Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis
2.2. Physicochemical Characterisation
2.2.1. X-ray Diffraction (XRD) Analysis
2.2.2. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.3. Morphological Properties
2.3.1. Transmission Electron Microscopy (TEM)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Size Distribution and Zeta Potential: Dynamic Light Scattering (DLS) Zetasizer
2.4. Assessment of Water Content
2.5. Death Mode of Cells
3. Materials and Methods
3.1. Glass Preparation Method
3.2. Characterisation Techniques
3.3. Thermal Analysis
3.4. Physicochemical Characterisations
3.4.1. XRD Analysis
3.4.2. FTIR Analysis
3.5. Morphological Properties
3.5.1. TEM Analysis
3.5.2. SEM Imaging
3.5.3. Size Distribution and Zeta Potential: DLS Zetasizer
3.6. Assessment of the Water Content
3.7. Death Mode of Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salih, V.; Franks, K.; James, M.; Hastings, J.M.; Knowles, J.C.; Olsen, I. Development of soluble glasses for biomedical use Part 2: The biological response of human osteoblast cell lines to phosphate-based soluble glasses. J. Mater. Med. 2000, 22, 615–620. [Google Scholar] [CrossRef]
- Monem, A.S.; Elbatal, H.A.; Khalil, E.M.A.; Azooz, M.A.; Hamdy, Y.M. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5–Na2O–CaO containing TiO2. J. Mater. Sci. Mater. Med. 2008, 19, 1097–1108. [Google Scholar] [CrossRef]
- Rajendran, V.; Devi, A.V.G.; Azooz, M.; El-Batal, F.H. Elastic properties of and dependence on microstructure of phosphate based bioactive glasses. J. Non-Cryst. Solids 2007, 353, 77–84. [Google Scholar] [CrossRef]
- Vafa, E.; Bazargan-Lari, R.; Bahrololoom, M.E. Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar. J. Mater. Res. Technol. 2021, 10, 1427–1436. [Google Scholar] [CrossRef]
- Sohrabi, M.; Yekta, B.E.; Rezaie, H.; Naimi-Jamal, M.R.; Kumar, A.; Cochis, A.; Miola, M.; Rimondini, L. The effect of magnesium on bioactivity, rheology and biology behaviors of injectable bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane nanocomposite-paste for small bone defects repair. Ceram. Int. 2021, 47, 12526–12536. [Google Scholar] [CrossRef]
- Borges, R.; Mendonça-Ferreira, L.; Rettori, C.; Pereira, I.S.O.; Baino, F.; Marchia, J. New sol-gel-derived magnetic bioactive glass-ceramics containing superparamagnetic hematite nanocrystals for hyperthermia application. Mater. Sci. Eng. C 2020, 1120, 111692. [Google Scholar] [CrossRef]
- Garrido, B.; Cano, I.G.; Dosta, S. Adhesion improvement and in vitro characterisation of 45S5 bioactive glass coatings obtained by atmospheric plasma spraying. Surf. Coat. Technol. 2021, 405, 126560. [Google Scholar] [CrossRef]
- Firuzeh, M.; Labbaf, S.; Sabouri, Z. A facile synthesis of mono-dispersed, spherical and mesoporous bioactive glass nanoparticles for biomedical applications. J. Non-Cryst. Solids 2021, 554, 120598. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Kung, J.-C.; Tseng, S.-P.; Chen, W.-C.; Wu, S.-M.; Shih, C.-J. Effects of AgNPs on the structure and anti-methicillin resistant Staphylococcus aureus (MRSA) properties of SiO2-CaO-P2O5 bioactive glass. J. Non-Cryst. Solids 2021, 553, 120492. [Google Scholar] [CrossRef]
- Koguchi, R.; Jankova, K.; Hayasaka, Y.; Kobayashi, D.; Amino, Y.; Miyajima, T.; Kobayashi, S.; Murakami, D.; Yamamoto, K.; Tanaka, M. Understanding the effect of hydration on the bio-inert properties of 2-hydroxyethyl methacrylate copolymers with small amounts of amino- or/and fluorine-containing monomers. ACS Biomater. Sci. Eng. 2020, 6, 2855–2866. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, E.A.; Sahbal, K.M.; Mabrouk, M.; Beherei, H.H.; Abdel-Monem, Y.K. Enhancement of glass-ceramic performance by TiO2 doping: In vitro cell viability, proliferation, and differentiation. Ceram. Int. 2020, 17, 6251–6261. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Aratsu, F.; Sekida, S.; Kobayashi, S.; Tanaka, M. Blood-compatible poly(2-methoxyethyl acrylate) induces blebbing-like phenomenon and promotes viability of tumor cells in serum-free medium. ACS Appl. Bio Mater. 2020, 3, 1858–1864. [Google Scholar] [CrossRef]
