Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. HDL Lipidome Identification
2.3. T2DM vs. Control Model
3. Materials and Methods
3.1. Subjects
3.2. Sample Collection
3.3. Biochemical Parameters
3.4. Isolation and lipid extraction of HDL lipoproteins
3.5. 1H NMR spectroscopy
3.6. Statistical analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AA | Arachidonic Acid |
DAGPLs | Diacyl Glycerophospholipids |
DHA | Docosahexaenoic Acid |
EC | Esterified Cholesterol |
EPA | Eicosapentaenoic Acid |
FA | Fatty acids |
FC | Free Cholesterol |
GPLs | Glycerophospholipids |
LA | Linoleic Acid |
LysoPC | Lysophsphatidylcholine |
MUFA | Monounsaturated Fatty Acids |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
PI | Phosphatidylinositol |
PLA | Plasmalogens |
Pls | Phospholipids |
PS | Phosphatidylserine |
PUFA | Polyunsaturated Fatty Acids |
SFA | Saturated Fatty Acids |
SLs | Sphingolipids |
SM | Sphingomyelin |
TC | Total Cholesterol |
TG | Triglycerides |
UFA | Unsaturated Fatty Acids |
ω-3 FA | Total Omega-3 Fatty Acids |
References
- Haffner, S.M.; Lehto, S.; Ronnemaa, T.; Pyorala, K.; Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Bulugahapitiya, U.; Siyambalapitiya, S.; Sithole, J.; Idris, I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabetes Med. 2009, 26, 142–148. [Google Scholar] [PubMed]
- Stamler, J.; Vaccaro, O.; Neaton, J.D.; Wentworth, D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993, 16, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.C.; Millns, H.; Neil, H.A.W.; Stratton, I.M.; Manley, S.E.; Matthews, D.R.; Holman, R.R. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998, 316, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollenweider, P.; von Eckardstein, A.; Widmann, C. HDLs, diabetes, and metabolic syndrome. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2015; Volume 224, pp. 405–421. [Google Scholar]
- Steiner, G. The dyslipoproteinemias of diabetes. Atherosclerosis 1994, 110, S27–S33. [Google Scholar] [CrossRef]
- Karathanasis, S.K.; Freeman, L.A.; Gordon, S.M.; Remaley, A.T. The Changing Face of HDL and the Best Way to Measure It. Clin. Chem. 2017, 63, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Niisuke, K.; Horvath, K.V.; Asztalos, B.F. Where next with HDL assays? Curr. Opin. Lipidol. 2018, 29, 293–298. [Google Scholar] [CrossRef]
- Cardner, M.; Yalcinkaya, M.; Goetze, S.; Luca, E.; Balaz, M.; Hunjadi, M.; Hartung, J.; Shemet, A.; Kränkel, N.; Radosavljevic, S.; et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020, 5, e131491. [Google Scholar] [CrossRef] [Green Version]
- von Eckardstein, A.; Rohrer, L. HDLs in crises. Curr. Opin. Lipidol. 2016, 27, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Hui, N.; Barter, P.J.; Ong, K.L.; Rye, K.A. Altered HDL metabolism in metabolic disorders: Insights into the therapeutic potential of HDL. Clin. Sci. 2019, 133, 2221–2235. [Google Scholar] [CrossRef]
