Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo
Abstract
:1. Introduction
2. Results
2.1. Combined Intramuscular Application of Calf Blood Compound (CFC) and Tr14 Alters Gene Expression in Muscle Tears
2.2. Accelerated Muscle Regeneration after Combined Therapy with CFC and Tr14
3. Discussion
3.1. Intramuscular Application of the Combination of CFC and Tr14 Alters Gene Expression in Muscle Tears
3.2. Accelerated Muscle Regeneration after Combined Therapy with CFC and Tr14
3.3. Limitations of the Study
3.4. Conclusions
4. Materials and Methods
4.1. In Vivo Rat Model and Experimental Procedure
4.2. Therapy Schedule
4.3. RNA Isolation, cDNA Synthesis, and qPCR
4.4. Histological Analyses
4.5. Immunohistochemistry
4.6. Morphometric Analyses
4.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BW | Bodyweight |
CFC | Calf Blood Compound |
DNA | deoxyribonucleic acid |
IM | Intramuscular |
IL | Interleukin |
kg | Kilogram |
Mg | Milligram |
MRF | myogenic regulatory factor |
Myh1 | Myosin heavy chain-1 |
NaCl | Sodium chloride |
NCAM | Neuronal cell adhesion molecule |
Pax | Paired box factor |
PCR | Polymerase chain reaction |
pl | Picolitre |
PRP | Platelet-rich plasma |
RNA | ribonucleic acid |
s | second |
SC | Satellite cell |
TNF | Tumor necrosis factor |
References
- Feddermann-Demont, N.; Junge, A.; Edouard, P.; Branco, P.; Alonso, J.M. Injuries in 13 international Athletics championships between 2007–2012. Br. J. Sports Med. 2014, 48, 513–522. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ekstrand, J.; Hagglund, M.; Walden, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hagglund, M.; Walden, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Eirale, C.; Tol, J.L.; Farooq, A.; Smiley, F.; Chalabi, H. Low injury rate strongly correlates with team success in Qatari professional football. Br. J. Sports Med. 2013, 47, 807–808. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jarvinen, T.A.; Jarvinen, T.L.; Kaariainen, M.; Aarimaa, V.; Vaittinen, S.; Kalimo, H.; Jarvinen, M. Muscle injuries: Optimising recovery. Best Pract. Res. Clin. Rheumatol. 2007, 21, 317–331. [Google Scholar] [CrossRef]
- Orchard, J.W.; Best, T.M.; Mueller-Wohlfahrt, H.W.; Hunter, G.; Hamilton, B.H.; Webborn, N.; Jaques, R.; Kenneally, D.; Budgett, R.; Phillips, N.; et al. The early management of muscle strains in the elite athlete: Best practice in a world with a limited evidence basis. Br. J. Sports Med. 2008, 42, 158–159. [Google Scholar] [CrossRef]
- Reurink, G.; Goudswaard, G.J.; Moen, M.H.; Weir, A.; Verhaar, J.A.; Tol, J.L. Myotoxicity of injections for acute muscle injuries: A systematic review. Sports Med. 2014, 44, 943–956. [Google Scholar] [CrossRef]
- Reurink, G.; Goudswaard, G.J.; Tol, J.L.; Verhaar, J.A.; Weir, A.; Moen, M.H. Therapeutic interventions for acute hamstring injuries: A systematic review. Br. J. Sports Med. 2012, 46, 103–109. [Google Scholar] [CrossRef]
- Wright-Carpenter, T.; Klein, P.; Schaferhoff, P.; Appell, H.J.; Mir, L.M.; Wehling, P. Treatment of muscle injuries by local administration of autologous conditioned serum: A pilot study on sportsmen with muscle strains. Int. J. Sports Med. 2004, 25, 588–593. [Google Scholar] [CrossRef][Green Version]
- Lee, P.; Rattenberry, A.; Connelly, S.; Nokes, L. Our experience on Actovegin, is it cutting edge? Int. J. Sports Med. 2011, 32, 237–241. [Google Scholar] [CrossRef][Green Version]
- Brock, J.; Golding, D.; Smith, P.M.; Nokes, L.; Kwan, A.; Lee, P.Y.F. Update on the Role of Actovegin in Musculoskeletal Medicine: A Review of the Past 10 Years. Clin. J. Sport Med. 2018, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Pfister, A.; Koller, W. Treatment of fresh muscle injury. Sportverletz. Sportschaden 1990, 4, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Müller-Wohlfahrt, H.W.; Ueblacker, P.; Hänsel, L. Muskelverletzungen im Sport; Thieme, G., Ed.; Thieme: Stuttgart, Germany, 2018. [Google Scholar]
