Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches
Abstract
:1. Introduction
2. Sensitive Stages to Drought or High Temperature Stress
3. Physiological Traits Associated with Drought Stress Tolerance
4. Physiological Traits Associated with High Temperature Stress Tolerance
5. Mechanisms Associated with Drought Tolerance
6. Mechanisms Associated with High Temperature Tolerance
7. Genes Associated with Drought Tolerance
8. Use of Drought Responsive Genes in Developing Tolerant Genotypes
9. Genes Associated with High Temperature Stress Tolerance
10. Genes Associated in Both Drought and High Temperature Stress Tolerance
11. Molecular Marker Resources and Quantitative Trait Loci (QTL) Mapping
12. Breeding for Drought and High Temperature Stress Tolerance
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggen, M.; Ozdogan, M.; Zaitchick, B.; Ademe, D.; Foltz, J.; Simane, B. Vulnerability of sorghum production to extreme, sub-seasonal weather under climate change. Environ. Res. Lett. 2019, 14, 045005. [Google Scholar] [CrossRef]
- IPCC, Intergovernmental Panel on Climate Change. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to V Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, G.K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2018, 5, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Patanè, C.; Saita, A.; Sortino, O. Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J. Agron. Crop Sci. 2013, 199, 30–37. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M.; Jagadish, S.V.K.; Ciampitti, I.A. Drought and high temperature stress and traits associated with tolerance. In Sorghum: A State of the Art and Future Perspectives; Ciampitti, I.A., Prasad, P.V.V., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 2019; Volume 58, pp. 245–265. [Google Scholar]
- Earl, H.J.; Davis, R.F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003, 95, 688–696. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Ciampitti, I.A.; Talwar, H.S. Impact of abiotic stress on sorghum physiology. In Sorghum in the 21st Century: Food—Fodder—Feed—Fuel for a Rapidly Changing World; Springer Nature: Singapore, 2020; pp. 157–188. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Frank, D.A.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank., D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asseng, A.; Ewert, F.; Martre, P.; Rotter, P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, 2008; pp. 301–355. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.V.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef]
- Jordan, D.R.; Hunt, C.H.; Cruickshank, A.W.; Borrell, A.K.; Henzell, R.G. The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop. Sci. 2012, 52, 1153–1161. [Google Scholar] [CrossRef]
- Borrell, A.K.; Hammar, G.L.; Henzell, R.G. Does maintaining green leaf area in sorghum improve yield under drought II. Dry matter production and yield. Crop. Sci. 2000, 40, 1037–1048. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Bidinger, F.R. Evaluation of putative stay-green sorghum germplasm lines. Crop Sci. 2002, 42, 965–974. [Google Scholar]
- Kassahun, B.; Bidinger, F.R.; Hash, C.T.; Kuruvinashetti, M.S. Stay-green expression in early generation sorghum (Sorghum bicolor (L.) Moench) QTL introgression lines. Euphytica 2009, 172, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Borrell, A.K.; Mullet, J.E.; George-Jaeggli, B.; van Oosterom, E.J.; Hammer, G.L.; Klein, P.E.; Jordan, D.R. Drought adaptation of stay-green cereals associated with canopy development, leaf anatomy, root growth and water uptake. J. Exp. Bot. 2014, 65, 6251–6263. [Google Scholar] [CrossRef]
- Mace, E.S.; Singh, V.; Oosterom, E.J.; Hammer, G.L.; Hunt, C.H.; Jordan, D.R. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor. Appl. Genet. 2012, 124, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaegglia, B.G.; Mortlockb, M.Y.; Borrell, A. Bigger is not always better: Reducing leaf area helps stay-green sorghum use soil water more slowly. Environ. Exp. Bot. 2017, 138, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Liedtke, J.D.; Hunt, C.H.; George-Jaeggli, B.; Laws, K.; Watson, J.; Potgieter, A.B.; Cruickshank, A.; Jordan, D.R. High-throughput phenotyping of dynamic canopy traits associated with stay-green in grain sorghum. Plant Phenomics 2020, 2020, 4635153. [Google Scholar] [CrossRef] [PubMed]
