Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Analysis
2.2. X-ray Diffraction (XRD) Analysis
2.3. Performance of Rechargeable ZAFBs
3. Materials and Methods
3.1. Electrode and Battery Fabrication
3.2. Electrolyte Preparation
3.3. Characterization and Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ZAB | Zinc–air battery |
ZAFB | Zinc–air flow battery |
EIS | Electrochemical impedance spectroscopy |
CV | Cyclic voltammetry |
XRD | X-ray diffraction |
DI water | De-ionized water |
CR | Corrosion rate |
OCV | Open-circuit voltage |
AC | Alternative current |
GDL | Gas diffusion layer |
HER | Hydrogen evolution reaction |
Rs | Solution resistance |
Rct | Charge transfer resistance |
References
- Chen, P.; Zhang, K.; Tang, D.; Liu, W.; Meng, F.; Huang, Q.; Liu, J. Recent Progress in Electrolytes for Zn–Air Batteries. Front. Chem. 2020, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Hosseini, S.; Somwangthanaroj, A.; Cheacharoen, R.; Olaru, S.; Kheawhom, S. Discharge profile of a zinc-air flow battery at various electrolyte flow rates and discharge currents. Sci. Data 2020, 7, 196. [Google Scholar] [CrossRef] [PubMed]
- Mainar, A.R.; Iruin, E.; Colmenares, L.C.; Kvasha, A.; De Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Blazquez, J.A. An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 2018, 15, 304–328. [Google Scholar] [CrossRef]
- Xu, M.; Ivey, D.; Xie, Z.; Qu, W. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement. J. Power Sources 2015, 283, 358–371. [Google Scholar] [CrossRef]
- Clark, S.; Mainar, A.R.; Iruin, E.; Colmenares, L.C.; Blázquez, J.A.; Tolchard, J.R.; Jusys, Z.; Horstmann, B. Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation. Adv. Energy Mater. 2020, 10, 1903470. [Google Scholar] [CrossRef]
- Mainar, A.R.; Colmenares, L.C.; Grande, H.-J.; Blázquez, J.A. Enhancing the cycle life of a zinc–air battery by means of electrolyte additives and zinc surface protection. Batteries 2018, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. Challenges in zinc electrodes for alkaline zinc–air batteries: Obstacles to commercialization. ACS Energy Lett. 2019, 4, 2259–2270. [Google Scholar] [CrossRef]
- Kim, H.-I.; Shin, H.-C. SnO additive for dendritic growth suppression of electrolytic zinc. J. Alloy. Compd. 2015, 645, 7–10. [Google Scholar] [CrossRef]
- Pei, P.; Wang, K.; Ma, Z. Technologies for extending zinc–air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324. [Google Scholar] [CrossRef]
- Jing Han, S.; Ameen, M.; Hanifah, M.F.R.; Aqsha, A.; Bilad, M.R.; Jaafar, J.; Kheawhom, S. Catalytic Evaluation of Nanoflower Structured Manganese Oxide Electrocatalyst for Oxygen Reduction in Alkaline Media. Catalysts 2020, 10, 822. [Google Scholar] [CrossRef]
- Khamsanga, S.; Nguyen, M.T.; Yonezawa, T.; Thamyongkit, P.; Pornprasertsuk, R.; Pattananuwat, P.; Tuantranont, A.; Siwamogsatham, S.; Kheawhom, S. MnO2 Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries. Int. J. Mol. Sci. 2020, 21, 4689. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ran, J.; Xia, B.; Xi, S.; Gao, D.; Wang, J. Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Lett. 2020, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khezri, R.; Jirasattayaporn, K.; Abbasi, A.; Maiyalagan, T.; Mohamad, A.A.; Kheawhom, S. Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc–Air Batteries. Energies 2020, 13, 1429. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zhang, Q.; Sun, J.; He, B.; Guo, J.; Li, Q.; Li, C.; Xie, L.; Yao, Y. Metal–organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018, 12, 9333–9341. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Wei, X.; Desai, D.; Steingart, D.; Banerjee, S. An indicator of zinc morphology transition in flowing alkaline electrolyte. J. Power Sources 2012, 211, 119–128. [Google Scholar] [CrossRef]
