Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence
Abstract
:1. Introduction
2. Pannexin and Connexin Involvement in Oogenesis and Folliculogenesis
3. Pannexin and Connexin Involvement in Oocyte Maturation
4. Pannexin and Connexin Involvement in Oocyte Fertilization
5. Pannexin and Connexin Related Pathologies Which Impact Oocyte Developmental Competence
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Te Velde, E.R.; Pearson, P.L. The variability of female reproductive ageing. Hum. Reprod. Update 2002, 8, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Söhl, G.; Willecke, K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes. 2003, 10, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Winterhager, E.; Kidder, G.M. Gap junction connexins in female reproductive organs: Implications for women’s reproductive health. Hum. Reprod. Update 2015, 21, 340–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.L.; Contreras, J.E. Motifs in the permeation pathway of connexin channels mediate voltage and Ca2+ sensing. Front. Physiol. 2014, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentsch, T.J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat. Rev. Mol. Cell Biol. 2016, 17, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Voss, F.K.; Ullrich, F.; Münch, J.; Lazarow, K.; Lutter, D.; Mah, N.; Andrade-Navarro, M.A.; von Kries, J.P.; Stauber, T.; Jentsch, T.J. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014, 344, 634–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 2007, 94, 120–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koval, M.; Molina, S.A.; Burt, J.M. Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett. 2014, 588, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, G.T.; Burt, J.M. Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochim. Biophys. Acta 2005, 1711, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Koval, M. Pathways and control of connexin oligomerization. Trends Cell Biol. 2006, 16, 159–166. [Google Scholar] [CrossRef]
- Abascal, F.; Zardoya, R. Evolutionary analyses of gap junction protein families. Biochim. Biophys. Acta 2013, 1828, 4–14. [Google Scholar] [CrossRef]
- Söhl, G.; Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 2004, 62, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Beyer, E.C.; Berthoud, V.M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim. Biophys. Acta Biomembr. 2018, 1860, 5–8. [Google Scholar] [CrossRef]
- Panchin, Y.; Kelmanson, I.; Matz, M.; Lukyanov, K.; Usman, N.; Lukyanov, S. A ubiquitous family of putative gap junction molecules. Curr. Biol. 2000, 10, R473–R474. [Google Scholar] [CrossRef] [Green Version]
- Baranova, A.; Ivanov, D.; Petrash, N.; Pestova, A.; Skoblov, M.; Kelmanson, I.; Shagin, D.; Nazarenko, S.; Geraymovych, E.; Litvin, O.; et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 2004, 83, 706–716. [Google Scholar] [CrossRef]
- Penuela, S.; Bhalla, R.; Gong, X.Q.; Cowan, K.N.; Celetti, S.J.; Cowan, B.J.; Bai, D.; Shao, Q.; Laird, D.W. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 2007, 120 Pt 21, 3772–3783. [Google Scholar] [CrossRef] [Green Version]
- Penuela, S.; Gehi, R.; Laird, D.W. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta 2013, 1828, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Misaghi, S.; Newton, K.; Gilmour, L.L.; Louie, S.; Cupp, J.E.; Dubyak, G.R.; Hackos, D.; Dixit, V.M. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 2011, 186, 6553–6561. [Google Scholar] [CrossRef] [Green Version]
- Sang, Q.; Zhang, Z.; Shi, J.; Sun, X.; Li, B.; Yan, Z.; Xue, S.; Ai, A.; Lyu, Q.; Li, W.; et al. A pannexin 1 channelopathy causes human oocyte death. Sci. Transl. Med. 2019, 11, eaav8731. [Google Scholar] [CrossRef]
- Schall, P.Z.; Latham, K.E. Essential shared and species-specific features of mammalian oocyte maturation-associated transcriptome changes impacting oocyte physiology. Am. J. Physiol. Physiol. 2021. [Google Scholar] [CrossRef]