- Fenta, B.A.; Beebe, S.E.; Kunert, K.J.; Burridge, J.D.; Barlow, K.M.; Lynch, P.J. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 2014, 4, 418–435. [Google Scholar] [CrossRef] [Green Version]
- Bawazir, A.A.; Idle, D.B. Drought resistance and root morphology in sorghum. Plant Soil. 1989, 119, 217–221. [Google Scholar]
- Singh, V.; van Oosterom, E.J.; Jordan, D.R.; Hunt, C.H.; Hammer, G.L. Genetic variability and control of nodal root angle in sorghum. Crop Sci. 2011, 51, 2011–2020. [Google Scholar] [CrossRef]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Monti, A.; Zatta, A. 2009. Root distribution and soil moisture retrieval in perennial and annual energy crops in northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Liang, X.; Erickson, J.E.; Vermerris, W.; Rowland, D.L.; Sollenberger, L.E.; Silveira, M.L. Root architecture of sorghum genotypes differing in root angles under different water regimes. J. Crop. Improv. 2017, 31, 39–55. [Google Scholar] [CrossRef]
- Wang, A.-Y.; Li, Y.; Zhang, C.-Q. QTL mapping for stay-green in maize (Zea mays). Can. J. Plant Sci. 2012, 92, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.J.; Fukai, S.; Ludlow, M.M.; Hammer, G.L. Water extraction by grain sorghum in a sub-humid environment. II. Extraction in relation to root growth. Field Crop. Res. 1983, 33, 99–112. [Google Scholar] [CrossRef]
- Rostamza, M.; Richards, R.A.; Watt, M. Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann. Bot. 2013, 112, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. 2013. Maize root growth angles become steeper under low N conditions. Field Crop. Res. 2013, 140, 18–31. [Google Scholar] [CrossRef]
- Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct. Plant Biol. 2012, 39, 851–859. [Google Scholar] [CrossRef]
- Turner, N.C.; Begg, J.E.; Tonnet, M.L. Osmotic adjustment of sorghum and sunflower crops in response to water deficits and its influence on the water potential at which stomata close. Funct. Plant Biol. 1978, 5, 597–608. [Google Scholar] [CrossRef]
- Hsiao, T.C. Plant responses to water stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Assefa, Y.; Staggenborg, S.A.; Prasad, P.V.V. Grain sorghum water requirement and responses to drought stress: A review. Crop. Manag. 2010, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Amelework, B.; Shimelis, H.; Tongoona, P.; Laing, M. Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: A review. Afr. J. Agric. Res. 2015, 10, 3029–3040. [Google Scholar]
- Turner, N.C. Drought resistance and adaptation to water deficits in crop plants. In Stress Physiology of Crop Plants; Mussel, H., Staples, R.C., Eds.; Wiley Interscience: New York, NY, USA, 1979; pp. 344–372. [Google Scholar]
- Rebetzke, G.J.; Condon, A.G.; Rattey, A.R.; Farquhar, G.D.; Richards, R.A. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in bread wheat (Triticum aestivum L.). Funct. Plant Biol. 2013, 40, 14–26. [Google Scholar] [CrossRef]
- Mutava, R.N. Evaluation of Sorghum Genotypes for Variation in Canopy Temperature and Drought Tolerance. Doctoral Dissertation, Kansas State University, Manhattan, KS, USA, 2012. [Google Scholar]
- Gholipoor, M.; Prasad, P.V.V.; Mutava, R.; Sinclair, T.R. Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crop. Res. 2010, 119, 85–90. [Google Scholar] [CrossRef]
- Gholipoor, M.; Sinclair, T.R.; Prasad, P.V.V. Genotypic variation within sorghum for transpiration response to drying soil. Plant Soil. 2012, 357, 35–40. [Google Scholar] [CrossRef]
