The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome
Abstract
1. Introduction
2. Results
2.1. CASC2 and miR-21 Associations with Patient Clinical Parameters
2.2. CASC2 and miR-21 Expression in High Grade and IDH1wt Gliomas
2.3. CASC2 and miR-21 Interplay in Gliomas
2.4. Survival Analysis
3. Discussion
4. Material and Methods
4.1. Ethics
4.2. Patient Sample
4.3. RNA and DNA Extraction
4.4. CASC2 Gene Expression Analysis
4.5. miR-21 Gene Expression Analysis
4.6. IDH1 Mutation Detection
4.7. MGMT Methylation Detection
4.8. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cuddapah, V.A.; Robel, S.; Watkins, S.; Sontheimer, H. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 2014, 15, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, P.; Kros, J.M.; Jeuken, J.W.M. The pathological diagnosis of diffuse gliomas: Towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagn. Histopathol. 2011, 17, 486–494. [Google Scholar] [CrossRef]
- Liz, J.; Esteller, M. lncRNAs and microRNAs with a role in cancer development. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2016, 1859, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-X.; Han, L.; Bao, Z.-S.; Wang, Y.-Y.; Chen, L.-Y.; Yan, W.; Yu, S.-Z.; Pu, P.-Y.; Liu, N.; You, Y.-P.; et al. HOTAIR, a cell cycle–associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma. Neuro-Oncology 2013, 15, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Wang, H.; Li, X.; Li, T.; Su, G.; Yang, P.; Wu, J. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumor Biol. 2015, 36, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, S.; Pu, J.K.S.; Tsang, A.C.O.; Lee, D.; Man, V.O.Y.; Lui, W.M.; Wong, S.T.S.; Leung, G.K.K. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol. Dis. 2012, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Kiang, K.M.-Y.; Wang, Y.-C.; Pu, J.K.-S.; Ho, A.; Cheng, S.Y.; Lee, D.; Zhang, P.-D.; Chen, J.-J.; Lui, W.-M.; et al. IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. J. Neuro-Oncol. 2015, 125, 253–263. [Google Scholar] [CrossRef]
- Li, W.; Ma, X.; Zhan, R.; Jiang, P.; Wang, P.; Sun, X.; Yuan, Z. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. OncoTargets Ther. 2016, 9, 3501. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Liu, Z.; Yao, B.; Li, Q.; Wang, L.; Wang, C.; Dou, C.; Xu, M.; Liu, Q.; Tu, K. Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol. Cancer 2017, 16, 123. [Google Scholar] [CrossRef]
- Chi, S.W.; Zang, J.B.; Mele, A.; Darnell, R.B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 2009, 460, 479–486. [Google Scholar] [CrossRef]
- Johnsson, P.; Ackley, A.; Vidarsdottir, L.; Lui, W.-O.; Corcoran, M.; Grandér, D.; Morris, K.V. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 2013, 20, 440–446. [Google Scholar] [CrossRef]
- Liu, X.-H.; Sun, M.; Nie, F.-Q.; Ge, Y.-B.; Zhang, E.-B.; Yin, D.-D.; Kong, R.; Xia, R.; Lu, K.-H.; Li, J.-H.; et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer 2014, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, Z.; Su, J.; Yang, J.; Yin, D.; Han, L.; De, W.; Guo, R. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer. Tumor Biol. 2016, 37, 9503–9510. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wu, X.; Li, S.; Xu, X.; Zhu, H.; Chen, X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci. Rep. 2016, 6, 26524. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xu, R.; Xu, X.; Zhou, Y.; Cui, L.; He, X. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol. Med. Rep. 2016, 14, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Baldinu, P.; Cossu, A.; Manca, A.; Satta, M.P.; Sini, M.C.; Palomba, G.; Dessole, S.; Cherchi, P.; Mara, L.; Tanda, F.; et al. CASC2 Gene is Down-regulated in Endometrial Cancer. Anticancer Res. 2007, 27, 235–244. [Google Scholar]
- Li, P.; Xue, W.-J.; Feng, Y.; Mao, Q.-S. Long non-coding RNA CASC2 suppresses the proliferation of gastric cancer cells by regulating the MAPK signaling pathway. Am. J. Transl. Res. 2016, 8, 3522. [Google Scholar] [PubMed]
- Lu, L.; Dai, Z.; Luo, Q.; Lv, G. The long noncoding RNA cancer susceptibility candidate 2 inhibits tumor progression in osteosarcoma. Mol. Med. Rep. 2017, 17, 1947–1953. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, H.; Tong, S.; Huo, R. Overexpression of long non-coding RNA cancer susceptibility 2 inhibits cell invasion and angiogenesis in gastric cancer. Mol. Med. Rep. 2017, 16, 5235–5240. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y.; Yao, Y.; Li, Z.; Li, Z.; Ma, J.; Xue, Y. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cell. Signal. 2015, 27, 275–282. [Google Scholar] [CrossRef]
