Characterization of Mesenchymal Stem Cell Differentiation within Miniaturized 3D Scaffolds through Advanced Microscopy Techniques
Abstract
:1. Introduction
1.1. Mechano-Regulation of Stem Cells In Vitro by Means of Three-Dimensional Culture Systems
1.2. Non-Invasive Label-Free Microscopy Techniques for Stem Cell Characterization
2. Results
2.1. Characterization of MSCs Differentiation: F-Actin Organization and Nuclear Shape
2.2. MSCs Differentiation towards Adipogenic Lineage
2.3. MSCs Chondrogenesis and Collagen Synthesis inside Nichoids
3. Discussion
3.1. Characterization of MSCs Differentiation
3.2. MSCs Differentiation towards Adipogenic Lineage
3.3. MSCs Chondrogenesis and Collagen Synthesis inside Nichoids
4. Materials and Methods
4.1. Microfabrication of Nichoids
4.2. Cell Culture and Differentiation
4.3. Oil Red-O Assay
4.4. Vital Fluorescence Staining for Adipogenic Differentiation
4.5. CARS Lipid Imaging and Analysis
4.6. Immunofluorescence
4.7. Fluorescence Images Analysis
- Characterization of the nuclear shapes. Three images per sample type i.e., adipogenic and chondrogenic differentiation and control cells grown with basal medium respectively in Nichoid and in flat control, were analyzed to extract data on nuclear morphology. The count of the nuclei was obtained by manually drawing a polygonal ROI for each of the nuclei of each image and, to avoid errors, a single stack analysis was perform to separate overlapped nuclei and to better exclude the autofluorescent signal from the scaffold. Considering ten nuclei per image in randomized positions the mean area, the vertical (c), the major (a) and minor (b) semi-axes, the Feret diameter and the nuclear aspect ratio were measured through the Measure tool of Fiji-ImageJ. To calculate the maximum projected area of nuclei per sample type, the mean value among each population was calculated with the relative standard deviation. The nuclear volume was calculated for each nucleus considering the formula of the ellipsoid volume (1).V = 4 ÷ 3∙ π∙ a ∙ b ∙ c
- Lipid vesicle size and distribution during adipogenic differentiation. To quantify the amount and the size of lipid droplets produced during each time point in both culture conditions, three images per sample were analyzed. Droplets stained with DiO were manually drawn by a circular ROI and extracting the area through the Measure tool of Fiji-ImageJ. Hence, the number of droplets was obtained counting the number of areas drawn and to quantify the total area of lipids, the sum of the areas of single droplets was provided per each image. Then, nuclei stained with Hoechst 33342 were manually counted on single stack of images both on 2D and in Nichoids, to estimate the distribution of droplets per nuclei.
4.8. SHG Collagen Imaging and Quantification
4.9. Nonlinear Optical Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Bi-dimensional |
3D | Three-dimensional |
BSA | Bovine serum albumin |
CARS | Coherent anti-Stokes Raman scattering |
DMEM | Dulbecco’s modified essential medium |
FITC | Fluorescein isothiocyanate |
LPL | Lipoprotein lipase |
MSC | Mesenchymal stem cell |
NLO | Nonlinear optical |
PBS | Phosphate buffered solution |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
ROI | Region of interest |
SHG | Second harmonic generation |
SRS | Stimulated Raman scattering |
SZ2080 | Silicon-zirconium-20%-80% |
TPEF | Two-photon excited fluorescence |
UV | Ultraviolet |
References
- Glenn, J.D. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells 2014, 6, 526. [Google Scholar] [CrossRef]
- Fitzsimmons, R.E.B.; Mazurek, M.S.; Soos, A.; Simmons, E.C.A. Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells Int. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Scadden, D.T. The stem-cell niche as an entity of action. Nature 2006, 441, 1075–1079. [Google Scholar] [CrossRef]
- Li, L.; Xie, T. STEM CELL NICHE: Structure and Function. Annu. Rev. Cell Dev. Biol. 2005, 21, 605–631. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Yong, J.; Sun, X.; Wang, C.; Yang, W.; Zhang, P.; Zhu, J.; Shi, C.; Ding, M.; Deng, H. A human endothelial cell feeder system that efficiently supports the undifferentiated growth of mouse embryonic stem cells. Differentiation 2008, 76, 923–930. [Google Scholar] [CrossRef]