- Choudhary, S.; Sinclair, T.R.; Prasad, P.V.V. Hydraulic conductance of intact plants of two contrasting sorghum lines, SC 15 and SC1205. Funct. Plant Biol. 2013, 40, 730–738. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Jagadish, S.V.K.; Ciampitti, I.A.; Welti, R.; Prasad, P.V.V. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ. 2018, 41, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, N.; Prasad, P.V.V.; Murugan, M.; Perumal, R.; Reddy, U.K. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Eviron. Exp. Bot. 2014, 100, 43–54. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Q.; Ci, D.; Shao, X.; Zhang, D. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 2014, 14, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manavalan, L.P.; Nguyen, H. Drought tolerance in crops: Physiology to genomics. In Plant Stress Physiology; Shabala, S., Ed.; CABI Publisher: Oxfordshire, UK, 2012; pp. 1–24. [Google Scholar]
- Alemu, S.T. Photosynthesis limiting stresses under climate change scenarios and role of chlorophyll fluorescence: A review article. Cogent Food Agric. 2020, 6, 1785136. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct. Plant Biol. 2011, 38, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J. Response of plants to environmental stresses. In Chilling, Freezing and High Temperature Stresses. I.; Academic Press: New York, NY, USA, 1980; p. 497. [Google Scholar]
- Almeselmani, M.; Deshmukh, P.S.; Sairam, R.K. High temperature stress tolerance in wheat genotypes: Role of antioxidant defense enzymes. Acta Agron. Hungar. 2009, 57, 1–14. [Google Scholar] [CrossRef]
- Almeselmani, M.; Deshmukh, P.S.; Chinnusamy, V. Effect of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 2012, 6, 25–32. [Google Scholar]
- Djanaguiraman, M.; Prasad, P.V.V.; Schapaugh, W.T. High day- or nighttime temperature alters leaf assimilation, reproductive success, and phosphotidic acid of pollen grain in soybean [Glycine max (L.) Merr.]. Crop. Sci. 2013, 53, 594–1604. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Solis, C.A.; Shi, W.; Jagadish, S.V.K. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol. Plant. 2017, 159, 59–73. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crop. Res. 2017, 200, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Saini, H.S.; Sedgley, M.; Aspinall, D. Developmental anatomy in wheat of male sterility induced by high temperature stress, water deficit or abscisic acid. Aust. J. Plant Physiol. 1984, 11, 243–253. [Google Scholar]
- Saini, H.S.; Aspinall, D. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperatures. Ann. Bot. 1982, 49, 835–846. [Google Scholar] [CrossRef]
- Jain, M.; Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Chourey, P.S. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 2007, 227, 67–79. [Google Scholar] [CrossRef]
- Yang, Z.; van Oosterom, E.J.; Jordan, D.R.; Hammer, G.L. Preanthesis ovary development determines genotypic differences in potential kernel weight in sorghum. J. Exp. Bot. 2009, 60, 1399–1408. [Google Scholar] [CrossRef]
- Singh, V.; Nguyen, C.T.; van Oosterom, E.J.; Chapman, S.C.; Jordan, D.R.; Hammer, G.L. Sorghum genotypes differ in high temperature responses for seed set. Field Crops Res. 2015, 171, 32–40. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotypes and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop. Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- Mutava, R.N.; Prasad, P.V.V.; Tuinstra, M.R.; Kofoid, K.D.; Yu, J. Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop. Res. 2011, 123, 10–18. [Google Scholar] [CrossRef]
- Turner, N.C.; Wright, G.C.; Siddique, K.H.M. Adaptation of grain legumes (pulses) to water limited environments. Adv. Agron. 2001, 71, 193–231. [Google Scholar]
- Craufurd, P.Q.; Qi, A. Photothermal adaptation of sorghum (Sorghum bicolor) in Nigeria. Agric. For. Meteorol. 2001, 108, 199–211. [Google Scholar] [CrossRef]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Q.; Gao, Y.; Zhang, J.; Wang, Y.; Zhang, R.; Zhou, Y.; Xiao, M.; Xu, W.; Huang, R. The role of deep roots in sorghum yield production under drought conditions. Agronomy 2020, 10, 611. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain sorghum (Sorghum bicolor (L.) Moench) are more severe at elevated carbon dioxide concentration due to higher tissue temperatures. Agric. For. Meterol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Boyle, D.L.; Welti, R.; Jagadish, S.V.K.; Prasad, P.V.V. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol. 2018, 18, 55. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P.V.V. Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 268. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, D.F.; Shi, Y.S.; Song, Y.C.; Wang, T.Y.; Li, Y. Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ Cult. 2013, 115, 443–455. [Google Scholar] [CrossRef]