- Reichl, F.X.; Holdt, L.M.; Teupser, D.; Schutze, G.; Metcalfe, A.J.; Hickel, R.; Hogg, C.; Bloch, W. Comprehensive Analytics of Actovegin(R) and Its Effect on Muscle Cells. Int. J. Sports Med. 2017, 38, 809–818. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Buchmayer, F.; Pleiner, J.; Elmlinger, M.W.; Lauer, G.; Nell, G.; Sitte, H.H. Actovegin(R): A biological drug for more than 5 decades. Wien. Med. Wochenschr. 2011, 161, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Elmlinger, M.W.; Kriebel, M.; Ziegler, D. Neuroprotective and anti-oxidative effects of the hemodialysate actovegin on primary rat neurons in vitro. Neuromol. Med. 2011, 13, 266–274. [Google Scholar] [CrossRef][Green Version]
- Vanden Bossche, L.; Vanderstraeten, G. A multi-center, double-blind, randomized, placebo-controlled trial protocol to assess Traumeel injection vs dexamethasone injection in rotator cuff syndrome: The TRAumeel in ROtator cuff syndrome (TRARO) study protocol. BMC Musculoskelet. Disord. 2015, 16, 8. [Google Scholar] [CrossRef][Green Version]
- Porozov, S.; Cahalon, L.; Weiser, M.; Branski, D.; Lider, O.; Oberbaum, M. Inhibition of IL-1beta and TNF-alpha secretion from resting and activated human immunocytes by the homeopathic medication Traumeel S. Clin. Dev. Immunol. 2004, 11, 143–149. [Google Scholar] [CrossRef][Green Version]
- Hotfiel, T.; Seil, R.; Bily, W.; Bloch, W.; Gokeler, A.; Krifter, R.M.; Mayer, F.; Ueblacker, P.; Weisskopf, L.; Engelhardt, M. Nonoperative treatment of muscle injuries—Recommendations from the GOTS expert meeting. J. Exp. Orthop. 2018, 5, 24. [Google Scholar] [CrossRef]
- Schneider, C.; Schneider, B.; Hanisch, J.; van Haselen, R. The role of a homoeopathic preparation compared with conventional therapy in the treatment of injuries: An observational cohort study. Complement. Ther. Med. 2008, 16, 22–27. [Google Scholar] [CrossRef]
- Ueblacker, P.; English, B.; Mueller-Wohlfahrt, H.-W. Nonoperative treatment and return to play after complete proximal adductor avulsion in high-performance athletes. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3927–3933. [Google Scholar] [CrossRef]
- Ueblacker, P.; Haensel, L.; Mueller-Wohlfahrt, H.-W. Treatment of muscle injuries in football. J. Sports Sci. 2016, 34, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Langendorf, E.K.; Klein, A.; Rommens, P.M.; Drees, P.; Ritz, U.; Mattyasovszky, S.G. Calf Blood Compound (CFC) and Homeopathic Drug Induce Differentiation of Primary Human Skeletal Muscle Cells. Int. J. Sports Med. 2019, 40, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Hardy, D.; Besnard, A.; Latil, M.; Jouvion, G.; Briand, D.; Thepenier, C.; Pascal, Q.; Guguin, A.; Gayraud-Morel, B.; Cavaillon, J.M.; et al. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS ONE 2016, 11, e0147198. [Google Scholar] [CrossRef]
- Arnold, H.H.; Winter, B. Muscle differentiation: More complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 1998, 8, 539–544. [Google Scholar] [CrossRef]
- Molkentin, J.D.; Olson, E.N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 1996, 6, 445–453. [Google Scholar] [CrossRef]
- Andia, I.; Abate, M. Platelet-rich plasma in the treatment of skeletal muscle injuries. Expert Opin. Biol. Ther. 2015, 15, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Reurink, G.; Goudswaard, G.J.; Moen, M.H.; Weir, A.; Verhaar, J.A.; Bierma-Zeinstra, S.M.; Maas, M.; Tol, J.L. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: The Dutch Hamstring Injection Therapy study. Br. J. Sports Med. 2015, 49, 1206–1212. [Google Scholar] [CrossRef]
- Schneider, C. Traumeel—An emerging option to nonsteroidal anti-inflammatory drugs in the management of acute musculoskeletal injuries. Int. J. Gen. Med. 2011, 4, 225–234. [Google Scholar] [CrossRef][Green Version]
- Muders, K.; Pilat, C.; Deuster, V.; Frech, T.; Kruger, K.; Pons-Kuhnemann, J.; Mooren, F.C. Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT. Mediat. Inflamm. 2016, 2016, 1693918. [Google Scholar] [CrossRef][Green Version]
