Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics
Abstract
1. Introduction
2. Results
2.1. Collection of Leaf Samples and Generation of Libraries for Identification of Viruses Infecting Tomato and Pepper Plants
2.2. Identification of Virus-Associated Contigs
2.3. Classification of Identified Virus-Associated Contigs According to Virus Taxonomy
2.4. Proportion of Identified Viruses and Viroids According to Virus-Associated Contigs
2.5. Proportion of Identified Viruses and Viroids According to Virus-Associated Reads
2.6. Proportion of Identified Viruses and Viroids According to Plant Host and Geographical Region
2.7. Phylogenetic Analyses for Identified Viruses and a Viroid
2.8. Validation of Results for RNA-Seq by RT-PCR
3. Discussion
4. Materials and Methods
4.1. Sample Collection and RNA Sequencing
4.2. Bioinformatic Analyses
4.3. Construction of Phylogenetic Trees
4.4. Reverse Transcription–Polymerase Chain Reaction (RT-PCR) to Validate Infection of Identified Viruses and Viroids
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blancard, D. Tomato Diseases: Identification, Biology and Control: A Colour Handbook; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Ganesan, M.; Rajesh, M.; Solairaj, P.; Senthilkumar, T. Tomato as a pioneer in health management. Int. J. Pharm. Chem. Biol. Sci. 2012, 2, 210–217. [Google Scholar]
- Faustino, J.; Barroca, M.; Guiné, R. Study of the Drying Kinetics of Green Bell Pepper and Chemical Characterization. Food Bioprod. Process. 2007, 85, 163–170. [Google Scholar] [CrossRef]
- Blawid, R.; Van, D.; Maiss, E. Transreplication of a Tomato yellow leaf curl Thailand virus DNA-B and replication of a DNAß component by Tomato leaf curl Vietnam virus and Tomato yellow leaf curl Vietnam virus. Virus Res. 2008, 136, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Pernezny, K.; Roberts, P.D.; Murphy, J.F.; Goldberg, N.P. Compendium of Pepper Diseases; APS Press: St. Paul, MN, USA, 2003. [Google Scholar]
- Pospieszny, H.; Borodynko-Filas, N.; Hasiów-Jaroszewska, B.; Czerwonka, B.; Elena, S.F. An assessment of the transmission rate of Tomato black ring virus through tomato seeds. Plant. Prot. Sci. 2019, 56, 9–12. [Google Scholar] [CrossRef]
- Thakur, H.; Jindal, S.K.; Sharma, A.; Dhaliwal, M.S. Chilli leaf curl virus disease: A serious threat for chilli cultivation. J. Plant. Dis. Prot. 2018, 125, 239–249. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Matsushita, Y. Host ranges European Journal of Plant Pathology and seed transmission of Tomato planta macho viroid and Pepper chat fruit viroid. Eur. J. Plant. Pathol. 2017, 149, 211–217. [Google Scholar] [CrossRef]
- Constable, F.E.; Chambers, G.A.; Penrose, L.; Daly, A.; Mackie, J.; Davis, K.; Rodoni, B.; Gibbs, M. Viroid-infected Tomato and Capsicum Seed Shipments to Australia. Viruses 2019, 11, 98. [Google Scholar] [CrossRef]
- Batuman, O.; Turini, T.A.; Oliveira, P.V.; Rojas, M.R.; Macedo, M.; Mellinger, H.C.; Adkins, S.; Gilbertson, R.L. First Report of a Resistance-Breaking Strain of Tomato spotted wilt virus Infecting Tomatoes With the Sw-5 Tospovirus-Resistance Gene in California. Plant. Dis. 2017, 101, 637. [Google Scholar] [CrossRef]
- Ghanim, M.; Czosnek, H. Tomato Yellow Leaf Curl Geminivirus (TYLCV-Is) Is Transmitted among Whiteflies (Bemisia tabaci) in a Sex-Related Manner. J. Virol. 2000, 74, 4738–4745. [Google Scholar] [CrossRef] [PubMed]