- Roy, S.J.; Tucker, E.J.; Tester, M. Genetic analysis of abiotic stress tolerance in crops. Curr. Opin. Plant Biol. 2011, 14, 232–239. [Google Scholar] [CrossRef]
- Joshi, R.; Wani, S.H.; Singh, B.; Bohra, A.; Dar, Z.A.; Lone, A.A.; Pareek, A.; Singla-Pareek, S.L. Transcription factors and plants response to drought stress: Current understanding and future directions. Front. Plant Sci. 2016, 7, 1029. [Google Scholar] [CrossRef] [Green Version]
- Shanker, A.K.; Maddaala, A.; Kumar, M.A.; Yadav, S.K.; Maheswari, M.; Venkateswarlu, B. In silico targeted genome mining and comparative modelling reveals a putative protein similar to an Arabidopsis drought tolerance DNA binding transcription factor in Chromosome 6 of Sorghum bicolor genome. Interdiscip. Sci. 2012, 4, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, S.E.; Ullah, F.; Ben-Hur, A.; Reddy, A.S. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to PEG-induced drought stress. Int. J. Mol. Sci. 2020, 21, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Arya, G.C.; Malviya, N.; Bisht, N.C.; Yadav, D. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L.) Moench. Mol. Biol. Rep. 2016, 43, 767–774. [Google Scholar] [CrossRef]
- Wang, S.; Bai, Y.; Shen, C. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genom. 2010, 10, 533–546. [Google Scholar] [CrossRef]
- Sanjari, S.; Shirzadian-Khorramabad, R.; Shobbar, Z.S.; Shahbazi, M. Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant Cell Rep. 2019, 38, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Chi, X.; Guo, F.; Jin, X.; Luo, H.; Hawar, A.; Chen, Y.; Feng, K.; Wang, B.; Qi, J.; et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J. Plant Physiol. 2020, 246–247, 153142. [Google Scholar] [CrossRef] [PubMed]
- Baillo, E.H.; Hanif, M.S.; Guo, Y.; Zhang, Z.; Xu, P.; Algam, S.A. Genome-wide Identification of WRKY transcription factor family members in sorghum [Sorghum bicolor (L.) Moench]. PLoS ONE 2020, 15, e0236651. [Google Scholar] [CrossRef]
- Shen, C.J.; Bai, Y.H.; Wang, S.K. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 2010, 277, 2954–2969. [Google Scholar] [CrossRef]
- Aglawe, S.B.; Fakrudin, B.; Patole, C.B. Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. Physiol. Mol. Biol. Plants 2012, 18, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Anami, S.E.; Zhang, L.M.; Xia, Y. Sweet sorghum ideotypes: Genetic improvement of stress tolerance. Food Energy Secur. 2015, 4, 3–24. [Google Scholar] [CrossRef]
- Wood, A.J.; Saneoka, H.; Rhodes, D. Betaine aldehyde dehydrogenase in sorghum: Molecular cloning and expression of two related genes. Plant Physiol. 1996, 110, 1301–1308. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, M.; Varalaxmi, Y.; Vijayalakshmi, A.; Yadav, S.K.; Sharmila, P.; Venkateswarlu, B.; Saradhi, P.P. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol. Plant. 2010, 54, 647–652. [Google Scholar] [CrossRef]
- Su, M.; Li, X.F.; Ma, X.Y. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci. 2011, 181, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elwafa, S.F.; Shehzad, T. Genetic identification and expression profiling of drought responsive genes in sorghum. Environ. Exp. Bot. 2018, 155, 12–20. [Google Scholar] [CrossRef]
- Pospíšilová, H.; Jiskrová, E.; Vojta, P. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. Nat. Biotechnol. 2016, 33, 692–705. [Google Scholar] [CrossRef]
- Song, J.; Mo, X.; Yang, H. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS ONE 2017, 12, e0182402. [Google Scholar]
- Xu, J.; Xing, X.J.; Tian, Y.S. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS ONE 2015, 10, e0136960. [Google Scholar] [CrossRef] [PubMed]
