Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam
Abstract
:1. Introduction
2. Results and Discusion
2.1. Cationic Curdlan—Synthesis and Characterization
2.2. Preparation of Thermoresponsive Coacervate Polysaccharide Nanoparticles (CPNs)
2.3. Binding Constant of Piroxicam to A-HPC
2.4. Piroxicam-Loaded C-CUR/A-HPC (1:25) Nanoparticles (CPNs-PIX)
2.5. Piroxicam Release
2.6. Biological Studies
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Ionic Polysaccharide Derivatives (C-CUR and A-HPC)
3.2.1. C-CUR
3.2.2. A-HPC
3.3. Characterization of Modified Polysaccharides
3.4. Preparation of C-CUR/A-HPC ThermoResponsive Nanoparticles (CPNs)
3.5. Preparation of the Piroxicam-Loaded C-CUR/A-HPC System (CPNs-PIX)
3.6. Morphology and Size of the Obtained Nanoparticles
3.7. Determination of the Piroxicam-A-HPC-Binding Constant
3.8. Determination of Piroxicam Entrapment Efficiency (EE) and Loading Efficiency (LE)
3.9. Piroxicam Release Profile from CPNs-PIX
3.10. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CUR | Curdlan |
C-CUR | Cationic curdlan |
HPC | Hydroxypropyl cellulose |
A-HPC | Anionic hydroxypropyl cellulose |
CPNs | Coacervate polysaccharide nanoparticles |
PIROX | Piroxicam |
DLS | Dynamic light scattering |
AFM | Atomic force microscopy |
SEM | Scanning electron microscopy |
XPS | X-ray photoelectron spectroscopy |
References
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018, 16, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017, 12, 2957–2978. [Google Scholar] [CrossRef] [Green Version]
- Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Bhawani, S.A.; Moheman, A. Nanoparticles for drug delivery. In Advanced Structured Materials; Springer: Berlin/Heidelberg, Germany, 2019; Volume 118, pp. 175–197. [Google Scholar]
- Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, W.E.G.; Tolba, E.; Wang, S.; Neufurth, M.; Lieberwirth, I.; Ackermann, M.; Schröder, H.C.; Wang, X. Nanoparticle-directed and ionically forced polyphosphate coacervation: A versatile and reversible core–shell system for drug delivery. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kaloti, M.; Bohidar, H.B. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions. Colloids Surf. B Biointerfaces 2010, 81, 165–173. [Google Scholar] [CrossRef]
- Dutta, L.P.; Das, M. Coacervation—A Method for Drug Delivery; Springer: New Delhi, India, 2015; pp. 379–386. [Google Scholar]
- Blocher McTigue, W.C.; Perry, S.L. Design rules for encapsulating proteins into complex coacervates. Soft Matter 2019, 15, 3089–3103. [Google Scholar] [CrossRef] [Green Version]
- Ortony, J.H.; Choi, S.H.; Spruell, J.M.; Hunt, J.N.; Lynd, N.A.; Krogstad, D.V.; Urban, V.S.; Hawker, C.J.; Kramer, E.J.; Han, S. Fluidity and water in nanoscale domains define coacervate hydrogels. Chem. Sci. 2014, 5, 58–67. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Wang, S.; Ackermann, M.; Gerich, T.; Neufurth, M.; Wiens, M.; Schröder, H.C.; Wang, X. Biologization of Allogeneic Bone Grafts with Polyphosphate: A Route to a Biomimetic Periosteum. Adv. Funct. Mater. 2019, 29, 1905220. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Dubin, P.L. Protein-polyelectrolyte complexes. In Macromolecular Complexes in Chemistry and Biology; Springer: Berlin/Heidelberg, Germany, 1994; pp. 247–271. [Google Scholar]