- Kontush, A.; Lhomme, M.; Chapman, M.J. Unraveling the complexities of the HDL lipidome. J. Lipid Res. 2013, 54, 2950–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current state of the art in a fast moving field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Rexrode, K.M. A Review of Lipidomics of Cardiovascular Disease Highlights the Importance of Isolating Lipoproteins. Metabolites 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Vosegaard, T.; Guo, Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog. Lipid Res. 2017, 68, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Kostara, C.E.; Bairaktari, E.T. Lipid profiling in health and disease. In Methodologies for Metabolomics: Experimental Strategies and Techniques; Lutz, N., Sweedler, J., Wevers, R.A., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 317–332. [Google Scholar]
- Markley, J.L.; Bruschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Heinecke, J.W.; Bornfeldt, K.E. A Long Road Ahead for Discovering New HDL Metrics That Reflect Cardiovascular Disease Risk. J. Am. Coll. Cardiol. 2017, 70, 179–181. [Google Scholar] [CrossRef]
- Asztalos, B.F.; Niisuke, K.; Horvath, K.V. High-density lipoprotein: Our elusive friend. Curr. Opin. Lipidol. 2019, 30, 314–319. [Google Scholar]
- Tognarelli, J.M.; Dawood, M.; Shariff, M.I.; Grover, V.P.; Crossey, M.M.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J. Clin. Exp. Hepatol. 2015, 5, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Otvos, J.D.; Collins, D.; Freedman, D.S.; Shalaurova, I.; Schaefer, E.J.; McNamara, J.R.; Bloomfield, H.E.; Robins, S.J. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006, 113, 1556–1563. [Google Scholar] [CrossRef]
- Ala-Korpela, M.; Lankinen, N.; Salminen, A.; Suna, T.; Soininen, P.; Laatikainen, R.; Ingman, P.; Jauhiainen, M.; Taskinen, M.R.; Héberger, K.; et al. The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent. Atherosclerosis 2007, 190, 352–358. [Google Scholar] [CrossRef]
- Grootveld, M.; Percival, B.; Gibson, M.; Osman, Y.; Edgar, M.; Molinari, M.; Mather, M.L.; Casanova, F.; Wilson, P.B. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Anal. Chim. Acta 2019, 1067, 11–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, M.J.; Le Goff, W.; Guerin, M.; Kontush, A. Cholesteryl ester transfer protein: At the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur. Heart J. 2010, 31, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarche, B.; Rashid, S.; Lewis, G.F. HDL metabolism in hypertriglyceridemic states: An overview. Clin. Chim. Acta 1999, 286, 145–161. [Google Scholar]
- Sparks, D.L.; Davidson, W.S.; Lund-Katz, S.; Phillips, M.C. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J. Biol. Chem. 1995, 270, 26910–26917. [Google Scholar] [CrossRef] [Green Version]
- Curtiss, L.K.; Bonnet, D.J.; Rye, K.A. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: A surface plasmon resonance study. Biochemistry 2000, 39, 5712–5721. [Google Scholar] [CrossRef]
- Skeggs, J.W.; Morton, R.E. LDL and HDL enriched in triglyceride promote abnormal cholesterol transport. J. Lipid Res. 2002, 43, 1264–1274. [Google Scholar] [CrossRef]
- Fournier, N.; Francone, O.; Rothblat, G.; Goudouneche, D.; Cambillau, M.; Kellner-Weibel, G.; Robinet, P.; Royer, L.; Moatti, N.; Simon, A.; et al. Enhanced efflux of cholesterol from ABCA1-expressing macrophages to serum from type IV hypertriglyceridemic subjects. Atherosclerosis 2003, 171, 287–293. [Google Scholar] [CrossRef]