- He, G.H.; Xu, J.Y.; Wang, Y.X.; Liu, J.M.; Li, P.S.; Chen, M.; Ma, Y.Z.; Xu, Z.S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016, 16, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, T.; Li, T.; Wang, M.; Yang, G.; He, G. A CBL-interacting proteinkinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS ONE 2016, 11, e0167962. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xu, Z.; Wei, P.; Xu, L.; Wan, Q.; Huang, Y.; He, X.; Yang, J.; Shao, H.; et al. Soybean C2H2-type zinc ringer protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci. 2016, 7, 32. [Google Scholar]
- Wang, N.; Liu, Y.; Cong, Y. Genome-wide identification of soybean U-Box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol. 2016, 57, 1189–1209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Ren, H.M.; Tan, Y.Q.; Qi, G.N.; Yao, F.Y.; Wu, G.L.; Yang, L.W.; Hussain, J.; Sun, S.J.; Wang, Y.F. S-type Anion channels SLAC1 and SLAH3 function as essential negative regulators of inward K+ channels and stomatal opening in Arabidopsis. Plant Cell 2016, 28, 949–965. [Google Scholar] [CrossRef]
- Fracasso, A.; Trindade, L.M.; Amaducci, S. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol. 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.F.; Zeng, T.R.; Liu, X.Y.; Gao, C.X.; Li, Y.X.; Li, C.H.; Song, Y.C.; Shi, Y.S.; Wang, T.Y.; Yu, L.I. Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. J. Int. Agri. 2019, 9, 1980–1995. [Google Scholar] [CrossRef]
- Li, H.; Han, X.; Liu, X.; Zhou, M.; Ren, W.; Zhao, B.; Zhao, J. A leucine-rich repeat-receptor-like kinase gene SbER2–1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genom. 2019, 20, 737. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, M.; Varalaxmi, Y.; Yadav, S.K.; Jyothilakshmi, N.; Vanaja, M.; Venkateswarlu, B. Enhanced tolerance of transgenic sorghum expressing mtlD gene to water-deficit stress. Indian J. Biotechnol. 2017, 16, 63–67. [Google Scholar]
- Proveniers, M.C.G.; Van, Z.M. High temperature acclimation through PIF4 signaling. Trends Plant Sci. 2013, 18, 59–64. [Google Scholar] [CrossRef]
- Chen, D.; Wang, W.; Wu, Y.; Xie, H.; Zhao, L.; Zeng, Q.; Zhan, Y. Expression and distribution of the auxin response factors in Sorghum bicolor during development and temperature stress. Int. J. Mol. Sci. 2019, 20, 4816. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, P.; Bhardwaj, R.; Tuteja, N. Plant signalling under abiotic stress environment. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 297–323. [Google Scholar]
- Ciarmiello, L.F.; Woodrow, P.; Fuggi, A.; Pontecorvo, G.; Carillo, P. Plant genes for abiotic stress. In Abiotic Stress Plants Mechanisms and Adaptation; Shanker, A., Venkateswarlu, B., Eds.; Intech Open: London, UK, 2011; pp. 283–308. Available online: https://www.intechopen.com/chapters/18407 (accessed on 25 July 2021). [CrossRef] [Green Version]
- Nagaraju, M.; Reddy, S.P.; Kumar, A.S.; Srivastava, K.R.; Kavi, K.P.B.; Rao, D.M. Genome-wide scanning and characterization of Sorghum bicolor L. heat shock transcription factors. Curr. Genom. 2015, 16, 279–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakar, R.P.; Srinivas, R.D.; Sivasakthi, K.; Bhatnagar, M.P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci. 2016, 7, 529. [Google Scholar] [CrossRef]
- Jedmowski, C.; Ashoub, A.; Beckhaus, T.; Berberich, T.; Karas, M.; Brüggemann, W. Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. Int. J. Proteom. 2014, 2014, 395905. [Google Scholar] [CrossRef] [Green Version]
- Goche, T.; Shargie, N.G.; Cummins, I.; Brown, A.P.; Chivasa, S.; Ngara, R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tari, I.; Laskay, G.; Takács, Z.; Poór, P. Response of sorghum to abiotic stresses: A review. J. Agron. Crop Sci. 2013, 199, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Pavli, O.I.; Ghikas, D.V.; Katsiotis, A.; Skaracis, G.N. Differential expression of heat shock protein genes in sorghum (Sorghum bicolor L.) genotypes under heat stress. Austr. J. Crop. Sci. 2011, 5, 511–515. [Google Scholar]
