Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea
Abstract
1. Introduction
2. Results
2.1. Phenotypic Variation for Salinity Tolerance Component Traits
2.2. High-Density Linkage Map
2.3. QTLs for Salinity Tolerance Component Traits
2.3.1. QTLs for Yield and Yield-Related Traits
2.3.2. QTLs for Agronomic Traits
2.4. Candidate Genes for Salinity Tolerances
3. Discussion
4. Materials and Methods
4.1. Development of RIL Population
4.2. Phenotyping for Salinity Stress
- SSI = (1 − Ys/Yp)/SI;SI = 1 − Ȳs/Ȳp [61] and stress tolerance index
- STI = Yp × Ys/Ȳp2
4.3. High Density Genotyping
4.4. Genetic Map Construction and QTL Analysis
4.5. Mining of Candidate Genes
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef]
- FAOSTAT 2018. Available online: https://www.fao.org/faostat/en/#data (accessed on 30 May 2020).
- Turner, N.C.; Abbo, S.; Berger, J.D.; Chaturvedi, S.K.; French, R.J.; Ludwig, C.; Mannur, D.M.; Singh, S.J.; Yadava, H.S. Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J. Exp. Bot. 2007, 58, 187–194. [Google Scholar] [CrossRef]
- Samineni, S.; Siddique, K.H.M.; Gaur, P.M.; Colmer, T.D. Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environ. Exp. Bot. 2011, 71, 260–268. [Google Scholar] [CrossRef]
- Muehlbauer, F.J.; Sarker, A. Economic importance of chickpea: Production, value, and world trade. In The Chickpea Genome; Varshney, R.K., Thudi, M., Muehlbauer, F., Eds.; Springer: Cham, Germany, 2017; pp. 5–12. [Google Scholar] [CrossRef]
- Flowers, T.J.; Gaur, P.M.; Gowda, C.L.; Krishnamurthy, L.; Samineni, S.; Siddique, K.H.; Turner, N.C.; Vadez, V.; Varshney, R.K.; Colmer, T.D. Salt sensitivity in chickpea. Plant Cell Environ. 2010, 33, 490–509. [Google Scholar] [CrossRef]
- Atieno, J.; Li, Y.; Langridge, P.; Dowling, K.; Brien, C.; Berger, B.; Varshney, R.K.; Sutton, T. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci. Rep. 2017, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- van Hoorn, J.W.; Katerji, N.; Hamdy, A.; Mastrorilli, M. Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric. Water Manag. 2001, 51, 87–98. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.A.; Arteca, R.N.; Foolad, M.R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 2010, 29, 162–190. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Garg, N.; Singla, P. Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant. Growth Regul. 2016, 80, 5–22. [Google Scholar] [CrossRef]
- Khan, H.A.; Siddique, K.H.M.; Colmer, T.D. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: Sucrose infusion at the reproductive stage improves salt tolerance. J. Exp. Bot. 2017, 68, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Loreto, F.; Cornic, G.; Sharkey, T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004, 6, 269–279. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Yamada, S.T.; Yamaguchi, E.; Rueda-Puente, E.; Avila-Serrano, N.; Garcia-Hernandez, J.L.; Lopez-Aguilar, R.; Troyo-Dieguez, E.; Nieto-Garibay, A. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci. 2007, 193, 413–421. [Google Scholar] [CrossRef]
- He, Y.; Fu, J.; Yu, C.; Wang, X.; Jiang, Q.; Hong, J.; Lu, K.; Xue, G.; Yan, C.; James, A.; et al. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. J. Exp. Bot. 2015, 66, 6877–6889. [Google Scholar] [CrossRef]
- Patil, G.; Do, T.; Vuong, T.D.; Valliyodan, B.; Lee, J.D.; Chaudhary, J.; Shannon, J.G.; Nguyen, H.T. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 2016, 6, 19199. [Google Scholar] [CrossRef] [PubMed]
- Lõpez-Aguilar, R.; Orduňo-Cryz, A.; Lucero-Arce, A.; Murillo-Amador, B.; Troyo-Diéguez, E. Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Sci. Plant Nutr. 2003, 49, 329–336. [Google Scholar] [CrossRef]
- Manchanda, G.; Garg, N. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 2008, 30, 595–618. [Google Scholar] [CrossRef]
- Sehrawat, N.; Bhat, K.V.; Sairam, R.K.; Jaiwal, P.K. Identification of salt resistant wild relatives of mungbean (Vigna radiata L. Wilczek). Asian J. Plant Sci. Res. 2013, 3, 41–49. [Google Scholar]
- Vadez, V.; Krishnamurthy, L.; Serraj, R.; Gaur, P.M.; Upadhyaya, H.D.; Hoisington, D.A.; Varshney, R.K.; Turner, N.C.; Siddique, K.H.M. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res. 2007, 104, 123–129. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Turner, N.C.; Gaur, P.M.; Upadhyaya, H.D.; Varshney, R.K.; Siddique, K.H.M.; Vadez, V. Consistent variation across years in salinity resistance in a diverse range of chickpea (Cicer arietinum L.) genotypes. J. Agron. Crop Sci. 2011, 197, 214–227. [Google Scholar] [CrossRef]