- Hosseini, S.; Abbasi, A.; Uginet, L.-O.; Haustraete, N.; Praserthdam, S.; Yonezawa, T.; Kheawhom, S. The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Han, S.J.; Arponwichanop, A.; Yonezawa, T.; Kheawhom, S. Ethanol as an electrolyte additive for alkaline zinc-air flow batteries. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Lao-Atiman, W.; Han, S.J.; Arpornwichanop, A.; Yonezawa, T.; Kheawhom, S. Discharge performance of zinc-air flow batteries under the effects of sodium dodecyl sulfate and pluronic F-127. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc–air batteries. ACS Appl. Mater. Interfaces 2019, 11, 28909–28917. [Google Scholar] [CrossRef]
- Gu, P.; Zheng, M.; Zhao, Q.; Xiao, X.; Xue, H.; Pang, H. Rechargeable zinc–air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651–7666. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X.; Liu, X.; Qu, S.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. J. Mater. Chem. A 2019, 7, 25449–25457. [Google Scholar] [CrossRef]
- Mainar, A.R.; Iruin, E.; Colmenares, L.C.; Blázquez, J.A.; Grande, H.J. Systematic cycle life assessment of a secondary zinc–air battery as a function of the alkaline electrolyte composition. Energy Sci. Eng. 2018, 6, 174–186. [Google Scholar] [CrossRef]
- Wongrujipairoj, K.; Poolnapol, L.; Arpornwichanop, A.; Suren, S.; Kheawhom, S. Suppression of zinc anode corrosion for printed flexible zinc-air battery. Phys. Status Solidi (b) 2017, 254, 1600442. [Google Scholar] [CrossRef]
- Jo, Y.N.; Kang, S.H.; Prasanna, K.; Eom, S.W.; Lee, C.W. Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries. Appl. Surf. Sci. 2017, 422, 406–412. [Google Scholar] [CrossRef]
- Tran, T.N.T.; Clark, M.P.; Chung, H.J.; Ivey, D. Effects of Crosslinker Concentration in Poly (Acrylic Acid)–KOH Gel Electrolyte on Performance of Zinc–Air Batteries. Batter. Supercaps 2020, 3, 409–416. [Google Scholar] [CrossRef]
- Yang, T.; Wang, W.; Li, S.; Lu, J.; Fan, W.; Zuo, X.; Nan, J. Sulfur-containing C2H2O8S2 molecules as an overall-functional electrolyte additive for high-voltage LiNi0. 5Co0. 2Mn0. 3O2/graphite batteries with enhanced performance. J. Power Sources 2020, 470, 228462. [Google Scholar] [CrossRef]
- Han, X.; Jiang, T.; Chen, X.; Jiang, D.; Xie, K.; Jiang, Y.; Wang, Y. Electrolyte additive induced fast-charge/slow-discharge process: Potassium ferricyanide and potassium persulfate for CoO-based supercapacitors. J. Colloid Interface Sci. 2020, 576, 505–513. [Google Scholar] [CrossRef]
- Beylerian, N.M.; Vardanyan, L.R.; Harutyunyan, R.S.; Vardanyan, R.L. Kinetics and mechanism of potassium persulfate decomposition in aqueous solutions studied by a gasometric method. Macromol. Chem. Phys. 2002, 203, 212–218. [Google Scholar] [CrossRef]
- Park, D.-J.; Yang, W.-G.; Jeong, H.-W.; Ryu, K.-S. Study of Zinc Compounds for Improving the Reversibility of the Zinc Anode in Zinc–Air Secondary Batteries. Bull. Korean Chem. Soc. 2017, 38, 706–710. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; He, W.; Xu, G.; Sun, R. Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications. J. Power Sources 2020, 449, 227596. [Google Scholar] [CrossRef]
- Zhang, X.L.; Jiang, Z.H.; Yao, Z.P.; Song, Y.; Wu, Z.D. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 2009, 51, 581–587. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Z.; Tian, Z.; Zhang, K.; Li, J.; Lai, Y. Effects of carboxymethyl cellulose on the electrochemical characteristics and dendrite growth of zinc in alkaline solution. J. Electrochem. Soc. 2016, 163, A1836. [Google Scholar] [CrossRef]