- Mulaudzi-Masuku, T.; Mutepe, R.D.; Mukhoro, O.C.; Faro, A.; Ndimba, B. Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress. Cell Stress Chaperon 2015, 20, 793–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halder, T.; Upadhyaya, G.; Ray, S. YSK2 type dehydrin (SbDhn1) from Sorghum bicolor showed improved protection under high temperature and osmotic stress condition. Front. Plant Sci. 2017, 8, 918. [Google Scholar] [CrossRef] [Green Version]
- Harris-Shultz, K.R.; Hayes, C.M.; Knoll, J.E. Mapping QTLs and identification of genes associated with drought resistance in sorghum. Methods Mol. Biol. 2019, 1931, 11–40. [Google Scholar]
- Rajkumar; Fakrudin, B.; Kavil, S.P.; Girma, Y.; Arun, S.S.; Dadakhalandar, D.; Gurusiddesh, B.H.; Patil, A.M.; Thudi, M.; Bhairappanavar, S.B.; et al. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol. Mol. Biol. Plants 2013, 19, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Kebede, H.; Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet. 2001, 103, 266–276. [Google Scholar] [CrossRef]
- Tuinstra, M.R.; Grote, E.M.; Goldsbrough, P.B.; Ejeta, G. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop. Sci. 1996, 36, 1337–1344. [Google Scholar] [CrossRef]
- Sanchez, A.C.; Subudhi, P.K.; Rosenow, D.T.; Nguyen, H.T. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol. Biol. 2002, 48, 713–726. [Google Scholar] [CrossRef]
- Kapanigowda, M.H.; Payne, W.A.; Rooney, W.L.; Mullet, J.E.; Balota, M. Quantitative trait locus mapping of the transpiration ratio related to preflowering drought tolerance in sorghum (Sorghum bicolor). Funct. Plant Biol. 2014, 41, 1049–1065. [Google Scholar] [CrossRef] [Green Version]
- Dalal, M.; Mayandi, K.; Chinnusamy, V. Sorghum: Improvement of abiotic stress tolerance. In Improving Crop Resistance to Abiotic Stress; Tuteja, N., Gill, S.S., Tiburcio, A.F., Tuteja, R., Eds.; Wiley-VCH Verlag GmbH & Co, KGaA: Weinheim, Germany, 2012; pp. 923–949. [Google Scholar]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdel, R.M.; Abdellatef, E.; Tsujimoto, H. Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, N.R.R.; Ragimasalawada, M.; Sabbavarapu, M.M.; Nadoor, S.; Patil, J.V. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genom. 2014, 15, 909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiranmayee, K.N.S.U.; Hash, C.T.; Sivasubramani, S.; Ramu, P.; Amindala, B.P.; Rathore, A.; Kishor, P.B.K.; Gupta, R.; Deshpande, S.P. Fine-mapping of sorghum stay-green QTL on chromosome10 revealed genes associated with delayed senescence. Genes 2020, 11, 1026. [Google Scholar] [CrossRef]
- Ludlow, M.M.; Muchow, R.C. A critical evaluation of traits for improving crop yield in water-limited environments. Adv. Agron. 1990, 43, 107–153. [Google Scholar]
- Reddy, B.V.S.; Ramesh, S.; Reddy, P.S.; Kumar, A.A. Genetic enhancement for drought tolerance in sorghum. Plant Breed. Rev. 2009, 31, 189–222. [Google Scholar]
- Verma, R.; Kumar, R.; Nath, A. Drought resistance mechanisms and adaptation to water stress in sorghum (Sorghum bicolor (L.) Moench). Int. J. Bio-Resour. Stress Manag. 2018, 9, 167–172. [Google Scholar] [CrossRef]
- Seetharama, N.; Sivakumar, M.V.K.; Bidinger, F.R.; Singh, S.; Maiti, R.K.; Reddy, B.V.S.; Peacock, J.M.; Reddy, S.J.; Mahalakshmi, V.; Sachan, R.C. Physiological basis for increasing and stabilizing yield under drought in sorghum. Proc. Indian Nat. Sci. Acad. 1983, B49, 498–523. [Google Scholar]
- Jordan, W.R.; Shouse, P.J.; Blum, A.; Miller, F.R.; Monk, R.L. Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop. Sci. 1984, 24, 1168–1173. [Google Scholar] [CrossRef]
- Patil, J.; Sanjana, R.; Prabhakar, B.; Umakanth, A.; Sunil, G.; Ganapathy, K.N. History of post-rainy season sorghum research in India and strategies for breaking the yield plateau. Indian J. Genet. Plant Breed. 2014, 74, 271–285. [Google Scholar] [CrossRef]
- Belete, T. Breeding for resistance to drought: A case in sorghum (Sorghum bicolor (L.) Moench). J. Agric. For. Meteorol. Res. 2018, 1, 1–10. [Google Scholar]
- Wilson, G.L.; Raju, P.S.; Peacock, J.M. Effect of soil temperature on seedling emergence in sorghum. Indian J. Agric. Sci. 1982, 52, 848–851. [Google Scholar]