- Schmitt, C.; Sanchez, C.; Thomas, F.; Hardy, J. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocoll. 1999, 13, 483–496. [Google Scholar] [CrossRef]
- Jin, K.M.; Kim, Y.H. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J. Control. Release 2008, 127, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Qi, A.; Hoo, S.P.; Friend, J.; Yeo, L.; Yue, Z.; Chan, P.P.Y. Hydroxypropyl Cellulose Methacrylate as a Photo-Patternable and Biodegradable Hybrid Paper Substrate for Cell Culture and Other Bioapplications. Adv. Healthc. Mater. 2014, 3, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Weißenborn, E.; Braunschweig, B. Hydroxypropyl cellulose as a green polymer for thermo-responsive aqueous foams. Soft Matter 2019, 15, 2876–2883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Zhao, S.; Jia, X.; Wang, H.; Zhang, H.; Liu, Q.; Kong, B. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels. Food Chem. 2020, 311, 126018. [Google Scholar] [CrossRef]
- Yunus Basha, R.; Venkatachalam, G.; Sampath Kumar, T.S.; Doble, M. Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages. Mater. Sci. Eng. C 2020, 108, 110379. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, K.H.; Lee, H.K.; Kim, J.S.; Kim, Y.G.; Lee, J.H.; Kim, K.H.; Yun, J.; Hwang, B.Y.; Hong, J.T.; et al. Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling. Int. Immunopharmacol. 2016, 39, 71–78. [Google Scholar] [CrossRef]
- Liu, M.; Luo, F.; Ding, C.; Albeituni, S.; Hu, X.; Ma, Y.; Cai, Y.; McNally, L.; Sanders, M.A.; Jain, D.; et al. Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. J. Immunol. 2015, 195, 5055–5065. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Zhu, C.C.; Zhao, G.Q.; Lin, J.; Hu, L.T.; Xu, Q.; Peng, X.D.; Wang, X.; Qiu, S. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells. Int. J. Ophthalmol. 2015, 8, 690–696. [Google Scholar] [CrossRef]
- Scuderi, B.; Driussi, G.B.; Chizzolini, M.; Salvetat, M.L.; Beltrame, G. Effectiveness and tolerance of piroxicam 0.5% and diclofenac sodium 0.1% in controlling inflammation after cataract surgery. Eur. J. Ophthalmol. 2003, 13, 536–540. [Google Scholar] [CrossRef]
- Campione, E.; Paternò, E.J.; Candi, E.; Falconi, M.; Costanza, G.; Diluvio, L.; Terrinoni, A.; Bianchi, L.; Orlandi, A. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors. Drug Des. Devel. Ther. 2015, 9, 5843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.; Arantes-Rodrigues, R.; Pinto-Leite, R.; Faustino-Rocha, A.I.; Fidalgo-Gonçalves, L.; Santos, L.; Oliveira, P.A. Synergistic Effect of Carboplatin and Piroxicam on Two Bladder Cancer Cell Lines. Anticancer Res. 2017, 37, 1737–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suflet, D.M.; Popescu, I.; Pelin, I.M.; Nicolescu, A.; Hitruc, G. Cationic curdlan: Synthesis, characterization and application of quaternary ammonium salts of curdlan. Carbohydr. Polym. 2015, 123, 396–405. [Google Scholar] [CrossRef]
- Nichifor, M.; Stanciu, M.C.; Simionescu, B.C. New cationic hydrophilic and amphiphilic polysaccharides synthesized by one pot procedure. Carbohydr. Polym. 2010, 82, 965–975. [Google Scholar] [CrossRef]