- Massart, S.; Olmos, A.; Jijakli, H.; Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014, 188, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant Virus Metagenomics: Advances in Virus Discovery. Phytopathology 2015, 105, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ding, S.-W.; Zhang, Y.; Zhu, S. Identification of Viruses and Viroids by Next-Generation Sequencing and Homology-Dependent and Homology-Independent Algorithms. Annu. Rev. Phytopathol. 2015, 53, 425–444. [Google Scholar] [CrossRef]
- Candresse, T.; Marais, A.; Sorrentino, R.; Faure, C.; Theil, S.; Cadot, V.; Rolland, M.; Villemot, J.; Rabenstein, F. Complete genomic sequence of barley (Hordeum vulgare) endornavirus (HvEV) determined by next-generation sequencing. Arch. Virol. 2015, 161, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, J.-R.; Di, D.; Gao, Q.; Zhang, Y.; Zhang, A.; Yan, C.; Miao, H.; Wang, X.-B. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 2015, 478, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Jo, Y.; Choi, H.; Tran, P.-T.; Kim, K.-H. First report of tomato mosaic virus isolated from tomato and pepper in Vietnam. J. Plant. Pathol. 2018, 101, 181. [Google Scholar] [CrossRef]
- Choi, H.; Jo, Y.; Tran, P.-T.; Kim, K.-H. First report of ageratum yellow vein virus infecting tomato in Vietnam. J. Plant. Pathol. 2019, 101, 1267. [Google Scholar] [CrossRef]
- Cuong, H.V.; Hai, L.; Tiep, T.; Hao, N. Molecular characterization of Tomato leaf curl Hainan virus and Tomato leaf curl Hanoi virus in Vietnam. Int. Soc. Southeast. Asian Agric. Sci. J. 2011, 2, 70–82. [Google Scholar]
- Ha, C.; Revill, P.; Harding, R.M.; Vu, M.; Dale, J.L. Identification and sequence analysis of potyviruses infecting crops in Vietnam. Arch. Virol. 2007, 153, 45–60. [Google Scholar] [CrossRef]
- Maree, H.J.; Fox, A.; Al Rwahnih, M.; Boonham, N.; Candresse, T. Application of HTS for Routine Plant Virus Diagnostics: State of the Art and Challenges. Front. Plant. Sci. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Revill, P.; Ha, C.V.; Porchun, S.C.; Vu, M.T.; Dale, J.L. The complete nucleotide sequence of two distinct geminiviruses infecting cucurbits in Vietnam. Arch. Virol. 2003, 148, 1523–1541. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Choi, H.; Kim, S.-M.; Kim, S.-L.; Lee, B.C.; Cho, W.K. The pepper virome: Natural co-infection of diverse viruses and their quasispecies. BMC Genom. 2017, 18, 453. [Google Scholar] [CrossRef]
- Li, R.; Gao, S.; Hernandez, A.G.; Wechter, W.P.; Fei, Z.; Ling, K.-S. Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation. PLoS ONE 2012, 7, e37127. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Sun, X.; Taylor, A.; Jiao, C.; Xu, Y.; Cai, X.; Wang, X.; Ge, C.; Pan, G.; Wang, Q.; et al. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J. Virol. 2017, 91, e00173-17. [Google Scholar] [CrossRef] [PubMed]
- Fadhila, C.; Lal, A.; Vo, T.T.; Ho, P.T.; Hidayat, S.H.; Lee, J.; Kil, E.-J.; Lee, S. The threat of seed-transmissible pepper yellow leaf curl Indonesia virus in chili pepper. Microb. Pathog. 2020, 143, 104132. [Google Scholar] [CrossRef] [PubMed]
- Kil, E.-J.; Park, J.; Choi, E.-Y.; Byun, H.-S.; Lee, K.-Y.; An, C.G.; Kim, C.-S. Seed transmission of Tomato yellow leaf curl virus in sweet pepper (Capsicum annuum). Eur. J. Plant. Pathol. 2017, 150, 759–764. [Google Scholar] [CrossRef]