- Khizzah, B.W.; Miller, F.R.; Newton, R.J. Inheritance and heritability of heat tolerance in several sorghum cultivars during the reproductive phase. Afr. Crop. Sci. J. 1993, 1 (Suppl. 2), 81–85. [Google Scholar] [CrossRef] [Green Version]
- Ashok Kumar, A.; Sharma, H.C.; Sharma, R.; Blummel, M.; Sanjana Reddy, P.; Reddy, B.V.S. Phenotyping in Sorghum [Sorghum bicolor (L.) Moench]. In Phenotyping for Plant Breeding; Springer: New York, NY, USA, 2013; pp. 73–109. [Google Scholar]
- Govindaraj, M.; Pattanashetti, S.K.; Patne, N.; Kanatti, A.A. Breeding cultivars for heat stress in staple food crops. In Next Generation Plant Breeding; Ciftci, Y.O., Ed.; Intech Open: London, UK, 2018; pp. 45–76. [Google Scholar]
- Ashok Kumar, A.; Reddy, B.V.S.; Grando, S. Global millets improvement and its relevance to India and developing world. In Millets: Promotion for Food, Feed, Fodder, Nutritional and Environment Security, Proceedings of Global Consultation on Millets Promotion for Health & Nutritional Security; Society for Millets Research, Indian Council of Agricultural Research Indian Institute of Millets Research: Hyderabad, India, 2015; pp. 154–172. [Google Scholar]
- Singh, P.; Nedumaran, S.; Traore, P.C.S.; Boote, K.J.; Rattunde, H.F.W.; Prasad, P.V.V.; Singh, N.P.; Srinivas, K.; Bantilan, M.C.S. Quantifying potential benefits of drought and heat tolerance in rainy season sorghum for adapting to climate change. Agric. For. Meterol. 2014, 185, 37–48. [Google Scholar] [CrossRef] [Green Version]
S. No. | Gene(s) | Function | Reference |
---|---|---|---|
1. | SbSNAC1 | Confers drought tolerance | [68,90] |
2. | SbNAC052, SbNAC073 and SbNAC116 | Negatively regulate the expression of stress responsive genes | [75] |
3. | SbNAC014, SbNAC035 and SbNAC041 | Transcriptional activator, plays important role during post-flowering drought stress in sorghum | |
4. | SbNAC037 | Nutrient remobilization during drought stress | |
5. | SbDof12, SbDof19 and SbDof24 | Imparts tolerance during the onset of drought stress | [73] |
6. | SbDof21, SbDof22, SbDof23, SbDof25, SbDof27 and SbDof28 | Imparts tolerance during later stage of drought stress | |
7. | SbGH3 and SbLBD | Involved in the auxin and drought stress signaling cross talk | [74] |
8. | SbPIN4/5/8/9/11 | Exhibits ABA-induced expression | [79] |
9. | SbWRKY30 | Positive regulator and highly expressed in sorghum taproot and leaves | [77] |
10. | SbWRKY74, SbWRKY75, SbWRKY19, SbWRKY5, SbWRKY45, SbWRKY79, SbWRKY25, SbWRKY 83, SbWRKY 16 and SbWRKY72 | Involved in the drought stress response during seedling, flowering, and dough stages | [78] |
11. | SbWRKY46 | Implicated in drought stress tolerance | [85] |
12. | SbP5CS1 and SbP5CS2 | Highly expressed under drought stress. SbP5CS1 shows high expression in vegetative and reproductive organs, whereas SbP5CS2 shows expression in all the tissues | [84] |
13. | SbAO3, SbASPG1, SbCIPK15, SbCKX4, SbGST, SbGsSRK, SbMAPKKK7, SbMAPK10, SbER2-1, SbZFP, SbLAH2, SbEXOB1, SbPUB43, SbPPR3 and SbTLP1b | Implicated in drought stress tolerance | |
14. | SbER2-1 | Important role in drought stress responses and implicated in photosynthetic systems and phenylpropanoid metabolism in crop plants. | [96] |
Sl. No | Genotype | Group | Centre | Pedigree/Parent Sources | Reference |
---|---|---|---|---|---|
Emergence | |||||
1. | IS 4405 | Germplasm | ICRISAT | IS 4405 | [121] |
2. | IS 4463 | Germplasm | ICRISAT | IS 4463 | |
3. | IS 17595 | Germplasm | ICRISAT | IS 17595 | |
4. | IS 1037 | Germplasm | ICRISAT | IS 1037 | |
5. | VZM1-B | Inbred | NA * | Unknown | |
6. | 2077 B | Germplasm | ICRISAT | IS 18790 | |
7. | IS 2877 | Germplasm | ICRISAT | IS 2877 | |
8. | IS 1045 | Germplasm | ICRISAT | IS 1045 | |
9. | D 38061 | Inbred | NA | Unknown | |
10. | D 38093 | Inbred | NA | Unknown | |
11. | D 38060 | Inbred | NA | Unknown | |
12. | ICSV 88050 | Variety | ICRISAT | (IS 27043 × IS 10469)-1-1-BK-1-BK-BK | |
13. | ICSV 88065 | Variety | ICRISAT | (IS 24737 × IS 18729)-2-1-BK-1-BK-BK | |
14. | SPV 354 | Variety | NRCS | Unknown | |