- Arefi, M.R.; Rezaei-Zarchi, S. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci. 2012, 13, 4340–4350. [Google Scholar] [CrossRef] [PubMed]
- Lao-atiman, W.; Olaru, S.; Arpornwichanop, A.; Kheawhom, S. Discharge performance and dynamic behavior of refuellable zinc-air battery. Sci. Data 2019, 6, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.U.; Choi, J.-Y.; Feng, K.; Park, H.W.; Chen, Z. Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries. Adv. Energy Mater. 2014, 4, 1301389. [Google Scholar] [CrossRef]
- Kronholm, J.; Riekkola, M.-L. Potassium persulfate as oxidant in pressurized hot water. Environ. Sci. Technol. 1999, 33, 2095–2099. [Google Scholar] [CrossRef]
- Zhang, S.-W.; Yin, B.-S.; Luo, Y.-Z.; Shen, L.; Tang, B.-S.; Kou, Z.; Liu, X.; Gu, D.-M.; Wang, Z.-B.; Gong, H. Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. Nano Energy 2020, 68, 104314. [Google Scholar] [CrossRef]
- Wang, D.H.; Xia, X.H.; Xie, D.; Niu, X.Q.; Ge, X.; Gu, C.D.; Wang, X.L.; Tu, J.P. Rational in-situ construction of three-dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium–sulfur batteries. J. Power Sources 2015, 299, 293–300. [Google Scholar] [CrossRef]
- Pezeshki, A.M.; Clement, J.T.; Veith, G.M.; Zawodzinski, T.A.; Mench, M.M. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 2015, 294, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Hori, N.; Kumagai, S. Electrochemical impedance spectroscopy on the performance degradation of LiFePO4/Graphite lithium-ion battery due to charge-discharge cycling under different C-rates. Energies 2019, 12, 4507. [Google Scholar] [CrossRef] [Green Version]
KPS (ppm) in Electrolyte Solution | Ecorr (V) | log Icorr (A/cm2) | αa | Rp (Ω) | CR | |
---|---|---|---|---|---|---|
0 | −1.80 | −11.46 | 0.60 | 0.68 | 261.27 | 6.31 |
450 | −1.12 | −11.82 | 0.28 | 0.48 | 518.39 | 2.76 |
900 | −1.93 | −11.16 | 0.73 | 0.87 | 250.74 | 12.60 |
1350 | −2.00 | −10.57 | 0.64 | 0.84 | 59.08 | 49.01 |
KPS Concentration | Rs (Ω) | R1 (Ω) | R2 (Ω) | Q, (S/sn) | |
---|---|---|---|---|---|
Y0 (sn/Ω) | 0 < n < 1 | ||||
0 | 1.26 ± 0.61% | 1230 ± 5.95% | 4.91 ± 0.77% | 5.91 × 10−4 ± 1.75% | 0.76 ± 0.40% |
450 | 1.22 ± 0.37% | 1333 ± 4.83% | 7.46 ± 0.44% | 4.72 × 10−4 ± 1.15% | 0.76 ± 0.21% |
900 | 1.27 ± 0.75% | 950.3 ± 5.05% | 8.02 ± 0.81% | 3.72 × 10−4 ± 0.98% | 0.79 ± 0.32% |
1350 | 1.48 ± 0.54% | 856 ± 3.12% | 13.69 ± 0.74% | 3.29 × 10−4 ± 1.98% | 0.78 ± 0.40% |
Concentration KPS (ppm) | Cycle Number | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | ||
450 | Rs(Ω) (±1%) | 2.81 | 2.52 | 2.51 | 2.45 | 2.39 | 2.30 | 2.28 | 2.17 | 2.14 | 2.12 | 2.11 |
Rct (Ω) (±1%) | 8.21 | 8.05 | 7.85 | 7.36 | 7.02 | 6.43 | 6.12 | 6.37 | 7.62 | 8.56 | 9.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezri, R.; Hosseini, S.; Lahiri, A.; Motlagh, S.R.; Nguyen, M.T.; Yonezawa, T.; Kheawhom, S. Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. Int. J. Mol. Sci. 2020, 21, 7303. https://doi.org/10.3390/ijms21197303
Khezri R, Hosseini S, Lahiri A, Motlagh SR, Nguyen MT, Yonezawa T, Kheawhom S. Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. International Journal of Molecular Sciences. 2020; 21(19):7303. https://doi.org/10.3390/ijms21197303
Chicago/Turabian StyleKhezri, Ramin, Soraya Hosseini, Abhishek Lahiri, Shiva Rezaei Motlagh, Mai Thanh Nguyen, Tetsu Yonezawa, and Soorathep Kheawhom. 2020. "Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive" International Journal of Molecular Sciences 21, no. 19: 7303. https://doi.org/10.3390/ijms21197303
APA StyleKhezri, R., Hosseini, S., Lahiri, A., Motlagh, S. R., Nguyen, M. T., Yonezawa, T., & Kheawhom, S. (2020). Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. International Journal of Molecular Sciences, 21(19), 7303. https://doi.org/10.3390/ijms21197303