- Wers, E.; Oudadesse, H.; Lefeuvre, B.; Bureau, B.; Merdrignac-Conanec, O. Thermal investigations of Ti and Ag-doped bioactive glasses. Thermochim. Acta. 2014, 580, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.S.; Fleet, M.E. The structure of titanium silicate glasses investigated by Si K-edge X-ray absorption spectroscopy. J. Non-Cryst. Solids 1997, 211, 214–221. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Z.; Li, J.; Pan, D.; Feng, J.; Shi, R.; Li, B. Study on the strength of titanium doped hollow glass microspheres. J. Non-Cryst. Solids 2017, 459, 18–25. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Y.; Tian, Z.; Huang, W.; Wu, J. Effect of doping La2O3 on the structure and properties of the titanium barium silicate glass. J. Non-Cryst. Solids 2018, 499, 17–24. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, J.; Li, M. Raman spectra of soda–lime–silicate glass doped with rare earth. Phys. B Condens. Matter 2011, 406, 3865–3869. [Google Scholar] [CrossRef]
- Mirhadi, B.; Mehdikhani, B. Investigation of optical absorbance and crystallization of vanadium oxide in glasses. J. Optoelectron. Adv. Mater. 2011, 13, 679. [Google Scholar]
- Mukherjee, D.P.; Das, S.K. The influence of TiO2 content on the properties of glass ceramics: Crystallization, microstructure and hardness. Ceram. Int. 2014, 40, 4127–4134. [Google Scholar] [CrossRef]
- Karlsson, K.H.; Fröberg, K.; Ringbom, T. A structural approach to bone adhering of bioactive glasses. J. Non-Cryst. Solids 1989, 112, 69–72. [Google Scholar] [CrossRef]
- Ashiri, R. Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib. Spectrosc. 2013, 66, 24–29. [Google Scholar] [CrossRef]
- Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater. Sci. Eng. C 2015, 47, 135–141. [Google Scholar] [CrossRef]
- Yu, T.-Y.; Hwang, J.-Y.; Bae, I.T.; Jung, H.-G.; Sun, Y.-K. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries. J. Power Sour. 2019, 422, 1–8. [Google Scholar] [CrossRef]
- Tao, S.-M.; Lin, L.-Y. Design of efficient Mn-doped α-Fe2O3/Ti-doped α-Fe2O3 homojunction for catalyzing photoelectrochemical water splitting. Int. J. Hydrogen Energy 2020, 45, 6487–6499. [Google Scholar] [CrossRef]
- Ma, X.-H.; Li, L.-L.; Cheng, L.; Qiao, F.; Ye, Y.-Y.; Li, N.; Sha, M.-L.; Zi, Z.-F.; Dai, J.-M. P2-type Na0.8(Li0.33Mn0.67-xTix)O2 doped by Ti as cathode materials for high performance sodium-ion batteries. J. Alloys Compd. 2020, 815, 152402. [Google Scholar] [CrossRef]
- Masoud, M.; Erfan, S.; Vahid, S.; Yazdimamaghani, M.; Daryoosh, V.; Lobat, T. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry. Int. J. Nanomed. 2013, 8, 1665–1672. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Murugavel, S.; Aditya, A.; Boccaccini, A.R. Mesoporous 45S5 bioactive glass: Synthesis, in vitro dissolution and biomineralization behavior. J. Mater. Chem. B 2017, 5, 8786–8798. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Yazdanian, M.; Tebyanian, H.; Tahmasebi, E.; Yazdanian, A.; Seifalian, A.; Tavakolizadeh, M. Fabrication and properties of developed collagen/strontium-doped Bioglass scaffolds for bone tissue engineering. J. Mater. Res. Technol. 2020, 9, 14799–14817. [Google Scholar] [CrossRef]
- Mansoorianfar, M.; Shahin, K.; Mirström, M.M.; Li, D. Cellulose-reinforced bioglass composite as flexible bioactive bandage to enhance bone healing. Ceram. Int. 2021, 47, 416–423. [Google Scholar] [CrossRef]
- Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2019, 133, 817–830. [Google Scholar] [CrossRef]
- Du, X.; He, W.; Zhang, X.; Ma, J.; Wang, C.; Li, C.; Yue, Y. Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction. Mater. Sci. Eng. C 2013, 33, 1592–1600. [Google Scholar] [CrossRef]
- Li, X.; Zhitomirsky, I. Deposition of poly(methyl methacrylate) and composites containing bioceramics and bioglass by dip coating using isopropanol-water co-solvent. Prog. Org. Coat. 2020, 148, 105883. [Google Scholar] [CrossRef]
- Türe, H. Development of copper-doped bioglass/alginate composite membranes: Preliminary results on their characterization and antimicrobial properties. Mater. Today Commun. 2019, 21, 100583. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, J.; Tian, Z.; Huang, W.; Zhao, Y.; Lin, H. Effect of CeO2 doping on the structure and properties of titanium barium silicate glass. Glass Phys. Chem. 2019, 45, 317–324. [Google Scholar] [CrossRef]