- Kil, E.-J.; Kim, S.; Lee, Y.-J.; Byun, H.-S.; Park, J.; Seo, H.; Kim, C.-S.; Shim, J.-K.; Lee, J.-H.; Kim, J.-K.; et al. Tomato yellow leaf curl virus (TYLCV-IL): A seed-transmissible geminivirus in tomatoes. Sci. Rep. 2016, 6, 19013. [Google Scholar] [CrossRef]
- Pospieszny, H.; Borodynko, N.; Hasiów-Jaroszewska, B.; Rymelska, N.; Elena, S.F. Transmission rate of two Polish Tomato torrado virus isolates through tomato seeds. J. Gen. Plant. Pathol. 2018, 85, 109–115. [Google Scholar] [CrossRef]
- Pérez-Padilla, V.; Fortes, I.M.; Romero-Rodríguez, B.; Arroyo-Mateos, M.; Castillo, A.G.; Moyano, C.; De León, L.; Moriones, E. Revisiting Seed Transmission of the Type Strain of Tomato yellow leaf curl virus in Tomato Plants. Phytopathology 2020, 110, 121–129. [Google Scholar] [CrossRef]
- Jo, Y.; Bae, J.-Y.; Kim, S.-M.; Choi, H.; Lee, B.C.; Cho, W.K. Barley RNA viromes in six different geographical regions in Korea. Sci. Rep. 2018, 8, 13237. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Kim, S.-M.; Choi, H.; Yang, J.W.; Lee, B.C.; Cho, W.K. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.R.; Macedo, M.A.; Maliano, M.R.; Soto-Aguilar, M.; Souza, J.O.; Briddon, R.W.; Kenyon, L.; Bustamante, R.F.R.; Zerbini, F.M.; Adkins, S.; et al. World Management of Geminiviruses. Annu. Rev. Phytopathol. 2018, 56, 637–677. [Google Scholar] [CrossRef] [PubMed]
- Sabanadzovic, S.; Valverde, R.A. Properties and detection of two cryptoviruses from pepper (Capsicum annuum). Virus Genes 2011, 43, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Sabanadzovic, S.; Valverde, R.A.; Brown, J.K.; Martin, R.R.; Tzanetakis, I. Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Res. 2009, 140, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.-S.; Kim, J.-H.; Lee, D.-H.; Kim, J.-S.; Ryu, K.H. Occurrence and Distribution of Viruses Infecting Pepper in Korea. Plant. Pathol. J. 2005, 21, 258–261. [Google Scholar] [CrossRef][Green Version]
- Olawale, A.; Samuel, B.O.; Solomon, A.S.O.; Kumar, P.L. Surveys of virus diseases on pepper (Capsicum spp.) in South-west Nigeria. Afr. J. Biotechnol. 2015, 14, 3198–3205. [Google Scholar]
- Sepúlveda, P.R.; Larraín, P.S.; Quiroz, C.E.; Rebufel, P.A.; Graña, F.S. Identification and incidence of pepper viruses in north central Chile and its association with vectors. Agric. Tec. 2005, 65, 235–245. [Google Scholar]
- Jo, Y.; Lian, S.; Chu, H.; Cho, J.K.; Yoo, S.-H.; Choi, H.; Yoon, J.-Y.; Choi, S.-K.; Lee, B.C.; Cho, W.K. Peach RNA viromes in six different peach cultivars. Sci. Rep. 2018, 8, 1844. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Larkin, M.; Blackshields, G.; Brown, N.; Chenna, R.; Mcgettigan, P.; McWilliam, H.; Valentin, F.; Wallace, I.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.O.; Kumar, S.; Tamura, K.; Nei, M. MEGA: Molecular Evolutionary Genetics Analysis, Version 1.02. Syst. Biol. 1995, 44, 576. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Primers * | Nucleotide Sequence | Expected Size |
---|---|---|
PVY_diag_F | ATGGCAAATGACACAATCGATGCAG | 804 bp |
PVY_diag_R | TCACATGTTCTTAACTCCAAGTAGAGTATG | |
CMV_diag_F | ATGGACAAATCTGAATCAACCAGTG | 754 bp |
CMV_diag_R | GACTGGGAGCACTCCAGATG | |
ToMV_diag_F | CGAGAGGGGCAACAAACAT | 317 bp |
ToMV_diag_R | ACCTGTCTCCATCTCTTTGG | |
AYVCNV_diag_F | CTGATGTGCCCAAAGGTTGT | 406 bp |
AYVCNV_diag_R | GCCTGCTCCTTAGACGCATA | |
TYLCKaV_diag_F | TGCCGAAGCGTTCAATAGAT | 733 bp |
TYLCKaV_diag_R | TGTTGCATACACAGGATTAGAGG | |
CaCV_diag_F | AAGACCTCGAAAGAGGCAAA | 703 bp |
