Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Earthworm Maintenance
4.2. Proteomics Approach
4.3. Harvesting of Coelomocytes
4.4. Extracellular Flux Measurements
4.5. Glucose-6 Phosphate Dehydrogenase Activity
4.6. Lysosome Quantification
4.7. Calcium Measurements
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
[Ca2+]I | Intracellular Calcium concentration |
Cd | Cadmium |
CdCl2 | Cadmiumchloride |
CO2 | Carbon dioxide |
ECAR | Extracellular acidification rate |
FCCP | Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone |
GGE | Guaiacol glyceryl ether |
G6PDH | Glucose-6-phosphate dehydrogenase |
LDH | Lactatedehydrogenase |
MT | Metallothionein |
NAD | Nicotinamide adenine dinucleotide |
OCR | Oxygen consumption rate |
PDH | Pyruvate dehydrogenase |
PPP | Pentose phosphate pathway |
PPI | Peptidyl-prolyl cis-trans isomerase-like protein |
ROS | Reactive oxygen species |
TCA | Tricarboxylic acid cycle |
UCP | Uncoupling protein |
References
- Cooper, E.L. Commentary: Blurring Borders: Innate Immunity with Adaptive Features. Front. Microbiol. 2016, 7, 358. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Criscitiello, M.F.; de Figueiredo, P. Fifty shades of immune defense. PLoS Pathog. 2013, 9, e1003110. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, P.; Cooper, E.L.; Opper, B.; Németh, P. Earthworm Innate Immune System. In Biology of Earthworms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 229–245. [Google Scholar]
- Homa, J. Earthworm coelomocyte extracellular traps: Structural and functional similarities with neutrophil NETs. Cell Tissue Res. 2018, 371, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Homa, J.; Klimek, M.; Kruk, J.; Cocquerelle, C.; Vandenbulcke, F.; Plytycz, B. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2010, 73, 1937–1943. [Google Scholar] [CrossRef]
- Opper, B.; Németh, P.; Engelmann, P. Calcium is required for coelomocyte activation in earthworms. Mol. Immunol. 2010, 47, 2047–2056. [Google Scholar] [CrossRef]
- Dorian, C.; Gattone, V.H.; Klaassen, C.D. Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol. Appl. Pharmacol. 1992, 117, 242–248. [Google Scholar] [CrossRef]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef]
- Homa, J.; Stürzenbaum, S.R.; Morgan, A.J.; Plytycz, B. Disrupted homeostasis in coelomocytes of Eisenia fetida and Allolobophora chlorotica exposed dermally to heavy metals. Eur. J. Soil Biol. 2007, 43, S273–S280. [Google Scholar] [CrossRef]
- Shi, W.; Guan, X.; Han, Y.; Guo, C.; Rong, J.; Su, W.; Zha, S.; Wang, Y.; Liu, G. Waterborne Cd 2+ weakens the immune responses of blood clam through impacting Ca 2+ signaling and Ca 2+ related apoptosis pathways. Fish Shellfish Immunol. 2018, 77, 208–213. [Google Scholar] [CrossRef]
- Qin, Q.; Qin, S.; Wang, L.; Lei, W. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium. Aquat. Toxicol. 2012, 106, 140–146. [Google Scholar] [CrossRef]
- So, K.-Y.; Lee, B.-H.; Oh, S.-H. The critical role of autophagy in cadmium-induced immunosuppression regulated by endoplasmic reticulum stress-mediated calpain activation in RAW264.7 mouse monocytes. Toxicology 2018, 393, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Sen, S.S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Immunotoxicological effects of cadmium on Labeo rohita, with emphasis on the expression of HSP genes. Fish Shellfish Immunol. 2016, 54, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-S.; Lv, Z.-M.; Zhu, A.-Y.; Zheng, J.-L.; Wu, C.-W. Negative effect of chronic cadmium exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver of zebrafish: Preventive role of blue light emitting diodes. Ecotoxicol. Environ. Saf. 2017, 139, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, Z.; Cai, J.; Liu, Q.; Yang, J.; Gong, Y.; Wu, M.; Shen, Q.; Xu, S. Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat. Toxicol. 2017, 192, 171–177. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R.; Lin, Y. Allograft inflammatory factor-1 in grass carp (Ctenopharynogodon idella): Expression and response to cadmium exposure. Fish Shellfish Immunol. 2015, 47, 444–449. [Google Scholar] [CrossRef]
- Priyadarshani, S.; Madhushani, W.A.N.; Jayawardena, U.A.; Wickramasinghe, D.D.; Udagama, P.V. Heavy metal mediated immunomodulation of the Indian green frog, Euphlyctis hexadactylus (Anura:Ranidae) in urban wetlands. Ecotoxicol. Environ. Saf. 2015, 116, 40–49. [Google Scholar] [CrossRef]
- Messner, B.; Ploner, C.; Laufer, G.; Bernhard, D. Cadmium activates a programmed, lysosomal membrane permeabilization-dependent necrosis pathway. Toxicol. Lett. 2012, 212, 268–275. [Google Scholar] [CrossRef]
- Evariste, L.; Rioult, D.; Brousseau, P.; Geffard, A.; David, E.; Auffret, M.; Fournier, M.; Betoulle, S. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha. Ecotoxicol. Environ. Saf. 2017, 137, 78–85. [Google Scholar] [CrossRef]
- Lim, C.-Y.; Zoncu, R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016, 214, 653–664. [Google Scholar] [CrossRef]