- Yassine, H.N.; Belopolskaya, A.; Schall, C.; Stump, C.S.; Lau, S.S.; Reaven, P.D. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes. Metabolism 2014, 63, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, B.F.; Horvath, K.V.; Mehan, M.; Yokota, Y.; Schaefer, E.J. Influence of HDL particles on cell-cholesterol efflux under various pathological conditions. J. Lipid Res. 2017, 58, 1238–1246. [Google Scholar] [CrossRef] [Green Version]
- Greene, D.J.; Skeggs, J.W.; Morton, R.E. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). J. Biol. Chem. 2001, 276, 4804–4811. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A.; Therond, P.; Zerrad, A.; Couturier, M.; Négre-Salvayre, A.; de Souza, J.A.; Chantepie, S.; Chapman, M.J. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: Relevance to antiapoptotic and antioxidative activities. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Zerrad-Saadi, A.; Therond, P.; Chantepie, S.; Couturier, M.; Rye, K.A.; Chapman, M.J.; Kontush, A. HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: Relevance to inflammation and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 2169–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, W.S.; Gillotte, K.L.; Lund-Katz, S.; Johnson, W.J.; Rothblat, G.H.; Phillips, M.C. The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. J. Biol. Chem. 1995, 270, 5882–5890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancey, P.G.; Kawashiri, M.A.; Moore, R.; Glick, J.M.; Williams, D.L.; Connelly, M.A.; Rader, D.J.; Rothblat, G.H. In vivo modulation of HDL phospholipid has opposing effects on SR-BI- and ABCA1-mediated cholesterol efflux. J. Lipid Res. 2004, 45, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancey, P.G.; de la Llera-Moya, M.; Swarnakar, S.; Monzo, P.; Klein, S.M.; Connelly, M.A.; Johnson, W.J.; Williams, D.L.; Rothblat, G.H. High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J. Biol. Chem. 2000, 275, 36596–36604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, P.W.; Rye, K.A.; Gamble, J.R.; Vadas, M.A.; Barter, P.J. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J. Lipid Res. 2000, 41, 1261–1267. [Google Scholar] [PubMed]
- Martinez-Beamonte, R.; Lou-Bonafonte, J.M.; Martinez-Gracia, M.V.; Osada, J. Sphingomyelin in high-density lipoproteins: Structural role and biological function. Int. J. Mol. Sci. 2013, 14, 7716–7741. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, G.; Ruebsaamen, K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2010, 208, 10–18. [Google Scholar] [CrossRef]
- Schwendeman, A.; Sviridov, D.O.; Yuan, W.; Guo, Y.; Morin, E.E.; Yuan, Y.; Stonik, J.; Freeman, L.; Ossoli, A.; Thacker, S.; et al. The effect of phospholipid composition of reconstituted HDL on its cholesterol efflux and anti-inflammatory properties. J. Lipid Res. 2015, 56, 1727–1737. [Google Scholar] [CrossRef] [Green Version]
- Rached, F.; Lhomme, M.; Camont, L.; Gomes, F.; Dauteuille, C.; Robillard, P.; Santos, R.D.; Lesnik, P.; Serrano, C.V., Jr.; Chapman, M.J.; et al. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim. Biophys. Acta 2015, 1851, 1254–1261. [Google Scholar] [CrossRef]