Seedling | |||||
15. | ICSB 3 | Inbred | ICRISAT | [(BTx 622 × UChV2)B lines bulk]-4-2-1-1 | [121] |
16. | ICSB 6 | Inbred | ICRISAT | [(BTx 623 × UChV2)B lines bulk]-3-1-4-3 | |
17. | ICSB 11 | Inbred | ICRISAT | [(BTx 624 × UChV2)B lines bulk]-5-1-1-1 | |
18. | ICSB 37 | Inbred | ICRISAT | [(BTx 623 × MR 862)B lines bulk]-5-1-2-5 | |
19 | ICSB 54 | Inbred | ICRISAT | Diallal 346-8556-2-1 | |
20. | ICSB 88001 | Inbred | ICRISAT | [(ICSB 22 × ICSB 53) × Diallel 7-2-862]-1-1 | |
Pre-flowering | |||||
21 | DKV 1 | Variety | NA | Unknown | [121] |
22. | DKV 3 | Variety | NA | Unknown | |
23. | DKV 7 | Variety | NA | Unknown | |
24. | DJ 1195 | Variety | NA | Unknown | |
25. | ICSV 272 | Variety | ICRISAT | [(M35-1 × M-1009)-3-2-1 × F5-6]-5-2-3-1-1 | |
26. | ICSV 273 | Variety | ICRISAT | [(M35-1 × M-1009)-3-2-1 × F5-6]-5-2-3-1-2 | |
27. | ICSV 295 | Variety | ICRISAT | [(M-35-1 × M-1009)-3-2-1 × 6 F5’S]-5-1-4-1-1 | |
28. | ICSV 378 | Variety | ICRISAT | [CSV4 (M 35-1 × M 1007)-3-1-1]-1-1-1-1-1 | |
29. | ICSV 572 | Variety | ICRISAT | (D71283 × 2219 B)-1-1-1-2-2 | |
30. | ICSB 58 | Inbred | ICRISAT | (2219B × 148)-8-1-1-1-2 | |
31. | ICSB 196 | Inbred | ICRISAT | Unknown | |
Post-flowering | |||||
32. | IS 19153 | Germplasm | ICRISAT | IS 19153 | [122] |
33. | IS 23514 | Germplasm | ICRISAT | IS 23514 | |
34. | IS 29392 | Germplasm | ICRISAT | IS 29392 | |
35. | RS 585 | Inbred | NRCS | (CS 3541 × M 35-1) × Nandyal Rabi Local | |
Terminal drought | |||||
36. | E 36-1 | Variety | ICRISAT | IS 30469 | [121] |
37. | DJ 1195 | Variety | NA | Unknown | |
38. | DKV 3 | Variety | NA | Unknown | |
39. | DKV 4 | Variety | NA | Unknown | |
40. | DKV 17 | Variety | NA | Unknown | |
41. | DKV 18 | Variety | NA | Unknown | |
42. | ICSB 17 | Inbred | ICRISAT | [(BTx 623 × 1807B)B lines bulk]-18-1-1 | |
Maturity | |||||
43. | CSH 1 | Hybrid | NRCS | CK60A × IS 84 | [123] |
44. | CSH 6 | Hybrid | NRCS | 2219A × IS 3541 | |
45. | NK 300 | Variety | NA | Unknown | |
46. | M 35-1 | Variety | ARS, Mohol, Maharashtra | IS 37185 | |
47. | SPV 86 (CSV 8R) | Variety | NRCS | CS 3541 × Tall Mutant |
Sl. No | Type of Population | Cross | Trait(s) | Number of QTLs | Name of QTLs/Markers | Reference |
---|---|---|---|---|---|---|
1. | NILs | RTx7000 | Stay green | 4 | Stg1, Stg2, Stg3, Stg4 | [17] |
2. | Inbred panel | NA * | Drought tolerance | 3 | Xtxp69, SbAGA01, SbAGB03 | [85] |
3. | RILs | Tx7078 × B35 | Pre-flowering drought | 6 | b465/140, tK12/115, bDll/65, tM5/75, tC13/150, bC18/820 | [113] |
4. | RILs | SC56 × Tx7000 | Pre-flowering drought | 3 | Stg A, Stg G, Stg J | [112] |
5. | RILs | TX7000 | Stay green | 3 | Stg1, Stg3, Stg4 | [114] |
6. | RILs | TX7078 × B35 | Stay green | 2 | AE80%-E1–1, AE80%-E1–2, AE80%E1–3, | [115] |
7. | RILs | M35-1 × B35 | Stay green | 3 | Stg2, Stg3, and StgB | [118] |
8. | RILs | RSG04008-6 × J2614-11 | Stay green associated trait | 5 | Gl 7, Gl 14, Gl 21, Gl 28, | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, V.B.R.; Govindaraj, M.; Djanaguiraman, M.; Djalovic, I.; Shailani, A.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A.; Prasad, P.V.V. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. Int. J. Mol. Sci. 2021, 22, 9826. https://doi.org/10.3390/ijms22189826
Prasad VBR, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Singla-Pareek SL, Pareek A, Prasad PVV. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences. 2021; 22(18):9826. https://doi.org/10.3390/ijms22189826
Chicago/Turabian StylePrasad, V. B. Rajendra, Mahalingam Govindaraj, Maduraimuthu Djanaguiraman, Ivica Djalovic, Anjali Shailani, Nishtha Rawat, Sneh Lata Singla-Pareek, Ashwani Pareek, and P. V. Vara Prasad. 2021. "Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches" International Journal of Molecular Sciences 22, no. 18: 9826. https://doi.org/10.3390/ijms22189826
APA StylePrasad, V. B. R., Govindaraj, M., Djanaguiraman, M., Djalovic, I., Shailani, A., Rawat, N., Singla-Pareek, S. L., Pareek, A., & Prasad, P. V. V. (2021). Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 22(18), 9826. https://doi.org/10.3390/ijms22189826