- Cho, I.H.; Choi, E.S.; Lim, H.G.; Lee, H.H. Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J. Biochem. Mol. Biol. 2004, 37, 199–205. [Google Scholar] [CrossRef]
- Nasiadek, M.; Kilanowicz, A.; Darago, A.; Lazarenkow, A.; Michalska, M. The effect of cadmium on the coagulation and fibrinolytic system in women with uterine endometrial cancer and myoma. Int. J. Occup. Med. Environ. Health 2013, 26, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qu, W.; Saavedra, J.E.; Waalkes, M.P. The Nitric Oxide Donor, O2-Vinyl 1-(Pyrrolidin-1-yl) diazen-1-ium-1,2-diolate (V-PYRRO/NO), Protects against Cadmium-Induced Hepatotoxicity in Mice. J. Pharmacol. Exp. Ther. 2004, 310, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ren, J.; Stammers, D.K.; Baldwin, J.E.; Harlos, K.; Schofield, C.J. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 2000, 7, 127–133. [Google Scholar] [PubMed]
- Stein, E.; Cooper, E.L. Cytochemical observations of coelomocytes from the earthworm, Lumbricus terrestris. Histochem. J. 1978, 10, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Izagirre, U.; Angulo, E.; Wade, S.C.; Ap Gwynn, I.; Marigómez, I. Beta-glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells. Cell Tissue Res. 2009, 335, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Höckner, M.; Dallinger, R.; Stürzenbaum, S.R. Metallothionein gene activation in the earthworm (Lumbricus rubellus). Biochem. Biophys. Res. Commun. 2015, 460, 537–542. [Google Scholar] [CrossRef]
- Novais, S.C.; Soares, A.M.V.M.; De Coen, W.; Amorim, M.J.B. Exposure of Enchytraeus albidus to Cd and Zn—Changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. Chemosphere 2013, 90, 1305–1309. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.; Jing, W.; Dahms, H.-U.; Wang, L. Effects of Cadmium on Lipid Storage and Metabolism in the Freshwater Crab Sinopotamon henanense. PLoS ONE 2013, 8, e77569. [Google Scholar] [CrossRef]
- Karthikeyan, J.; Bavani, G. Effect of cadmium on lactate dehyrogenase isoenzyme, succinate dehydrogenase and Na(+)-K(+)-ATPase in liver tissue of rat. J. Environ. Biol. 2009, 30, 895–898. [Google Scholar]
- Brisson, L.; Bański, P.; Sboarina, M.; Dethier, C.; Danhier, P.; Fontenille, M.-J.; Van Hée, V.F.; Vazeille, T.; Tardy, M.; Falces, J.; et al. Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell 2016, 30, 418–431. [Google Scholar] [CrossRef]
- Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012, 30, 39–68. [Google Scholar] [CrossRef] [PubMed]
- Ruta, L.L.; Popa, V.C.; Nicolau, I.; Danet, A.F.; Iordache, V.; Neagoe, A.D.; Farcasanu, I.C. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett. 2014, 588, 3202–3212. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, P.; Liu, N.; Wang, Q.; Luo, J.; Wang, L. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway. PLoS ONE 2015, 10, e0144392. [Google Scholar] [CrossRef] [PubMed]
- Ježek, P.; Holendová, B.; Garlid, K.D.; Jabůrek, M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox SignalingReviewing Editors: Jerzy Beltowski, Joseph Burgoyne, Gabor Csanyi, Sergey Dikalov, Frank Krause, Anibal Vercesi, and Jeremy Ward. Antioxid. Redox Signal. 2018, 29, 667–714. [Google Scholar] [CrossRef]
- Kurochkin, I.O.; Etzkorn, M.; Buchwalter, D.; Leamy, L.; Sokolova, I.M. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R21–R31. [Google Scholar] [CrossRef]
- Ivanina, A.V.; Hawkins, C.; Sokolova, I.M. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Fish Shellfish Immunol. 2014, 37, 299–312. [Google Scholar] [CrossRef]
- Nahmani, J.; Hodson, M.E.; Black, S. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environ. Pollut. 2007, 149, 44–58. [Google Scholar] [CrossRef]
- Tomanek, L.; Zuzow, M.J.; Hitt, L.; Serafini, L.; Valenzuela, J.J. Proteomics of hyposaline stress in blue mussel congeners (genus mytilus): Implications for biogeographic range limits in response to Climate change. J. Exp. Biol. 2012, 215, 3905–3916. [Google Scholar] [CrossRef]
- Strydom, C.; Robinson, C.; Pretorius, E.; Whitcutt, J.M.; Marx, J.; Bornman, M.S. The effect of selected metals on the central metabolic pathways in biology: A review. Water SA 2006, 32, 543–554. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höckner, M.; Piechnik, C.A.; Fiechtner, B.; Weinberger, B.; Tomanek, L. Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. Int. J. Mol. Sci. 2020, 21, 599. https://doi.org/10.3390/ijms21020599
Höckner M, Piechnik CA, Fiechtner B, Weinberger B, Tomanek L. Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. International Journal of Molecular Sciences. 2020; 21(2):599. https://doi.org/10.3390/ijms21020599
Chicago/Turabian StyleHöckner, Martina, Claudio Adriano Piechnik, Birgit Fiechtner, Birgit Weinberger, and Lars Tomanek. 2020. "Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes" International Journal of Molecular Sciences 21, no. 2: 599. https://doi.org/10.3390/ijms21020599
APA StyleHöckner, M., Piechnik, C. A., Fiechtner, B., Weinberger, B., & Tomanek, L. (2020). Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. International Journal of Molecular Sciences, 21(2), 599. https://doi.org/10.3390/ijms21020599