- Harvey, K.A.; Walker, C.L.; Pavlina, T.M.; Xu, Z.; Zaloga, G.P.; Siddiqui, R.A. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin. Nutr. 2010, 29, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Ramirez, R.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Perez-Martinez, P.; Carracedo, J.; Garcia-Rios, A.; Rodriguez, F.; Gutierrez-Mariscal, F.M.; Gomez, P.; et al. Mediterranean diet reduces endothelial damage and improves the regenerative capacity of endothelium. Am. J. Clin. Nutr. 2011, 93, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Lundman, P.; Harmer, J.A.; Cutri, B.; Griffiths, K.A.; Rye, K.A.; Barter, P.J.; Celermajer, D.S. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol. 2006, 48, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. A defect in Delta6 and Delta5 desaturases may be a factor in the initiation and progression of insulin resistance, the metabolic syndrome and ischemic heart disease in South Asians. Lipids Health Dis. 2010, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroger, J.; Schulze, M.B. Recent insights into the relation of Delta5 desaturase and Delta6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012, 23, 4–10. [Google Scholar] [CrossRef]
- Dullaart, R.P.; Annema, W.; Tio, R.A.; Tietge, U.J. The HDL anti-inflammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol. Clin. Chim. Acta 2014, 433, 34–38. [Google Scholar] [CrossRef]
- Garcia, C.; Montee, N.; Faccini, J.; Series, J.; Meilhac, O.; Cantero, A.V.; Le Faouder, P.; Elbaz, M.; Payrastre, B.; Vindis, C. Acute coronary syndrome remodels the antiplatelet aggregation properties of HDL particle subclasses. J. Thromb. Haemost. 2018, 16, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Roffi, M.; Patrono, C.; Collet, J.P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 267–315. [Google Scholar]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41 (Suppl. S1), S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
Controls | Patients with T2DM | Patients with CHD | |
---|---|---|---|
n | 30 | 25 | 25 |
Age (years) | 61.3 ± 7.7 | 63.3 ± 9.2 | 66.2 ± 10.8 |
Gender (M/F) | 17/13 | 15/10 | 20/5 |
Hypertension (n) | 6 | 11 | 15 |
Body Mass Index (Kg/m2) | 26.5 ± 1.2 | 27.2 ± 2.1 | 26.2 ± 4.2 |
Current Smokers (n) | 6 | 6 | 11 |
Metabolic syndrome (n) | 7 | 23 § | 16 § # |
Number of metabolic syndrome criteria (n) | 2.1 ± 0.9 | 3.1 ± 0.5 † | 3 ± 1.1 † |
Family history of premature CVD (n) | 2 | 1 | 7 |
Total cholesterol (mg/dL) | 192.4 ± 41.6 | 215.0 ± 45.0 | 189.7 ± 34.3 |
Triglycerides (mg/dL) | 114.7 ± 40.9 | 122.2 ± 43.5 | 137.8 ± 45.7 |
HDL-Cholesterol (mg/dL) | 44.9 ± 9.3 | 48.4 ± 10.0 | 42.8 ± 6.6 |
LDL-Cholesterol (mg/dL) | 124.5 ± 35.3 | 142.1 ± 40.0 | 119.3 ± 29.1 |
non-HDL-Cholesterol (mg/dL) | 147.5 ± 38.9 | 166.6 ± 38.6 | 146.9 ± 32.3 |
Apolipoprotein AI (mg/dL) | 131.1 ± 23.5 | 136.5 ± 21.0 | 121.5 ± 21.5 |
Apolipoprotein B (mg/dL) | 91.0 ± 23.4 | 99.5 ± 20.9 | 91.4 ± 24.3 |
Fasting glucose (mg/dL) | 93.9 ± 8.7 | 151.8 ± 25.4 * | 99.4 ± 11.9 |
HbA1c (%) | 4.7 ± 0.6 | 7.3 ± 0.5 * | 5.0 ± 0.4 |
T2DM vs. Controls | CHD vs. T2DM | CHD vs. Controls | ||||
---|---|---|---|---|---|---|