- Cesana, M.; Cacchiarelli, D.; Legnini, I.; Santini, T.; Sthandier, O.; Chinappi, M.; Tramontano, A.; Bozzoni, I. A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA. Cell 2011, 147, 358–369. [Google Scholar] [CrossRef]
- Liao, Y.; Shen, L.; Zhao, H.; Liu, Q.; Fu, J.; Guo, Y.; Peng, R.; Cheng, L. LncRNA CASC2 Interacts With miR-181a to Modulate Glioma Growth and Resistance to TMZ Through PTEN Pathway. J. Cell. Biochem. 2017, 118, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, H.; Wang, X.; Wang, J.; Wei, H. Long non-coding RNA CASC2 enhanced cisplatin-induced viability inhibition of non-small cell lung cancer cells by regulating the PTEN/PI3K/Akt pathway through down-regulation of miR-18a and miR-21. RSC Adv. 2018, 8, 15923–15932. [Google Scholar] [CrossRef]
- Meng, F.; Henson, R.; Wehbe–Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 Regulates Expression of the PTEN Tumor Suppressor Gene in Human Hepatocellular Cancer. Gastroenterology 2007, 133, 647–658. [Google Scholar] [CrossRef]
- Wu, L.; Li, G.; Feng, D.; Qin, H.; Gong, L.; Zhang, J.; Zhang, Z. MicroRNA-21 expression is associated with overall survival in patients with glioma. Diagn. Pathol. 2013, 8, 200. [Google Scholar] [CrossRef]
- Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 2013, 13, 345. [Google Scholar] [CrossRef]
- Guo, C.; Pirozzi, C.J.; Lopez, G.Y.; Yan, H. Isocitrate dehydrogenase mutations in gliomas. Curr. Opin. Neurol. 2011, 24, 648–652. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Assembly, W.M.A.G.; Assembly, W.M.A.G.; Declaration, T.; Declaration, T.; Databases, H.; Declaration, T.; Database, H. Annexe 2. WMA Declaration of Taipei on ethical considerations regarding health databases and biobanks. J. Int. Bioéthique D’éthique Sci. 2017, 28, 113. [Google Scholar] [CrossRef]
- Pei, Z.; Du, X.; Song, Y.; Fan, L.; Li, F.; Gao, Y.; Wu, R.; Chen, Y.; Li, W.; Zhou, H.; et al. Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/β-catenin signaling pathway. Oncotarget 2017, 8, 18145–18153. [Google Scholar] [CrossRef] [PubMed]
Variable | Total No | CASC2 Expression | Total No | miR-21 Expression | ||||
---|---|---|---|---|---|---|---|---|
Low (%) | High (%) | p-Value | Low (%) | High (%) | p-Value | |||
Gender | ||||||||
Male | 45 | 25 (55.6) | 20 (44.4) | 0.422 | 37 | 13 (35.1) | 24 (64.9) | 0.182 |
Female | 54 | 25 (46.3) | 29 (53.7) | 46 | 24 (52.2) | 22 (47.8) | ||
Age, yr | ||||||||
<56 | 47 | 23 (48.9) | 24 (51.1) | 0.841 | 42 | 24 (57.1) | 18 (42.9) | 0.027 |
≥56 | 52 | 27 (51.9) | 25 (48.1) | 41 | 13 (31.7) | 28 (68.3) | ||
Grade | ||||||||
II-III | 17 | 2 (11.8) | 15 (88.2) | <0.0001 | 17 | 16 (94.1) | 1 (5.9) | <0.0001 |
IV | 82 | 48 (58.5) | 34 (41.5) | 66 | 21 (31.8) | 45 (68.2) | ||
IDH1 | ||||||||
Wt | 78 | 44 (56.4) | 34 (43.6) | 0.037 | 64 | 21 (32.8) | 43 (67.2) | <0.0001 |
Mut | 18 | 5 (27.8) | 13 (72.2) | 16 | 14 (87.5) | 2 (12.5) | ||
MGMT | ||||||||
Unmeth | 48 | 25 (52.1) | 23 (47.9) | 1 | 40 | 16 (40) | 24 (60) | 0.812 |
Meth | 41 | 22 (53.7) | 19 (46.3) | 33 | 15 (45.5) | 18 (54.5) | ||
miR-21 | ||||||||
low | 37 | 11 (29.7) | 26 (70.3) | 0.002 | ||||
high | 46 | 30 (62.2) | 16 (34.8) |
Characteristics | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (<56 vs. ≥56) | 0.216 (0.123–0.381) | <0.0001 | 0.408 (0.215–0.775) | 0.006 |
Gender (female vs. male) | 0.868 (0.537–1.404) | 0.564 | NA | |
Tumor grade (II–III vs. IV) | 0.069 (0.017–0.284) | <0.0001 | 0.100 (0.019–0.526) | 0.007 |
IDH1R132H | 0.160 (0.064–0.404) | <0.0001 | 0.809 (0.244–2.682) | 0.729 |
MGMT (methylated vs. non methylated) | 0.722 (0.435–1.199) | 0.208 | NA | |
CASC2 | 0.497 (0.301–0.821) | 0.006 | 0.751 (0.389–1.450) | 0.393 |
miR-21 | 2.285 (1.290–4.045) | 0.005 | 1.173 (0.584–2.358) | 0.653 |
CASC2 high/miR-21 low | 0.259 (0.118–0.570) | 0.001 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiriute, D.; Stakaitis, R.; Steponaitis, G.; Tamasauskas, A.; Vaitkiene, P. The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome. Int. J. Mol. Sci. 2020, 21, 7962. https://doi.org/10.3390/ijms21217962
Skiriute D, Stakaitis R, Steponaitis G, Tamasauskas A, Vaitkiene P. The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome. International Journal of Molecular Sciences. 2020; 21(21):7962. https://doi.org/10.3390/ijms21217962
Chicago/Turabian StyleSkiriute, Daina, Rytis Stakaitis, Giedrius Steponaitis, Arimantas Tamasauskas, and Paulina Vaitkiene. 2020. "The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome" International Journal of Molecular Sciences 21, no. 21: 7962. https://doi.org/10.3390/ijms21217962
APA StyleSkiriute, D., Stakaitis, R., Steponaitis, G., Tamasauskas, A., & Vaitkiene, P. (2020). The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome. International Journal of Molecular Sciences, 21(21), 7962. https://doi.org/10.3390/ijms21217962