- Sánchez, F.; Smitz, J. Molecular control of oogenesis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012, 1822, 1896–1912. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Kong, L.; Zhang, J.; Xu, Q.; Wang, J.; Xue, Z.; Wang, J. Involvement of GJA1 and gap junctional intercellular communication between cumulus cells and oocytes from women with PCOS. Biomed. Res. Int. 2020, 28, 5403904. [Google Scholar] [CrossRef]
- Kordowitzki, P.; Hamdi, M.; Derevyanko, A.; Rizos, D.; Blasco, M. The effect of rapamycin on bovine oocyte maturation success and metaphase telomere length maintenance. Aging 2020, 12, 7576–7584. [Google Scholar] [CrossRef]
- Lee, V.R.; Barr, K.J.; Kelly, J.J.; Johnston, D.; Brown, C.F.C.; Robb, K.P.; Sayedyahossein, S.; Huang, K.; Gros, R.; Flynn, L.E.; et al. Pannexin 1 regulates adipose stromal cell differentiation and fat accumulation. Sci. Rep. 2018, 8, 16166. [Google Scholar] [CrossRef]
- Dye, Z.T.; Rutledge, L.W.; Penuela, S.; Dyce, P.W. Pannexin 1 inhibition delays maturation and improves development of Bos taurus oocytes. J. Ovarian Res. 2020, 13, 98. [Google Scholar] [CrossRef]
- Ackert, C.L.; Gittens, J.E.I.; O’Brien, M.J.; Eppig, J.J.; Kidder, G.M. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev. Biol. 2001, 233, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Kidder, G.M.; Mhawi, A.A. Gap junctions and ovarian folliculogenesis. Reproduction 2002, 123, 613–620. [Google Scholar] [CrossRef]
- Johnson, M.L.; Redmer, D.A.; Reynolds, L.P.; Grazul-Bilska, A.T. Expression of gap junctional proteins connexin 43, 32, and 26 throughout follicular development and atresia in cows. Endocrine 1999, 10, 43–51. [Google Scholar] [CrossRef]
- Itahana, K.; Morikazu, Y.; Takeya, T. Differential expression of four connexin genes, Cx-26, Cx-30.3, Cx-32, and Cx-43, in the porcine ovarian follicle. Endocrinology 1996, 137, 5036–5044. [Google Scholar] [CrossRef] [Green Version]
- Gittens, J.E.; Kidder, G.M. Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci. 2005, 118 Pt 21, 5071–5078. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.M.; Goodenough, D.A.; Li, E.; Paul, D.L. Female infertility in mice lacking connexin 37. Nature 1997, 385, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Gittens, J.E.I.; Kidder, G.M.; Bai, D. Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse. Am. J. Physiol. Physiol. 2006, 290, C290–C297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Gillio-Meina, C.; Chen, S.; Gong, X.-Q.; Li, T.Y.; Bai, D.; Kidder, G.M.; Saccary, L.; She, Y.-M.; Oko, R.; et al. The Canonical WNT2 Pathway and FSH Interact to Regulate Gap Junction Assembly in Mouse Granulosa Cells1. Biol. Reprod. 2013, 89, 38. [Google Scholar] [CrossRef] [PubMed]
- Leybaert, L.; Braet, K.; Vandamme, W.; Cabooter, L.; Martin, P.E.; Evans, W.H. Connexin channels, connexin mimetic peptides and ATP release. Cell Commun. Adhes. 2003, 10, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.; Li, T.Y.; Naus, K.E.; Bai, D.; Kidder, G.M. In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J. Cell Sci. 2007, 120, 4016–4024. [Google Scholar] [CrossRef] [Green Version]
- Gershon, E.; Plaks, V.; Dekel, N. Gap junctions in the ovary: Expression, localization and function. Mol. Cell Endocrinol. 2008, 282, 18–25. [Google Scholar] [CrossRef]
- Erickson, G.F.; Wang, C.; Hsueh, A.J. FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature 1979, 24, 336–338. [Google Scholar] [CrossRef]
- Kumar, T.R.; Wang, Y.; Lu, N.; Matzuk, M.M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 1997, 15, 201–204. [Google Scholar] [CrossRef]
- Wiesen, J.F.; Midgley, A.R. Expression of Connexin 43 Gap Junction Messenger Ribonucleic Acid and Protein during Follicular Atresia. Biol. Reprod. 1994, 50, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Sommersberg, B.; Bulling, A.; Salzer, U.; Frohlich, U.; Garfield, R.E.; Amsterdam, A.; Mayerhofer, A. Gap Junction Communication and Connexin 43 Gene Expression in a Rat Granulosa Cell Line: Regulation by Follicle-Stimulating Hormone1. Biol. Reprod. 2000, 63, 1661–1668. [Google Scholar] [CrossRef]
- Johnson, M.L.; Redmer, D.A.; Reynolds, L.P.; Bilski, J.J.; Grazul-Bilska, A.T. Gap junctional intercellular communication of bovine granulosa and thecal cells from antral follicles: Effects of luteinizing hormone and follicle-stimulating hormone. Endocrine 2002, 18, 261–270. [Google Scholar] [CrossRef]