Lipid Constituent | change | Coef | change | Coef | change | Coef |
Structural Components | ||||||
EC | ↓ | 13.52 | ↓ | 12.56 | ↓ | 33.57 |
FC | ↑ | 6.35 | ↓ | 15.88 | ↓ | 10.01 |
TG | ↑ | 2.11 | ↑ | 3.36 | ↑ | 6.81 |
PLs | ↓ | 3.03 | ↓ | 0.40 | ↓ | 1.91 |
PC | ↓ | 28.16 | ↓ | 8.52 | ↓ | 36.55 |
SM | ↓ | 20.40 | ↓ | 11.94 | ↓ | 47.09 |
LysoPC | ↑ | 11.66 | ↑ | 23.58 | ↑ | 37.41 |
PE | ↑ | 0.80 | ↓ | 0.40 | ↓ | 0.40 |
Plasmalogen | ↓ | 0.70 | ↑ | 0.10 | ↓ | 0.20 |
Qualitative Features of Fatty Acids | ||||||
SFA | ↑ | 26.40 | ↑ | 38.54 | ↑ | 41.04 |
UFA | ↓ | 17.41 | ↓ | 3.90 | ↓ | 15.54 |
PUFA | ↓ | 2.66 | ↓ | 1.43 | ↓ | 5.02 |
ω-3 FA | ↓ | 2.88 | ↓ | 2.49 | ↓ | 4.18 |
LA | ↑ | 2.38 | ↑ | 1.85 | ↓ | 4.40 |
EPA + AA | ↓ | 2.02 | ↓ | 0.16 | ↓ | 2.13 |
DHA | ↓ | 0.66 | ↑ | 1.50 | ↑ | 2.15 |
Controls | T2DM | CHD | |
---|---|---|---|
% Lipid Constituent a | mean ± SD | ||
Structural Components | |||
% TC | 41.05 ± 2.38 | 38.77 ± 3.32 ** | 36.35 ± 2.45 **++ |
% EC | 31.99 ± 2.11 | 29.16 ± 3.39 ** | 27.74 ± 3.11 ** |
% FC | 9.06 ± 1.11 | 9.61 ± 1.56 | 8.61 ± 1.61 + |
% TG | 9.00 ± 1.27 | 13.34 ± 5.05 ** | 15.16 ± 5.63 ** |
% PLs | 49.94 ± 2.44 | 47.89 ± 3.51 * | 48.49 ± 4.30 |
% PC | 32.55 ± 2.45 | 29.52 ± 4.49 ** | 28.84 ± 5.10 **+ |
% SM | 7.71 ± 1.10 | 6.73 ± 1.31 ** | 6.69 ± 1.15 ** |
% LysoPC | 1.94 ± 0.53 | 3.75 ± 1.56 ** | 4.13 ± 1.50 ** |
% PE | 1.44 ± 0.59 | 0.95 ± 0.30 ** | 0.76 ± 0.17 ** |
% PI+PS | 4.68 ± 3.52 | 5.72 ± 3.26 | 4.79 ± 2.45 |
% Plasmalogens | 1.62 ± 0.34 | 1.22 ± 0.36 ** | 1.28 ± 0.47 ** |
% Core | 40.99 ± 2.40 | 42.50 ± 3.56 | 42.90 ± 4.05 |
% Surface | 59.01 ± 2.40 | 57.50 ± 3.56 | 57.10 ± 4.05 |
Ratio PC/SM | 4.31 ± 0.77 | 4.54 ± 1.04 | 4.71 ± 1.02 |
Ratio EC/FC | 3.58 ± 0.47 | 3.12 ± 0.62 * | 3.39 ± 1.00 |
Ratio FC/PLs | 0.18 ± 0.03 | 0.20 ± 0.04 * | 0.18 ± 0.04 |
Ratio FC/PC | 0.28 ± 0.04 | 0.33 ± 0.07 ** | 0.29 ± 0.09 |
Ratio FC/SM | 1.19 ± 0.19 | 1.48 ± 0.42 ** | 1.34 ± 0.42 |
Qualitative Features of Fatty Acids | |||
% SFA | 39.83 ± 4.10 | 41.39 ± 4.96 * | 49.14 ± 7.26 **++ |
% UFA | 60.17 ± 4.10 | 59.61 ± 4.96 | 50.86 ± 7.26 **++ |
% MUFA | 14.85 ± 6.35 | 13.19 ± 6.63 | 9.39 ± 5.02 **+ |
% PUFA | 45.32 ± 6.32 | 43.42 ± 3.84 * | 41.47 ± 7.39 *+ |
% LA | 20.83 ± 3.05 | 19.76 ± 3.43 * | 17.54 ± 3.31 **++ |
% EPA + AA | 12.47 ± 2.33 | 12.28 ± 4.16 | 12.38 ± 2.13 |
% DHA | 3.90 ± 0.80 | 3.95 ± 0.80 | 3.83 ± 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostara, C.E.; Ferrannini, E.; Bairaktari, E.T.; Papathanasiou, A.; Elisaf, M.; Tsimihodimos, V. Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes. Int. J. Mol. Sci. 2020, 21, 8835. https://doi.org/10.3390/ijms21228835
Kostara CE, Ferrannini E, Bairaktari ET, Papathanasiou A, Elisaf M, Tsimihodimos V. Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes. International Journal of Molecular Sciences. 2020; 21(22):8835. https://doi.org/10.3390/ijms21228835
Chicago/Turabian StyleKostara, Christina E., Eleuterio Ferrannini, Eleni T. Bairaktari, Athanasios Papathanasiou, Moses Elisaf, and Vasilis Tsimihodimos. 2020. "Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes" International Journal of Molecular Sciences 21, no. 22: 8835. https://doi.org/10.3390/ijms21228835