- Yue, X.; Wu, L.; Hu, W. The Regulation of Leukemia Inhibitory Factor. Cancer Cell Microenviron. 2015, 2, 1–5. [Google Scholar] [CrossRef]
- Arezoumand, K.S.; Alizadeh, E.; Pilehvar-Soltanahmadi, Y.; Esmaeillou, M.; Zarghami, N. An overview on different strategies for the stemness maintenance of MSCs. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1255–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moeendarbary, E.; Harris, A.R. Cell mechanics: Principles, practices, and prospects: Cell mechanics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2014, 6, 371–388. [Google Scholar] [CrossRef]
- Schwartz, M.A.; DeSimone, D.W. Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 2008, 20, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, B.K.K.; Wong, S.T.; Lim, C.K.; Kung, T.Y.; Yap, C.H.; Ramagopal, Y.; Romer, L.H.; Yim, E.K. Nanotopography Modulates Mechanotransduction of Stem Cells and Induces Differentiation through Focal Adhesion Kinase. ACS Nano 2013, 7, 4785–4798. [Google Scholar] [CrossRef] [PubMed]
- Gautrot, J.E.; Malmström, J.; Sundh, M.; Margadant, C.; Sonnenberg, A.; Sutherland, D.S. The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechanotransduction. Nano Lett. 2014, 14, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Holle, A.W.; Tang, X.; Vijayraghavan, D.; Vincent, L.G.; Fuhrmann, A.; Choi, Y.S.; del Álamo, J.C.; Engler, A.J. In situ mechanotransduction via vinculin regulates stem cell differentiation: Stem Cell Mechanotransduction. Stem Cells 2013, 31, 2467–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaalouk, D.E.; Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 2009, 10, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Kilian, K.A.; Bugarija, B.; Lahn, B.T.; Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4872–4877. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Han, J.; Zhao, Y.; Cui, Y.; Wang, B.; Xiao, Z.; Chen, B.; Dai, J. The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 2014, 35, 7724–7733. [Google Scholar] [CrossRef]
- Bao, M.; Xie, J.; Huck, W.T.S. Recent Advances in Engineering the Stem Cell Microniche in 3D. Adv. Sci. 2018, 5, 1800448. [Google Scholar] [CrossRef]
- Bao, M.; Xie, J.; Katoele, N.; Hu, X.; Wang, B.; Piruska, A.; Huck, W.T. Cellular Volume and Matrix Stiffness Direct Stem Cell Behavior in a 3D Microniche. ACS Appl. Mater. Interfaces 2019, 11, 1754–1759. [Google Scholar] [CrossRef] [Green Version]
- Denk, W. Two-photon excitation in functional biological imaging. J. Biomed. Opt. 1996, 1, 296. [Google Scholar] [CrossRef]
- Campagnola, P.J.; Clark, H.A.; Mohler, W.A.; Lewis, A.; Loew, L.M. Second-harmonic imaging microscopy of living cells. J. Biomed. Opt. 2001, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-X.; Xie, X.S. Green’s function formulation for third-harmonic generation microscopy. J. Opt. Soc. Am. B 2002, 19, 1604. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-X.; Xie, X.S. Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. J. Phys. Chem. B 2004, 108, 827–840. [Google Scholar] [CrossRef]
- Polli, D.; Kumar, V.; Valensise, C.M.; Marangoni, M.; Cerullo, G. Broadband Coherent Raman Scattering Microscopy. Laser Photonics Rev. 2018, 12, 1800020. [Google Scholar] [CrossRef] [Green Version]
- Parodi, V.; Jacchetti, E.; Osellame, R.; Cerullo, G.; Polli, D.; Raimondi, M.T. Nonlinear optical microscopy: From fundamentals to applications in live bioimaging. Front. Bioeng. Biotechnol. 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Lee, Y.J.; Vega, S.L.; Patel, P.J.; Aamer, K.A.; Moghe, P.V.; Cicerone, M.T. Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy. Tissue Eng. Part C Methods 2014, 20, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Mortati, L.; Divieto, C.; Sassi, M.P. CARS and SHG microscopy to follow collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin hydrogel 3D cultures: CARS and SHG microscopy to follow collagen production in living hCFs and hMSCs fibrin hydrogel 3D cultures. J. Raman Spectrosc. 2012, 43, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Teng, S.W.; Chen, H.C.; Lo, W.; Sun, Y.; Lin, T.Y.; Chiou, L.L.; Jiang, C.C.; Dong, C.Y. Imaging Human Bone Marrow Stem Cell Morphogenesis in Polyglycolic Acid Scaffold by Multiphoton Microscopy. Tissue Eng. 2006, 12, 2835–2841. [Google Scholar] [CrossRef]