- Ahmed, H.H.; Aglana, H.A.; Mabrouk, M.; Abd-Raboua, A.A.; Beherei, H.H. Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites. J. Mater. Sci. Mater. Med. 2019, 30, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kong, S.; Bhaduri, S.B.; Deng, L. Preparation of calcium phosphates with negative zeta potential using sodium calcium polyphosphate as a precursor. Mater. Lett. 2015, 156, 79–81. [Google Scholar] [CrossRef]
- Fahami, A.; Beall, G.W. Mechanosynthesis of carbonate doped chlorapatite-ZnO nanocomposite with negative zeta potential. Ceram. Int. 2015, 41, 12323–12330. [Google Scholar] [CrossRef] [Green Version]
- Norde, W. Driving Forces for Protein Adsorption at SolidSurfaces. Macromol. Symp. 1996, 103, 5–18. [Google Scholar] [CrossRef]
- Wei, Q.; Becherer, T.; Angioletti-Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, N.T.; Lendlein, A.; Ballauff, M.; Haag, R. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. 2014, 53, 8004–8031. [Google Scholar] [CrossRef] [PubMed]
- Koguchi, R.; Jankova, K.; Tanabe, N.; Amino, Y.; Hayasaka, Y.; Kobayashi, D.; Miyajima, T.; Yamamoto, K.; Yamamoto, M. Controlling the hydration structure with a small amount of fluorine To produce blood compatible fluorinated poly(2-methoxyethyl acrylate). Biomacromolecules 2019, 20, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.M.L.; Gerstenberg, M.; Haddleton, D.M.; Hvilsted, S. Synthesis, characterization, and bulk properties of amphiphilic copolymers containing fluorinated methacrylates from sequential copper-mediated radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 8097–8111. [Google Scholar] [CrossRef]
- Hansen, N.M.L.; Haddleton, D.M.; Hvilsted, S. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 5770–5780. [Google Scholar] [CrossRef]
- Okada, M.; Hara, E.S.; Kobayashi, D.; Kai, S.; Ogura, K.; Tanaka, M.; Matsumoto, T. Intermediate water on calcium phosphate Minerals: Its origin and role in crystal growth. ACS Appl. Bio Mater. 2019, 2, 981–986. [Google Scholar] [CrossRef]
- Dorvee, J.R.; Veis, A. Water in the formation of biogenicminerals: Peeling away the hydration layers. J. Struct. Biol. 2013, 183, 278–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Hayashi, T.; Morita, S. The roles of watermolecules at the biointerface of medical polymers. Polym. J. 2013, 45, 701–710. [Google Scholar] [CrossRef]
- Ueda, T.; Murakami, D.; Tanaka, M. Effect of interfacial structure based on grafting density of poly(2-methoxyethyl acrylate) on blood compatibility. Colloids Surf. B Biointerfaces 2021, 199, 111517. [Google Scholar] [CrossRef]
- Tanaka, M.; Morita, S.; Hayashi, T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf. B Biointerfaces 2021, 198, 111449. [Google Scholar] [CrossRef]
- Toyokawa, Y.; Kobayashi, S.; Tsuchiya, H.; Shibuya, T.; Aoki, M.; Sumiya, J.; Ooyama, S.; Ishizawa, T.; Makino, N.; Ueno, Y.; et al. A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition. Mater. Sci. Eng. C 2020, 120, 111386. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.-T.; Urata, S.; Koguchi, R.; Yamamoto, K.; Tanaka, M. Analyses of equilibrium water content and blood compatibility for Poly(2-methoxyethyl acrylate) by molecular dynamics simulation. Polymer 2019, 170, 76–84. [Google Scholar] [CrossRef]
Sample | Glass Composition (wt %) | |||
---|---|---|---|---|
CaO | P2O5 | SiO2 | TiO2 | |
BGT0 | 45 | 5 | 50 | --- |
BGT5 | 40 | 5 | 50 | 5 |
BGT7.5 | 37.5 | 5 | 50 | 7.5 |
BGT10 | 35 | 5 | 50 | 10 |
Sample | Maximum Intermediate Water (wt %) | Maxium Non-Freezing Water (wt %) | Intermediate Water + Free Water (wt %) | Equilibrium Water Content (wt %) |
---|---|---|---|---|
BGT0 | 9.8 | 20.6 | 17.1 | 48 |
BGT10 | 1.4 | 12.8 | 11.9 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabrouk, M.; Beherei, H.H.; Tanaka, Y.; Tanaka, M. Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. Int. J. Mol. Sci. 2021, 22, 8038. https://doi.org/10.3390/ijms22158038
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. International Journal of Molecular Sciences. 2021; 22(15):8038. https://doi.org/10.3390/ijms22158038
Chicago/Turabian StyleMabrouk, Mostafa, Hanan H. Beherei, Yukiko Tanaka, and Masaru Tanaka. 2021. "Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass" International Journal of Molecular Sciences 22, no. 15: 8038. https://doi.org/10.3390/ijms22158038
APA StyleMabrouk, M., Beherei, H. H., Tanaka, Y., & Tanaka, M. (2021). Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. International Journal of Molecular Sciences, 22(15), 8038. https://doi.org/10.3390/ijms22158038