- El-Hayek, S.; Clarke, H.J. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis. Biol. Reprod. 2015, 93, 47. [Google Scholar] [CrossRef]
- Rashad, N.M.; Ateya, M.A.; Saraya, Y.S.; Elnagar, W.M.; Helal, K.F.; Lashin, M.E.; Abdelrhman, A.A.; Alil, A.E.; Yousef, M.S. Association of miRNA- 320 expression level and its target gene endothelin-1 with the susceptibility and clinical features of polycystic ovary syndrome. J. Ovarian Res. 2019, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Shen, J.; Fang, L.; Mao, X.; Wang, H.; Ye, Y. Endothelin-1 promotes human germinal vesicle-stage oocyte maturation by downregulating connexin-26 expression in cumulus cells. Mol. Hum. Reprod. 2018, 24, 27–36. [Google Scholar] [CrossRef]
- Trebichalská, Z.; Kyjovská, D.; Kloudová, S.; Otevřel, P.; Hampl, A.; Holubcová, Z. Cytoplasmic maturation in human oocytes: An ultrastructural study. Biol. Reprod. 2021, 104, 106–116. [Google Scholar] [CrossRef]
- He, M.; Zhang, T.; Yang, Y.; Wang, C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front. Cell Dev. Biol. 2021, 9, 654028. [Google Scholar] [CrossRef]
- Gabriel, H.D.; Jung, D.; Bützler, C.; Temme, A.; Traub, O.; Winterhager, E.; Willecke, K. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol. 1998, 23, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Krüger, O.; Plum, A.; Kim, J.S.; Winterhager, E.; Maxeiner, S.; Hallas, G.; Kirchhoff, S.; Traub, O.; Lamers, W.H.; Willecke, K. Defective vascular development in connexin 45-deficient mice. Development 2000, 127, 4179–4193. [Google Scholar] [CrossRef]
- Hasegawa, J.; Yanaihara, A.; Iwasaki, S.; Mitsukawa, K.; Negishi, M.; Okai, T. Reduction of connexin 43 in human cumulus cells yields good embryo competence during ICSI. J. Assist. Reprod. Genet. 2007, 24, 463–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowolski, R.; Willecke, K. Connexin-caused genetic diseases and corresponding mouse models. Antioxid. Redox Signal. 2009, 11, 283–295. [Google Scholar] [CrossRef]
- Santiquet, N.W.; Develle, Y.; Laroche, A.; Robert, C.; Richard, F.J. Regulation of Gap-Junctional Communication Between Cumulus Cells During In Vitro Maturation in Swine, a Gap-FRAP Study1. Biol. Reprod. 2012, 87, 46. [Google Scholar] [CrossRef] [PubMed]
- Grazul-Bilska, A.T.; Reynolds, L.P.; Redmer, D.A. Gap junctions in the ovaries. Biol. Reprod. 1997, 57, 947–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Tong, D.; El-Gehani, F.; Tekpetey, F.R.; Kidder, G.M. Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J. Cell. Mol. Med. 2009, 13, 972–984. [Google Scholar] [CrossRef]
- Wigglesworth, K.; Lee, K.-B.; O’Brien, M.J.; Peng, J.; Matzuk, M.M.; Eppig, J.J. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc. Natl. Acad. Sci. USA 2013, 110, E3723–E3729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, R.P.; Ratzan, W.J.; Freudzon, M.; Mehlmann, L.M.; Krall, J.; Movsesian, M.A.; Wang, H.; Ke, H.; Nikolaev, V.O.; Jaffe, L.A. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 2009, 136, 1869–1878. [Google Scholar] [CrossRef] [Green Version]
- Santiquet, N.; Robert, C.; Richard, F.J. The Dynamics of Connexin Expression, Degradation and Localisation Are Regulated by Gonadotropins during the Early Stages of In Vitro Maturation of Swine Oocytes. PLoS ONE 2013, 8, e68456. [Google Scholar] [CrossRef] [Green Version]
- Berisha, B.; Bridger, P.; Toth, A.; Kliem, H.; Meyer, H.H.; Schams, D.; Pfarrer, C. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod. Domest. Anim. 2009, 44, 295–302. [Google Scholar] [CrossRef]
- Shimada, M.; Maeda, T.; Terada, T. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol. Reprod. 2001, 64, 1255–1263. [Google Scholar] [CrossRef] [Green Version]
- Granot, I.; Dekel, N. Phosphorylation and expression of connexin-43 ovarian gap junction protein are regulated by luteinizing hormone. J. Biol. Chem. 1994, 269, 30502–30509. [Google Scholar] [CrossRef]
