018, 169, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Napoli, P.E.; Nioi, M.; Gabiati, L.; Laurenzo, M.; De-Giorgio, F.; Scorcia, V.; Grassi, S.; D’Aloja, E.; Fossarello, M. Repeatability and reproducibility of post-mortem central corneal thickness measurements using a portable optical coherence tomography system in humans: A prospective multicenter study. Sci. Rep. 2020, 10, 14508. [Google Scholar] [CrossRef] [PubMed]
- Napoli, P.E.; Nioi, M.; d’Aloja, E.; Fossarello, M. Post-Mortem Corneal Thickness Measurements with a Portable Optical Coherence Tomography System: A Reliability Study. Sci. Rep. 2016, 6, 30428. [Google Scholar] [CrossRef] [Green Version]
- Napoli, P.E.; Coronella, F.; Satta, G.M.; Galantuomo, M.S.; Fossarello, M.; Huang, J. Evaluation of the adhesive properties of the cornea by means of optical coherence tomography in patients with meibomian gland dysfunction and lacrimal tear deficiency. PLoS ONE 2014, 9, e115762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, P.E.; Coronella, F.; Satta, G.M.; Fossarello, M. A novel technique of contrast-Enhanced optical coherence tomography imaging in evaluation of clearance of lipids in human tears. PLoS ONE 2014, 9, e109843. [Google Scholar] [CrossRef] [Green Version]
- Di Marino, M.; Conigliaro, P.; Aiello, F.; Valeri, C.; Giannini, C.; Mancino, R.; Modica, S.; Nucci, C.; Perricone, R.; Cesareo, M. Combined Low-Level Light Therapy and Intense Pulsed Light Therapy for the Treatment of Dry Eye in Patients with Sjögren’s Syndrome. J. Ophthalmol. 2021, 2021, 2023246. [Google Scholar] [CrossRef] [PubMed]
- Napoli, P.E.; Nioi, M.; D’Aloja, E.; Loy, F.; Fossarello, M. The architecture of corneal stromal striae on optical coherence tomography and histology in an animal model and in humans. Sci. Rep. 2020, 10, 19861. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.D.; Clover, J.; Ansin, A.; Stoeger, C.G.; Terry, M.A. Rapid warming of donor corneas is safe and improves specular image quality. Cornea 2017, 36, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.J.; Hunt, C.J. Dual staining of corneal endothelium with trypan blue and alizarin red S: Importance of pH for the dye-lake reaction. Br. J. Ophthalmol. 1981, 65, 815–819. [Google Scholar] [CrossRef] [PubMed]
Cooling Rate (°C/min) | Duration (min) | Final Temperature (°C) | |
---|---|---|---|
Seg 1 + 2 | −0.05 | 15 | 4.2 |
Seg 3 | −1.15 | 8 | −5.0 |
Seg 4 | −2.76 | 1 | −7.7 |
Seg 5 | +5.20 | 1 | −2.7 |
Seg 6 | −0.31 | 1 | −3.0 |
Seg 7 | −1.46 | 2 | −6.0 |
Seg 8 | −1.09 | 30 | −38.8 |
Seg 9 | −2.62 | 15 | −78.0 |
Seg 10 | −3.80 | 12 | −116.6 |
CP-TK | CP-AV | |||||
---|---|---|---|---|---|---|
CS1-TK | CS2-TK | CS3-TK | CS1-AV | CS2-AV | CS3-AV | |
DMSO (v/v) | 2% (0.3 M) | 4% (0.6 M) | 7% (1 M) | 2% (0.3 M) | 4% (0.6 M) | 7% (1 M) |
20% albumin (v/v) | 25% | 25% | 25% | − | − | − |
M199 1X a (v/v) | 73% | 71% | 68% | 98% | 96% | 93% |
VP-VS55 | VP-DP6 | |||||
Propylene glycol (v/v) | 16.25% (2.2 M) | 22.04% (3.0 M) | ||||
DMSO (v/v) | 22.01% (3.1 M) | 21.31% (3.0 M) | ||||
Formamide (v/v) | 12.31% (3.1 M) | − | ||||
Euro-Collins 5X (v/v) | 20.00% | 56.65% | ||||
Distilled water (v/v) | 29.43% | − | ||||
HEPES (g) | 2.4 g | 2.4 g |
Seg 1 | Seg 2 | Seg 3 | Seg 4 | Seg 5 | |
---|---|---|---|---|---|
Final Temperature (°C) | 4.0 | 0.0 | −7.8 | −30.0 | −40.0 |
Time (min) | 15.0 | 0.1 | 8.0 | 1.0 | 1.0 |
Seg 6 | Seg 7 | Seg 8 | Seg 9 | Seg 10 | |
Final Temperature (°C) | −15.0 | −15.0 | −40.0 | −80.0 | −120.0 |
Time (min) | 1.0 | 2.0 | 30.0 | 15.0 | 12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Fernández, S.; Álvarez-Portela, M.; Rendal-Vázquez, E.; Piñeiro-Ramil, M.; Sanjurjo-Rodríguez, C.; Castro-Viñuelas, R.; Sánchez-Ibáñez, J.; Fuentes-Boquete, I.; Díaz-Prado, S. Analysis of Cryopreservation Protocols and Their Harmful Effects on the Endothelial Integrity of Human Corneas. Int. J. Mol. Sci. 2021, 22, 12564. https://doi.org/10.3390/ijms222212564
Rodríguez-Fernández S, Álvarez-Portela M, Rendal-Vázquez E, Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Castro-Viñuelas R, Sánchez-Ibáñez J, Fuentes-Boquete I, Díaz-Prado S. Analysis of Cryopreservation Protocols and Their Harmful Effects on the Endothelial Integrity of Human Corneas. International Journal of Molecular Sciences. 2021; 22(22):12564. https://doi.org/10.3390/ijms222212564
Chicago/Turabian StyleRodríguez-Fernández, Silvia, Marcelino Álvarez-Portela, Esther Rendal-Vázquez, María Piñeiro-Ramil, Clara Sanjurjo-Rodríguez, Rocío Castro-Viñuelas, Jacinto Sánchez-Ibáñez, Isaac Fuentes-Boquete, and Silvia Díaz-Prado. 2021. "Analysis of Cryopreservation Protocols and Their Harmful Effects on the Endothelial Integrity of Human Corneas" International Journal of Molecular Sciences 22, no. 22: 12564. https://doi.org/10.3390/ijms222212564