- Turner, N.C.; Colmer, T.D.; Quealy, J.; Pushpavalli, R.; Krishnamurthy, L.; Kaur, J.; Singh, G.; Siddique, K.H.M.; Vadez, V. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 2013, 365, 347–361. [Google Scholar] [CrossRef]
- Hamwieh, A.; Tuyen, D.; Cong, H.; Benite, E.; Takahashi, R.; Xu, D. Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 2011, 179, 451–459. [Google Scholar] [CrossRef]
- Arraouadi, S.; Badri, M.; Abdelly, C.; Huguet, T.; Aouani, M.E. QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula recombinant inbred lines. Genomics 2012, 99, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Ribot, S.; Dolstra, O.; Niks, R.; Visser, R.F.; Linden, C.G. Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum vulgare L.). Mol. Breed. 2013, 31, 137–152. [Google Scholar] [CrossRef]
- Genc, Y.; Oldach, K.; Gogel, B.; Wallwork, H.; McDonald, G.K.; Smith, A.B. Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol. Breed. 2013, 32, 39–59. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef]
- Roorkiwal, M.; Jain, A.; Kale, S.M.; Doddamani, D.; Chitikineni, A.; Thudi, M.; Varshney, R.K. Development and evaluation of high-density Axiom®CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol. J. 2018, 16, 890–901. [Google Scholar] [CrossRef]
- Sabbavarapu, M.M.; Sharma, M.; Chamarthi, S.K.; Swapna, N.; Rathore, A.; Thudi, M.; Gaur, P.M.; Pande, S.; Singh, S.; Kaur, L.; et al. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013, 193, 121–133. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S.; et al. Genetic dissection of drought tolerance in chickpea (Cicerarietinum, L.). Theor. Appl. Genet. 2014, 127, 445–462. [Google Scholar] [CrossRef]
- Kale, S.M.; Jaganathan, D.; Ruperao, P.; Chen, C.; Punna, R.; Kudapa, H.; Thudi, M.; Roorkiwal, M.; Katta, M.A.; Doddamani, D.; et al. Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci. Rep. 2015, 19, 15296. [Google Scholar] [CrossRef] [PubMed]
- Samineni, S. Physiology, Genetics and Molecular Mapping of Salt Tolerance in Chickpea (Cicer arietinum L.). Master’s Thesis, The University of Western Australia, Perth, Australia, 2010. [Google Scholar]
- Pushpavalli, R.; Krishnamurthy, L.; Thudi, M.; Gaur, P.M.; Rao, M.V.; Siddique, K.H.; Colmer, T.D.; Turner, N.C.; Varshney, R.K.; Vadez, V. Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol. 2015, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Vadez, V.; Krishnamurthy, L.; Thudi, M.; Anuradha, C.; Colmer, T.D.; Turner, N.C.; Siddique, K.H.M.; Gaur, P.M.; Varshney, R.K. Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol. Breed. 2012, 30, 9–21. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective Selection Criteria for Assessing Plant Stress Tolerance. In Adaptation of Food Crops to Temperature and Water Stress; AVRDC: Taipei, Taiwan, 1992; Volume 410, pp. 257–270. ISBN 929058081X. [Google Scholar]
- Pandit, A.; Rai, V.; Bal, S.; Sinha, S.; Kumar, V.; Chauhan, M.; Gautam, R.K.; Singh, R.; Sharma, P.C.; Singh, A.K.; et al. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol. Genet. Genom. 2010, 284, 121–136. [Google Scholar] [CrossRef]
- Tiwari, S.; Sl, K.; Kumar, V.; Singh, B.; Rao, A.R.; Mithra Sv, A.; Rai, V.; Singh, A.K.; Singh, N.K. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS ONE 2016, 11, e0153610. [Google Scholar] [CrossRef]
- Shanmugavadivel, P.S.; Sv, A.M.; Prakash, C.; Ramkumar, M.K.; Tiwari, R.; Mohapatra, T.; Singh, N.K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 2017, 10, 28. [Google Scholar]
- Raman, A.; Verulkar, S.; Mandal, N.; Variar, M.; Shukla, V.; Dwivedi, J.; Singh, B.; Singh, O.; Swain, P.; Mall, A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 31. [Google Scholar] [CrossRef]
- Dossa, K.; Mmadi, M.A.; Zhou, R.; Liu, A.; Yang, Y.; Diouf, D.; You, J.; Zhang, X. Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis. AoB Plants 2020, 12, plz081. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef]
- Dai, X.; Xu, Y.; Ma, Q.; Xu, W.; Wang, T.; Xue, Y.; Chong, K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 2007, 143, 1739–1751. [Google Scholar] [CrossRef]