- Sasseville, M.; Gagnon, M.-C.; Guillemette, C.; Sullivan, R.; Gilchrist, R.; Richard, F.J. Regulation of Gap Junctions in Porcine Cumulus-Oocyte Complexes: Contributions of Granulosa Cell Contact, Gonadotropins, and Lipid Rafts. Mol. Endocrinol. 2009, 23, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, T.; Ohta, Y.; Kawate, N.; Takahashi, M.; Sakagami, N.; Inaba, T.; Tamada, H. Treatment with the MAPK kinase in-hibitor U0126 during the first two hours of in vitro maturation improves bovine oocyte developmental competence. Reprod. Domest. Anim. 2018, 53, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Kalma, Y.; Granot, I.; Galiani, D.; Barash, A.; Dekel, N. Luteinizing hormone-induced connexnin 43 down-regulation: Inhibition of translation. Endocrinology 2004, 145, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Assidi, M.; Dieleman, S.J.; Sirard, M.-A. Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: Potential early markers of oocyte competence. Reproduction 2010, 140, 835–852. [Google Scholar] [CrossRef] [Green Version]
- Šutovský, P.; Fléchon, J.E.; Fléchon, B.; Motlik, J.; Peynot, N.; Chesné, P.; Heyman, Y. Dynamic Changes of Gap Junctions and Cytoskeleton during in Vitro Culture of Cattle Oocyte Cumulus Complexes1. Biol. Reprod. 1993, 49, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-H.; Lin, M.-H.; Hwu, Y.-M.; Lu, C.-H.; Yeh, L.-Y.; Chen, Y.-J.; Lee, R.K.-K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3 and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod. Biol. Endocrinol. 2015, 13, 93. [Google Scholar] [CrossRef] [Green Version]
- Feuerstein, P.; Cadoret, V.; Dalbies-Tran, R.; Guerif, F.; Bidault, R.; Royere, D. Gene expression in human cumulus cells: One approach to oocyte competence. Hum. Reprod. 2007, 22, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-J.; Wu, S.-N.; Shen, J.-P.; Wang, D.-H.; Kong, X.-W.; Lu, A.; Li, Y.-J.; Zhou, H.-X.; Zhao, Y.-F.; Liang, C.-G. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice. PeerJ 2016, 4, e1761. [Google Scholar] [CrossRef]
- Sun, F.; Bahat, A.; Gakamsky, A.; Girsh, E.; Katz, N.; Giojalas, L.; Tur-Kaspa, I.; Eisenbach, M. Human sperm chemotaxis: Both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum. Reprod. 2005, 20, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Guidobaldi, H.A.; Teves, M.E.; Unates, D.R.; Anastasia, A.; Giojalas, L.C. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS ONE 2008, 3, e3040. [Google Scholar] [CrossRef]
- Phelan, P. Innexins: Members of an evolutionarily conserved family of gap-junction proteins. Biochim. Biophys. Acta 2005, 1711, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Whitten, S.J.; Miller, M.A. The role of gap junctions in Caenorhabditis elegans oocyte maturation and fertilization. Dev. Biol. 2007, 301, 432–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmonds, J.W.; McKinney, S.L.; Prasain, J.K.; Miller, M.A. The gap junctional protein INX-14 functions in oocyte precursors to promote C. elegans sperm guidance. Dev. Biol. 2011, 359, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouladi-Nashta, A.A.; Raheem, K.A.; Marei, W.F.; Ghafari, F.; Hartshorne, G.M. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017, 153, R43–R58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, E.; Yokoo, M. Morphological and biochemical dynamics of porcine cumulus-oocyte complexes: Role of cumulus ex-pansion in oocyte maturation. Ital. J. Anat. Embryol. 2005, 110 (Suppl. S1), 205–217. [Google Scholar]
- Pfenniger, A.; Wohlwend, A.; Kwak, B.R. Mutations in connexin genes and disease. Eur. J. Clin. Investig. 2011, 41, 103–116. [Google Scholar] [CrossRef]
- Xu, J.; Nicholson, B.J. The role of connexins in ear and skin physiology—Functional insights from disease-associated mutations. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Ambrosi, C.; Walker, A.E.; Depriest, A.D.; Cone, A.C.; Lu, C.; Badger, J.; Skerrett, I.M.; Sosinsky, G.E. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix. PLoS ONE 2013, 15, e70916. [Google Scholar] [CrossRef]