- Cho, J.; Grant, J.; Piquette-Miller, M.; Allen, C. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial. Biomacromolecules 2006, 7, 2845–2855. [Google Scholar] [CrossRef]
- Gieroba, B.; Sroka-Bartnicka, A.; Kazimierczak, P.; Kalisz, G.; Lewalska-Graczyk, A.; Vivcharenko, V.; Nowakowski, R.; Pieta, I.S.; Przekora, A. Spectroscopic studies on the temperature-dependent molecular arrangements in hybrid chitosan/1,3-β-D-glucan polymeric matrices. Int. J. Biol. Macromol. 2020, 159, 911–921. [Google Scholar] [CrossRef]
- Jiang, L. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC. Int. J. Biol. Macromol. 2013, 52, 218–220. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D.; Chichester, W. The Scienta ESCA300 Database; John Wiley & Sons: Hoboken, NJ, USA, 1992; p. 2205. ISBN 0471 935921. [Google Scholar]
- Bielska, D.; Karewicz, A.; Kamiński, K.; Kiełkowicz, I.; Lachowicz, T.; Szczubiałka, K.; Nowakowska, M. Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur. Polym. J. 2013, 49, 2485–2494. [Google Scholar] [CrossRef]
- Kępczyński, M.; Pandian, R.P.; Smith, K.M.; Ehrenberg, B. Do Liposome-binding Constants of Porphyrins Correlate with Their Measured and Predicted Partitioning Between Octanol and Water? Photochem. Photobiol. 2007, 76, 127–134. [Google Scholar] [CrossRef]
- Pitha, J.; Hoshino, T.; Torres-Labandeira, J.; Irie, T. Preparation of drug: Hydroxypropylcyclodextrin complexes by a method using ethanol or aqueous ammonium hydroxide as co-solubilizers. Int. J. Pharm. 1992, 80, 253–258. [Google Scholar] [CrossRef]
- Kobayashi, K.; Sumitomo, H. Binding of Organic Solutes to a Polymer Containing Pendant Sugar Groups. Polym. J. 1981, 13, 517–519. [Google Scholar] [CrossRef] [Green Version]
- Aricov, L.; Angelescu, D.G.; Băran, A.; Leontieş, A.R.; Popa, V.T.; Precupaş, A.; Sandu, R.; Stîngă, G.; Anghel, D.-F. Interaction of piroxicam with bovine serum albumin investigated by spectroscopic, calorimetric and computational molecular methods. J. Biomol. Struct. Dyn. 2019, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bobokalonov, D.T.; Mukhidinov, Z.K.; Rakhimov, I.F.; Khodzhaeva, F.M.; Kasymova, G.F.; Liu, L.S. Piroxicam ex vivo release kinetics from zein/pectin delivery systems. Pharm. Chem. J. 2012, 46, 378–380. [Google Scholar] [CrossRef]
- Paul, D.R. Elaborations on the Higuchi model for drug delivery. Int. J. Pharm. 2011, 418, 13–17. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Karewicz, A.; Zasada, K.; Szczubiałka, K.; Zapotoczny, S.; Lach, R.; Nowakowska, M. “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int. J. Pharm. 2010, 385, 163–169. [Google Scholar] [CrossRef]
- Monnery, B.D.; Wright, M.; Cavill, R.; Hoogenboom, R.; Shaunak, S.; Steinke, J.H.G.; Thanou, M. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int. J. Pharm. 2017, 521, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Karewicz, A.; Bielska, D.; Loboda, A.; Gzyl-Malcher, B.; Bednar, J.; Jozkowicz, A.; Dulak, J.; Nowakowska, M. Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids Surf. B Biointerfaces 2013, 109, 307–316. [Google Scholar] [CrossRef]
- Karewicz, A.; Bielska, D.; Gzyl-Malcher, B.; Kepczynski, M.; Lach, R.; Nowakowska, M. Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf. B Biointerfaces 2011, 88, 231–239. [Google Scholar] [CrossRef]