CaCV_diag_R | CTTCGGAGGCAAACTATTGG | |
TNRV_diag_F | TTGCTAGCTGGAGGAGAAGC | 786 bp |
TNRV_diag_R | TCCTCTCCTAGTTGGCTTGC | |
PCV2_diag_F | TTCAATCGACGGTTTCACAA | 792 bp |
PCV2_diag_R | CCTTGACTTGAGGTCGTGGT | |
STV_diag_F | CAAAGGGAAGACTGCTGAGG | 808 bp |
STV_diag_R | AGCCTCTCCATCGGGATTAT | |
ChiVMV_diag_F | GCGTAAAAGGCGAAGACTCA | 782 bp |
ChiVMV_diag_R | GTGCCGTTCAGTGTCCTCTT | |
PMMoV_diag_F | ATGGCTTACACAGTTTCCAGTGCCAA | 474 bp |
PMMoV_diag_R | TTAAGGAGTTGTAGCCCAGGTGAGTCC | |
TMGMV_diag_F | ATGCCTTATACAATCAACTCTCCG | 480 bp |
TMGMV_diag_R | CTAAGTAGCCGGAGTTGTGGTC | |
PeVYV_diag_F | ATGAATACGGGAGGGGTTAGG | 621 bp |
PeVYV_diag_R | CTATTTCGGGTTGTGCAATTGC | |
LaYVV_diag_F | ATGTCGAAGCGACCTGCAGATAT | 741 bp |
LaYVV_diag_R | GATTTTCAGAGTAGCATACACGGGA | |
CLVd_diag_F | CGGAACTAAACTCGTGGTTCCTG | 370 bp |
CLVd_diag_R | AGGAACCTACTGCGGTTCCA | |
PCFVd_diag_F | CCGGATTCTTCTAAGGGTGCCT | 317 bp |
PCFVd_diag_R | AGATCCTCTCGGGTCCCGG | |
ToLCVV_diag_F | GCGTTAATGCGTCCCATAAT | 528 bp |
ToLCVV_diag_R | GCATTAAAGTCGTGGGCAAT | |
TYLCVNV_diag_F | AGAAACGCCAAGTCTGAGGA | 314 bp |
TYLCVNV_diag_R | GTTCGGAGACGGAGAGTTGA |
Region * | Host Plant | Library | Total Read Bases (bp) | Total Reads | GC (%) |
---|---|---|---|---|---|
Dong Anh | Tomato | DAT | 5,592,948,326 | 55,375,726 | 39.75 |
Gia Lam | Tomato | GLT | 6,595,539,572 | 65,302,372 | 42.59 |
Vinh Phuc | Tomato | VPT | 6,078,200,604 | 60,180,204 | 42.64 |
Ninh Binh | Tomato | NBT | 4,899,434,654 | 48,509,254 | 41.2 |
Bao Loc city | Tomato | BLT | 6,453,511,150 | 63,896,150 | 42.39 |
Duc Trong | Tomato | DTT | 8,004,172,432 | 79,249,232 | 42.7 |
Don Duong | Tomato | DDT | 7,918,928,432 | 78,405,232 | 43.8 |
Dalat | Tomato | DCT | 8,257,251,768 | 81,754,968 | 43.67 |
DongAnh | Chili pepper | DACP | 5,522,312,764 | 54,676,364 | 41.07 |
Gia Lam | Chili pepper | GLCP | 4,912,867,452 | 48,642,252 | 41.24 |
Vinh Phuc | Chili pepper | VPCP | 5,229,970,486 | 51,781,886 | 40.54 |
Vinh Phuc | Bell pepper | VPBP | 5,745,072,910 | 56,881,910 | 42.45 |
Don Duong | Bell pepper | DDBP | 8,473,848,288 | 83,899,488 | 44.83 |
Vinh Phuc | Hot pepper | VPHP | 5,498,428,890 | 54,439,890 | 42.86 |
Ninh Binh | Hot pepper | NBHP | 6,356,471,966 | 62,935,366 | 42.25 |
Don Duong | Red pepper | DDRP | 8,339,452,436 | 82,568,836 | 43.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Jo, Y.; Cho, W.K.; Yu, J.; Tran, P.-T.; Salaipeth, L.; Kwak, H.-R.; Choi, H.-S.; Kim, K.-H. Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. Int. J. Mol. Sci. 2020, 21, 7565. https://doi.org/10.3390/ijms21207565
Choi H, Jo Y, Cho WK, Yu J, Tran P-T, Salaipeth L, Kwak H-R, Choi H-S, Kim K-H. Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. International Journal of Molecular Sciences. 2020; 21(20):7565. https://doi.org/10.3390/ijms21207565
Chicago/Turabian StyleChoi, Hoseong, Yeonhwa Jo, Won Kyong Cho, Jisuk Yu, Phu-Tri Tran, Lakha Salaipeth, Hae-Ryun Kwak, Hong-Soo Choi, and Kook-Hyung Kim. 2020. "Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics" International Journal of Molecular Sciences 21, no. 20: 7565. https://doi.org/10.3390/ijms21207565
APA StyleChoi, H., Jo, Y., Cho, W. K., Yu, J., Tran, P.-T., Salaipeth, L., Kwak, H.-R., Choi, H.-S., & Kim, K.-H. (2020). Identification of Viruses and Viroids Infecting Tomato and Pepper Plants in Vietnam by Metatranscriptomics. International Journal of Molecular Sciences, 21(20), 7565. https://doi.org/10.3390/ijms21207565