- Raimondi, M.T.; Nava, M.M.; Eaton, S.M.; Bernasconi, A.; Vishnubhatla, K.C.; Cerullo, G.; Osellame, R. Optimization of Femtosecond Laser Polymerized Structural Niches to Control Mesenchymal Stromal Cell Fate in Culture. Micromachines 2014, 5, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, M.T.; Eaton, S.M.; Laganà, M.; Aprile, V.; Nava, M.M.; Cerullo, G.; Osellame, R. Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater. 2013, 9, 4579–4584. [Google Scholar] [CrossRef]
- Nava, M.M.; Piuma, A.; Figliuzzi, M.; Cattaneo, I.; Bonandrini, B.; Zandrini, T.; Cerullo, G.; Osellame, R.; Remuzzi, A.; Raimondi, M.T. Two-photon polymerized “nichoid” substrates maintain function of pluripotent stem cells when expanded under feeder-free conditions. Stem Cell Res. Ther. 2016, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Remuzzi, A.; Bonandrini, B.; Tironi, M.; Longaretti, L.; Figliuzzi, M.; Conti, S.; Zandrini, T.; Osellame, R.; Cerullo, G.; Raimondi, M.T. Effect of the 3D Artificial Nichoid on the Morphology and Mechanobiological Response of Mesenchymal Stem Cells Cultured In Vitro. Cells 2020, 9, 1873. [Google Scholar] [CrossRef] [PubMed]
- Rey, F.; Pandini, C.; Barzaghini, B.; Messa, L.; Giallongo, T.; Pansarasa, O.; Gagliardi, S.; Brilli, M.; Zuccotti, G.V.; Cereda, C.; et al. Dissecting the effect of a 3D microscaffold on the transcriptome of neural stem cells with computational approaches: A focus on mechanotransduction. Int. J. Mol. Sci. 2020, 21, 6775. [Google Scholar] [CrossRef] [PubMed]
- Stephana, C.; Toniella, G.; Federica, R.; Barzaghini, B.; Zandrini, T.; Pulcinelli, A.D.; Nardomarino, R.; Cerullo, G.N.; Osellame, R.; Cristina, C.; et al. Neural precursors cells expanded in a 3D micro-engineered niche present enhanced therapeutic efficacy in vivo. Nanother 2021, 5, 8–26. [Google Scholar] [CrossRef]
- Crisafi, F.; Kumar, V.; Perri, A.; Marangoni, M.; Cerullo, G.; Polli, D. Multimodal nonlinear microscope based on a compact fiber-format laser source. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Schwarzbauer, J.E. Fibronectin and stem cell differentiation—Lessons from chondrogenesis. J. Cell Sci. 2012, 125, 3703–3712. [Google Scholar] [CrossRef] [Green Version]
- Saidova, A.A.; Vorobjev, I.A. Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. Tissue Eng. Part B Rev. 2020, 26, 13–25. [Google Scholar] [CrossRef]
- Solchaga, L.A.; Penick, K.J.; Welter, J.F. Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Tips and Tricks. Methods Mol. Biol. 2011, 698, 253–278. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.U.; Qu, R.; Fan, T.; Ouyang, J.; Dai, J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 283. [Google Scholar] [CrossRef]
- Stachecka, J.; Walczak, A.; Kociucka, B.; Ruszczycki, B.; Wilczyński, G.; Szczerbal, I. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes. Histochem. Cell Biol. 2018, 149, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hu, H.; Qiu, W.; Shi, K.; Kassem, M. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells. Stem Cell Res. 2018, 29, 76–83. [Google Scholar] [CrossRef]
- Eyckmans, J.; Lin, G.L.; Chen, C.S. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells. Biol. Open 2012, 1, 1058–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seda Tıǧlı, R.; Ghosh, S.; Laha, M.M.; Shevde, N.K.; Daheron, L.; Gimble, J.; Gümüşderelioǧlu, M.; Kaplan, D.L. Comparative chondrogenesis of human cell sources in 3D scaffolds. J. Tissue Eng. Regen. Med. 2009, 3, 348–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isomäki, A.; Sillat, T.; Ainola, M.; Liljeström, M.; Konttinen, Y.T.; Hukkanen, M. Label-Free Imaging of Adipogenesis by Coherent Anti-Stokes Raman Scattering Microscopy. In Arthritis Research; Shiozawa, S., Ed.; Springer: New York, NY, USA, 2014; Volume 1142, pp. 189–201. [Google Scholar]