- Lachowicz, D.; Mielczarek, P.; Wirecka, R.; Berent, K.; Karewicz, A.; Szuwarzyński, M.; Zapotoczny, S. Nanohydrogels Based on Self-Assembly of Cationic Pullulan and Anionic Dextran Derivatives for Efficient Delivery of Piroxicam. Pharmaceutics 2019, 11, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, S.; Avinash Chunduri, L.A.; Sai Akilesh, M.; Srimadh Bhagavatham, S.; Kamisetti, V. Enhanced dissolution characteristics of piroxicam-Soluplus® nanosuspensions. J. Exp. Nanosci. 2016, 11, 916–929. [Google Scholar] [CrossRef] [Green Version]
- Ustün Alkan, F.; Ustüner, O.; Bakırel, T.; Erten, G.; Deniz, G. The Effects of Piroxicam and Deracoxib on Canine Mammary Tumour Cell Line. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C-CUR: A-HPC (w/w) | dz (nm) | PDI | ζ (mV) |
---|---|---|---|
1:1 | 908 ± 54 | 0.751 | 13.6 ± 0.5 |
1:2 | 856 ± 160 | 0.859 | 15.7 ± 0.8 |
1:3 | 519 ± 89 | 0.652 | 11.2 ± 0.6 |
1:4 | 351 ± 30 | 0.860 | 14.7 ± 1.5 |
1:5 | 909 ± 54 | 0.751 | 13.6 ± 0.5 |
1:10 | 421 ± 10 | 0.793 | 6.2 ± 0.9 |
1:14 | 405 ± 84 | 0.572 | −0.1 ± 0.3 |
1:20 | 315 ± 2 | 0.223 | −1.0 ± 0.3 |
1:25 | 293 ± 1 | 0.197 | −3.1 ± 0.4 |
1:30 | 260 ± 3 | 0.260 | −4.2 ± 0.4 |
Polymeric System | LCST (L)/UCST (U) (°C) |
---|---|
HPC | 43 (L) |
A-HPC | 43 (L) |
CUR | 47 (U) |
C-CUR | not observed |
C-CUR/A-HPC (1:25) | 41 (L) |
Temperature (°C) | dz (nm) | PDI |
---|---|---|
21 | 265 ± 2 | 0.234 |
24 | 256 ± 1 | 0.218 |
25 | 268 ± 2 | 0.195 |
27 | 256 ± 1 | 0.207 |
30 | 254 ± 1 | 0.218 |
33 | 254 ± 1 | 0.192 |
36 | 249 ± 3 | 0.194 |
39 | 239 ± 2 | 0.192 |
42 | 269 ± 1 | 0.184 |
45 | 401 ± 12 | 0.114 |
46 | 861 ± 31 | 0.259 |
Model | 25 °C | 37 °C | 45 °C |
---|---|---|---|
Higuchi | |||
kH | 27.3 ± 1.43 | 22.1 ± 2.76 | 57.3 ± 2.57 |
R2 | 0.9306 | 0.9411 | 0.9534 |
Peppas | |||
a | 21.4 ± 1.67 | 57.3 ± 2.33 | 53.3 ± 3.02 |
n | 0.594 ± 0.097 | 0.304 ± 0.031 | 0.427 ± 0.048 |
R2 | 0.8991 | 0.9377 | 0.9302 |
Weibull | |||
a | 44.1 ± 13.29 | 88.7 ± 1.27 | 97.4 ± 10.87 |
b | 0.99 ± 0.335 | 0.94 ± 0.061 | 0.90 ± 0.153 |
K | 0.72 ± 0.443 | 0.99 ± 0.034 | 0.96 ± 0.25 |
R2 | 0.9399 | 0.9985 | 0.9819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, D.; Kaczyńska, A.; Bodzon-Kulakowska, A.; Karewicz, A.; Wirecka, R.; Szuwarzyński, M.; Zapotoczny, S. Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam. Int. J. Mol. Sci. 2020, 21, 9664. https://doi.org/10.3390/ijms21249664
Lachowicz D, Kaczyńska A, Bodzon-Kulakowska A, Karewicz A, Wirecka R, Szuwarzyński M, Zapotoczny S. Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam. International Journal of Molecular Sciences. 2020; 21(24):9664. https://doi.org/10.3390/ijms21249664
Chicago/Turabian StyleLachowicz, Dorota, Agnieszka Kaczyńska, Anna Bodzon-Kulakowska, Anna Karewicz, Roma Wirecka, Michał Szuwarzyński, and Szczepan Zapotoczny. 2020. "Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam" International Journal of Molecular Sciences 21, no. 24: 9664. https://doi.org/10.3390/ijms21249664
APA StyleLachowicz, D., Kaczyńska, A., Bodzon-Kulakowska, A., Karewicz, A., Wirecka, R., Szuwarzyński, M., & Zapotoczny, S. (2020). Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam. International Journal of Molecular Sciences, 21(24), 9664. https://doi.org/10.3390/ijms21249664