- Muders, K.; Pilat, C.; Deuster, V.; Frech, T.; Kruger, K.; Pons-Kuhnemann, J.; Mooren, F.C. Effects of Traumeel (Tr14) on recovery and inflammatory immune response after repeated bouts of exercise: A double-blind RCT. Eur. J. Appl. Physiol. 2017, 117, 591–605. [Google Scholar] [CrossRef]
- Birnesser H, O.M.K.P.; Weiser, M. The homeopathic preparation Traumeel® compared with NSAIDs for symptomatic treatment of epicondylitis. J. Musculoskelet. Res. 2004, 8, 119–128. [Google Scholar] [CrossRef]
- Chandran, R.; Knobloch, T.J.; Anghelina, M.; Agarwal, S. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. Am. J. Physiol. Cell Physiol. 2007, 293, C267. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Braga, M.; Simmons, Z.; Norris, K.C.; Ferrini, M.G.; Artaza, J.N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr. Connect. 2017, 6, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Rossi, A.C.; Smerdu, V.; Leinwand, L.A.; Reggiani, C. Developmental myosins: Expression patterns and functional significance. Skelet. Muscle 2015, 5, 22. [Google Scholar] [CrossRef][Green Version]
- Illa, I.; Leon-Monzon, M.; Dalakas, M.C. Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann. Neurol. 1992, 31, 46–52. [Google Scholar] [CrossRef]
- Mege, R.M.; Goudou, D.; Diaz, C.; Nicolet, M.; Garcia, L.; Geraud, G.; Rieger, F. N-cadherin and N-CAM in myoblast fusion: Compared localisation and effect of blockade by peptides and antibodies. J. Cell Sci. 1992, 103, 897–906. [Google Scholar]
- Peault, B.; Rudnicki, M.; Torrente, Y.; Cossu, G.; Tremblay, J.P.; Partridge, T.; Gussoni, E.; Kunkel, L.M.; Huard, J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 2007, 15, 867–877. [Google Scholar] [CrossRef]
- Winter, A.; Bornemann, A. NCAM, vimentin and neonatal myosin heavy chain expression in human muscle diseases. Neuropathol. Appl. Neurobiol. 1999, 25, 417–424. [Google Scholar] [CrossRef]
- Langendorf, E.K.; Klein, A.; Drees, P.; Rommens, P.M.; Mattyasovszky, S.G.; Ritz, U. Exposure to radial extracorporeal shockwaves induces muscle regeneration after muscle injury in a surgical rat model. J. Orthop. Res. 2019. [Google Scholar] [CrossRef]
- Scharner, J.; Zammit, P.S. The muscle satellite cell at 50: The formative years. Skelet. Muscle 2011, 1, 28. [Google Scholar] [CrossRef][Green Version]
- Lander, A.D.; Kimble, J.; Clevers, H.; Fuchs, E.; Montarras, D.; Buckingham, M.; Calof, A.L.; Trumpp, A.; Oskarsson, T. What does the concept of the stem cell niche really mean today? BMC Biol. 2012, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baghdadi, M.B.; Tajbakhsh, S. Regulation and phylogeny of skeletal muscle regeneration. Dev. Biol. 2018, 433, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Costamagna, D.; Berardi, E.; Ceccarelli, G.; Sampaolesi, M. Adult Stem Cells and Skeletal Muscle Regeneration. Curr. Gene Ther. 2015, 15, 348–363. [Google Scholar] [CrossRef]
- Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult stem cells at work: Regenerating skeletal muscle. Cell. Mol. Life Sci. 2019, 76, 2559–2570. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lepper, C.; Conway, S.J.; Fan, C.M. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009, 460, 627–631. [Google Scholar] [CrossRef][Green Version]
- Seale, P.; Sabourin, L.A.; Girgis-Gabardo, A.; Mansouri, A.; Gruss, P.; Rudnicki, M.A. Pax7 is required for the specification of myogenic satellite cells. Cell 2000, 102, 777–786. [Google Scholar] [CrossRef][Green Version]
- Von Maltzahn, J.; Jones, A.E.; Parks, R.J.; Rudnicki, M.A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc. Natl. Acad. Sci. USA 2013, 110, 16474. [Google Scholar] [CrossRef][Green Version]
- Zammit, P.S.; Relaix, F.; Nagata, Y.; Ruiz, A.P.; Collins, C.A.; Partridge, T.A.; Beauchamp, J.R. Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci. 2006, 119, 1824–1832. [Google Scholar] [CrossRef][Green Version]