- Smus, J.P.; Moura, C.C.; McMorrow, E.; Tare, R.S.; Oreffo, R.O.C.; Mahajan, S. Tracking adipogenic differentiation of skeletal stem cells by label-free chemically selective imaging. Chem. Sci. 2015, 6, 7089–7096. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.M.; Beck, S.C.; Murphy, J.M.; Barry, F.P.; Chichester, C.O.; Pittenger, M.F. Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow. Tissue Eng. 1998, 4, 415–428. [Google Scholar] [CrossRef]
- Bosnakovski, D.; Mizuno, M.; Kim, G.; Ishiguro, T.; Okumura, M.; Iwanaga, T.; Kadosawa, T.; Fujinaga, T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp. Hematol. 2004, 32, 502–509. [Google Scholar] [CrossRef]
- Lim, Y.-B.; Kang, S.-S.; Park, T.K.; Lee, Y.-S.; Chun, J.-S.; Sonn, J.K. Disruption of Actin Cytoskeleton Induces Chondrogenesis of Mesenchymal Cells by Activating Protein Kinase C-α Signaling. Biochem. Biophys. Res. Commun. 2000, 273, 609–613. [Google Scholar] [CrossRef]
- Loty, S.; Forest, N.; Boulekbache, H.; Sautier, J.-M. Cytochalasin D induces changes in cell shape and promotes in vitro chondrogenesis: A morphological study. Biol. Cell 1995, 83, 149–161. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Lee, E.M.; Smith, K.; Hyzy, S.L.; Doroudi, M.; Williams, J.K.; Gall, K.; Boyan, B.D.; Schwartz, Z. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS ONE 2017, 12, e0170312. [Google Scholar] [CrossRef]
- Woods, A.; Wang, G.; Beier, F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J. Cell. Physiol. 2007, 213, 1–8. [Google Scholar] [CrossRef]
- Martínez, H.; Brackmann, C.; Enejder, A.; Gatenholm, P. Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J. Biomed. Mater. Res. A 2012, 100A, 948–957. [Google Scholar] [CrossRef]
- Costa Moura, C.; Lanham, S.A.; Monfort, T.; Bourdakos, K.N.; Tare, R.S.; Oreffo, R.O.; Mahajan, S. Quantitative temporal interrogation in 3D of bioengineered human cartilage using multimodal label-free imaging. Integr. Biol. 2018, 10, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, C.C.; Bourdakos, K.N.; Tare, R.S.; Oreffo, R.O.C.; Mahajan, S. Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging. Sci. Rep. 2019, 9, 5561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandrini, T.; Shan, O.; Parodi, V.; Cerullo, G.; Raimondi, M.T.; Osellame, R. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine. Sci. Rep. 2019, 9, 11761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippler, M.; Lemma, E.D.; Bertels, S.; Blasco, E.; Barner-Kowollik, C.; Wegener, M.; Bastmeyer, M. 3D Scaffolds to Study Basic Cell Biology. Adv. Mater. 2019, 31, 1808110. [Google Scholar] [CrossRef] [Green Version]
- Ricci, D.; Nava, M.M.; Zandrini, T.; Cerullo, G.; Raimondi, M.T.; Osellame, R. Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells. Materials 2017, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Nava, M.M.; Di Maggio, N.; Zandrini, T.; Cerullo, G.; Osellame, R.; Martin, I.; Raimondi, M.T. Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells: Synthetic niche substrates engineered via 2PP for the expansion of human MSCs. J. Tissue Eng. Regen. Med. 2017, 11, 2836–2845. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parodi, V.; Jacchetti, E.; Bresci, A.; Talone, B.; Valensise, C.M.; Osellame, R.; Cerullo, G.; Polli, D.; Raimondi, M.T. Characterization of Mesenchymal Stem Cell Differentiation within Miniaturized 3D Scaffolds through Advanced Microscopy Techniques. Int. J. Mol. Sci. 2020, 21, 8498. https://doi.org/10.3390/ijms21228498
Parodi V, Jacchetti E, Bresci A, Talone B, Valensise CM, Osellame R, Cerullo G, Polli D, Raimondi MT. Characterization of Mesenchymal Stem Cell Differentiation within Miniaturized 3D Scaffolds through Advanced Microscopy Techniques. International Journal of Molecular Sciences. 2020; 21(22):8498. https://doi.org/10.3390/ijms21228498
Chicago/Turabian StyleParodi, Valentina, Emanuela Jacchetti, Arianna Bresci, Benedetta Talone, Carlo M. Valensise, Roberto Osellame, Giulio Cerullo, Dario Polli, and Manuela T. Raimondi. 2020. "Characterization of Mesenchymal Stem Cell Differentiation within Miniaturized 3D Scaffolds through Advanced Microscopy Techniques" International Journal of Molecular Sciences 21, no. 22: 8498. https://doi.org/10.3390/ijms21228498