- Carabatsos, M.J.; Sellitto, C.; Goodenough, D.A.; Albertini, D.F. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 2000, 226, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Huang, H.; Qian, Y.; Li, Y.; Chen, X.; Di, N.; Yang, D. miR-130b regulates gap junctional intercellular communication through connexin 43 in granulosa cells from patients with polycystic ovary syndrome. Mol. Hum. Reprod. 2020, 26, 576–584. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Feng, Y.; Liu, C.; Ma, J.; Li, Y.; Xiang, H.; Ji, Y.; Cao, Y.; Tong, X.; et al. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Sci. Rep. 2016, 6, 39638. [Google Scholar] [CrossRef] [Green Version]
- Talhouk, R.; Tarraf, C.; Kobrossy, L.; Shaito, A.; Bazzi, S.; Bazzoun, D.; El-Sabban, M. Modulation of C×43 and gap junc-tional intercellular communication by androstenedione in rat polycystic ovary and granulosa cells in vitro. J. Reprod. Infertil. 2012, 13, 21–32. [Google Scholar]
- Chang, A.S.; Dale, A.N.; Moley, K.H. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology 2005, 146, 2445–2453. [Google Scholar] [CrossRef] [Green Version]
- Ratchford, A.M.; Esguerra, C.R.; Moley, K.H. Decreased oocyte-granulosa cell gap junction communication and connexin expression in a type 1 diabetic mouse model. Mol. Endocrinol. 2008, 22, 2643–2654. [Google Scholar] [CrossRef] [Green Version]
- Colton, S.A.; Pieper, G.M.; Downs, S. Altered meiotic regulation in oocytes from diabetic mice. Biol. Reprod. 2002, 67, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.-T.; Nie, Z.-W.; Zhou, W.; Zhou, D.; Kim, J.-Y.; Ock, S.A.; Niu, Y.-J.; Cui, X.-S. Connexin 43 Knockdown Induces Mitochondrial Dysfunction and Affects Early Developmental Competence in Porcine Embryos. Microsc. Microanal. 2020, 26, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Read, C.C.; Willhelm, G.; Dyce, P.W. Connexin 43 coupling in bovine cumulus cells, during the follicular growth phase, and its relationship to in vitro embryo outcomes. Mol. Reprod. Dev. 2018, 85, 579–589. [Google Scholar] [CrossRef]
- Snoeck, F.; Szymanska, K.J.; Sarrazin, S.; Ortiz-Escribano, N.; Leybaert, L.; Van Soom, A. Blocking connexin channels during vitrification of immature cat oocytes improves maturation capacity after warming. Theriogenology 2018, 122, 144–149. [Google Scholar] [CrossRef]
- Sampaio da Silva, A.M.; Bruno, J.B.; Lima, L.F.; Ribeiro de Sá, N.A.; Osmarini Lunardi, F.; Accioly Ferreira, A.C.; Vieira Correia, H.H.; Nascimentode Aguiar, F.L.; Rocha Araújo, V.; Lobo, C.H.; et al. Connexin 37 and 43 gene and protein expression and developmental competence of isolated ovine secondary follicles cultured in vitro after vitrification of ovarian tissue. Theriogenology 2016, 85, 1457–1467. [Google Scholar] [CrossRef]
- Locovei, S.; Wang, J.; Dahl, G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 2006, 580, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Chekeni, F.B.; Elliott, M.R.; Sandilos, J.K.; Walk, S.F.; Kinchen, J.M.; Lazarowski, E.R.; Armstrong, A.J.; Penuela, S.; Laird, D.W.; Salvesen, G.S.; et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010, 467, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Lohman, A.W.; Leskov, I.L.; Butcher, J.T.; Johnstone, S.R.; Stokes, T.A.; Begandt, D.; DeLalio, L.J.; Best, A.K.; Penuela, S.; Leitinger, N.; et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat. Commun. 2015, 6, 7965. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.A.; Velasquez, S.; Williams, D.W.; Saez, J.C.; Berman, J.W.; Eugenin, E.A. Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes. J. Leukoc. Biol. 2013, 94, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulbransen, B.D.; Bashashati, M.; Hirota, S.A.; Gui, X.; Roberts, J.A.; MacDonald, J.A.; Muruve, D.A.; McKay, D.M.; Beck, P.L.; Mawe, G.M.; et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med. 2012, 18, 600–604. [Google Scholar] [CrossRef] [Green Version]
Channel Protein | Encoding Gene | Reported Function in Females | Localization |
---|---|---|---|
Connexin 26 (Cx26) | GJB2 | Knockout female mice died 11 days post coitum. Cx26 may be involved in local cellular mechanisms in oocytes among the peri-ovulation time. The expression of Cx26 is upregulated during the LH surge in the bovine follicle but the exact mechanism is not fully understood. Endothelin-1 (ET-1) may downregulate cAMP transfer from cumulus cells to oocyte via Cx26 to induce oocyte maturation. Mutations may lead to implantation failure. | Oocytes, granulosa cells, theca cells of several species. |