- Fisher, B.D.; Rathgaber, M. An Overview of Muscle Regeneration Following Acute Injury. J. Phys. Ther. Sci. 2006, 18, 57–66. [Google Scholar] [CrossRef][Green Version]
- Borrione, P.; Grasso, L.; Chierto, E.; Geuna, S.; Racca, S.; Abbadessa, G.; Ronchi, G.; Faiola, F.; Di Gianfrancesco, A.; Pigozzi, F. Experimental model for the study of the effects of platelet-rich plasma on the early phases of muscle healing. Blood Transfus. 2014, 12, s221–s228. [Google Scholar] [PubMed]
- Nakasa, T.; Ishikawa, M.; Shi, M.; Shibuya, H.; Adachi, N.; Ochi, M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J. Cell Mol. Med. 2010, 14, 2495–2505. [Google Scholar] [CrossRef]
- Natsu, K.; Ochi, M.; Mochizuki, Y.; Hachisuka, H.; Yanada, S.; Yasunaga, Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue Eng. 2004, 10, 1093–1112. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Munoz, P.; Fernandez-Martin, A.; Torrella, R.; Serres, X.; De la Varga, M.; Viscor, G.; Jarvinen, T.A.; Martinez-Ibanez, V.; Peiro, J.L.; Rodas, G.; et al. A New Surgical Model of Skeletal Muscle Injuries in Rats Reproduces Human Sports Lesions. Int. J. Sports Med. 2016, 37, 183–190. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Musaro, A. The Basis of Muscle Regeneration. Adv. Biol. 2014, 2014, 16. [Google Scholar] [CrossRef][Green Version]
- Bentzinger, C.F.; Wang, Y.X.; Dumont, N.A.; Rudnicki, M.A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 2013, 14, 1062–1072. [Google Scholar] [CrossRef][Green Version]
- Karalaki, M.; Fili, S.; Philippou, A.; Koutsilieris, M. Muscle regeneration: Cellular and molecular events. In Vivo 2009, 23, 779–796. [Google Scholar]
- Stelmakh, A.; Abrahamovych, O.; Cherkas, A. Highly purified calf hemodialysate (Actovegin(R)) may improve endothelial function by activation of proteasomes: A hypothesis explaining the possible mechanisms of action. Med. Hypotheses 2016, 95, 77–81. [Google Scholar] [CrossRef]
- Latroche, C.; Weiss-Gayet, M.; Muller, L.; Gitiaux, C.; Leblanc, P.; Liot, S.; Ben-Larbi, S.; Abou-Khalil, R.; Verger, N.; Bardot, P.; et al. Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Rep. 2017, 9, 2018–2033. [Google Scholar] [CrossRef][Green Version]
- Astashkin, E.I.; Glezer, M.G.; Vinokurov, M.G.; Egorova, N.D.; Orekhova, N.S.; Novikova, A.N.; Grachev, S.V.; Yurinskaya, M.M.; Sobolev, K.E. Actovegin reduces the ROS level in blood samples of heart failure patients and diminishes necrosis of SK-N-SH human neuroblastoma cells. Dokl. Biol. Sci. 2013, 448, 57–60. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | Day 1 | Day 3 | Day 7 |
---|---|---|---|
Control | ++ | +++ | ++ |
Sodium chloride | ++ | ++++ | ++ |
CFC | +++ | +++ | ++ |
TR14 | +++ | ++++ | + |
CFC + Tr14 | +++ | +++ | + |
Product Name | Catalog No. |
---|---|
Rn_Myh1_1_SG QuantiTect Primer Assay | QT00384307 |
Rn_Pax7_1_SG QuantiTect Primer Assay | QT01301552 |
Rn_Ncam1_1_SG QuantiTect Primer Assay | QT00181944 |
Rn_Rnr1_1_SG QuantiTect Primer Assay | QT00199374 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belikan, P.; Nauth, L.; Färber, L.-C.; Abel, F.; Langendorf, E.; Drees, P.; Rommens, P.M.; Ritz, U.; Mattyasovszky, S.G. Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo. Int. J. Mol. Sci. 2020, 21, 2112. https://doi.org/10.3390/ijms21062112
Belikan P, Nauth L, Färber L-C, Abel F, Langendorf E, Drees P, Rommens PM, Ritz U, Mattyasovszky SG. Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo. International Journal of Molecular Sciences. 2020; 21(6):2112. https://doi.org/10.3390/ijms21062112
Chicago/Turabian StyleBelikan, Patrick, Lisa Nauth, Lars-Christopher Färber, Frédéric Abel, Eva Langendorf, Philipp Drees, Pol Maria Rommens, Ulrike Ritz, and Stefan G. Mattyasovszky. 2020. "Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo" International Journal of Molecular Sciences 21, no. 6: 2112. https://doi.org/10.3390/ijms21062112