Connexin 32 (Cx32) | GJB1 | Knockout females remained viable and fertile. | Porcine ovary, especially theca cells. In cattle in granulosa cells of arthritic but not healthy follicles. |
Connexin 37 (Cx37) | GJA4 | Cx37 is essential for the gap-junctional communication between granulosa cells and oocyte. Cx37 localizes to gap junctions at the oocyte surface and is thereby responsible for oocyte-granulosa cell metabolic coupling. It has been shown that in mice ovaries lacking Cx37 folliculogenesis is impaired at early antral stages, as well as meiotic competence. Mutations may lead to complication with conceiving due to impaired folliculogenesis. | In murine oocytes, cumulus cells, in cumulus cells of corona radiata. Cx37 is present on oocytes at all stages of follicle forming. |
Connexin 43 (Cx43) | GJA1 | Cx43 provides communication among granulosa cells and its lack leads to arrest oocyte development at the primary stages. Marker potentially associated with oocyte maturation. Mutations may lead to complications with conceiving due to deficiency of oogonia and/or impaired oocyte/follicle development. | Within the follicles of numerous species. Strongly expressed in cumulus cells. |
Connexin 45 (Cx45) | GJA7 | Knockout females mice died in utero. | In pig, mouse and rat oocytes, granulosa cells and cumulus cells. |
Connexin 62 (Cx62) | GJA10 | Mice lacking CX57, a mouse orthologue of porcine CX60 and human CX62, did not exhibit any changes in oogenesis/folliculogenesis | Expressed in porcine cumulus cells and oocytes, expressed at low levels in mouse ovaries. |
Channel Protein | Encoding Gene | Reported Function for Female Fertility | Localization |
---|---|---|---|
Pannexin 1 | PANX1 | Expression of PANX1 in bovine oocyte cumulus cells is differential with higher expression in smaller antral follicles compared to larger antral follicles. The expression of PANX1 is downregulated in vivo during folliculogenesis and oocyte maturation. PANX1 channel inhibition during in vitro maturation resulted in temporarily delayed meiotic maturation and improved in vitro developmental outcomes while decreasing intercellular reactive oxygen species. PANX1 inhibition during in vitro maturation led to maintaining elevated cAMP levels and modulation of ATP release, which delayed maturation and improved developmental competence. The mutation in PANX1 appeared to affect maturation potential in the oocytes—very few oocytes were mature, with the majority being immature and all degenerated or died very shortly after fertilization. The mutation in PANX1 led to an altered PANX1 glycosylation pattern and influenced the subcellular localization of PANX1in cultured cells. The result was the aberrant PANX1 channel activity and abnormal ATP release in oocytes. Oocytes having the mutation of PANX1, degenerated soon after retrieval due to the release of more adenosine 5′-triphosphate (ATP) to the extracellular space. | Oocytes, zygotes, early embryonic cleavage stages |
Pannexin 2 | PANX2 | unknown | unknown |
Pannexin 3 | PANX3 | unknown | unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordowitzki, P.; Sokołowska, G.; Wasielak-Politowska, M.; Skowronska, A.; Skowronski, M.T. Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence. Int. J. Mol. Sci. 2021, 22, 5918. https://doi.org/10.3390/ijms22115918
Kordowitzki P, Sokołowska G, Wasielak-Politowska M, Skowronska A, Skowronski MT. Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence. International Journal of Molecular Sciences. 2021; 22(11):5918. https://doi.org/10.3390/ijms22115918
Chicago/Turabian StyleKordowitzki, Paweł, Gabriela Sokołowska, Marta Wasielak-Politowska, Agnieszka Skowronska, and Mariusz T. Skowronski. 2021. "Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence" International Journal of Molecular Sciences 22, no. 11: 5918. https://doi.org/10.3390/ijms22115918