- Agarwal, P.; Khurana, P. TaZnF, a C3HC4 type RING zinc finger protein from Triticum aestivum is involved in dehydration and salinity stress. J. Plant Biochem. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Wu, W.; Cheng, Z.; Liu, M.; Yang, X.; Qiu, D. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS ONE 2014, 9, e99352. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Tsai, M.C.; Wu, S.S.; Chang, I.F. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Bot. Stud. 2019, 60, 16. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, Z.; Lu, H.; Huo, L.; Wang, Z.; Wang, Y.; Ji, X. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants 2019, 8, 221. [Google Scholar] [CrossRef]
- An, J.P.; Yao, J.F.; Xu, R.R.; You, C.X.; Wang, X.F.; Hao, Y.J. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiol. Plant. 2018, 164, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, W.; Jiang, H.; Wang, Y.; Gao, H.; Liu, M.; Chen, Q.; Lai, Y.; He, C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J. Exp. Bot. 2017, 68, 2717–2729. [Google Scholar] [CrossRef]
- Radkova, M.; Revalska, M.; Kertikova, D.; Iantcheva, A. Zinc finger CCHC-type protein related with seed size in model legume species Medicago truncatula. Biotechnol. Biotechnol. Equip. 2019, 33, 278–285. [Google Scholar] [CrossRef]
- Ma, Y.C.; Augé, R.M.; Dong, C.; Cheng, Z.M. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: A meta-analysis. Plant Biotechnol. J. 2017, 15, 162–173. [Google Scholar] [CrossRef]
- Shkolnik, D.; Finkler, A.; Pasmanik-Chor, M.; Fromm, H. Calmodulin-binding transcription activator 6: A key regulator of Na+ homeostasis during germination. Plant Physiol. 2019, 180, 1101–1118. [Google Scholar] [CrossRef]
- Schmöckel, S.M.; Lightfoot, D.J.; Razali, R.; Tester, M.; Jarvis, D.E. Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Front. Plant Sci. 2017, 8, 1023. [Google Scholar] [CrossRef]
- Marin, K.; Suzuki, I.; Yamaguchi, K.; Ribbeck, K.; Yamamoto, H.; Kanesaki, Y.; Hagemann, M.; Murata, N. Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 2003, 100, 9061–9066. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Singh, V.K.; Hickey, J.M.; Xun, X.; Marshall, D.F.; Wang, J.; Edwards, D.; Ribaut, J.M. Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci. 2016, 21, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K.; Roorkiwal, M.; Singh, V.K.; Ramalingam, A.; Kudapa, H.; Thudi, M.; Chitikineni, A.; Rathore, A.; Varshney, R.K. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Front. Plant Sci. 2016, 7, 455. [Google Scholar] [CrossRef] [PubMed]
- Roorkiwal, M.; Bharadwaj, C.; Barmukh, R.; Dixit, G.P.; Thudi, M.; Gaur, P.M.; Chaturvedi, S.K.; Fikre, A.; Hamwieh, A.; Kumar, S.; et al. Integrating genomics for chickpea improvement: Achievements and opportunities. Theor. Appl. Genet. 2020, 133, 1703–1720. [Google Scholar] [CrossRef] [PubMed]
- Foolad, M.R. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Org. 2004, 76, 101–119. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, A.; Mithra, S.V.; Krishnamurthy, S.L.; Parida, S.K.; Jain, S.; Tiwari, K.K.; Kumar, P.; Rao, A.R.; Sharma, S.K.; et al. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res. 2015, 22, 133–145. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 892–912. [Google Scholar] [CrossRef]
- Mahajan, S.; Pandey, G.K.; Tuteja, N. Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Arch. Biochem. Biophys. 2008, 471, 146–158. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.A.; Benková, E. Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 2013, 4, 451. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015, 20, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Krosse, S.; Achard, P.; van Dam, N.M.; Bede, J. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory. J. Exp. Bot. 2014, 65, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Urao, T.; Yakubov, B.; Satoh, R.; Yamaguchi-Shinozaki, K.; Seki, M.; Hirayama, T.; Shinozaki, K. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell. 1999, 11, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.S.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 20623–20628. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.; Herde, M.; Romeis, T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiol. 2013, 163, 523–530. [Google Scholar] [CrossRef]
- Teige, M.; Scheikl, E.; Eulgem, T.; Dóczi, R.; Ichimura, K.; Shinozaki, K.; Dangl, J.L.; Hirt, H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 2004, 15, 141–152. [Google Scholar] [CrossRef]
- Jaspers, P.; Blomster, T.; Brosché, M.; Salojärvi, J.; Ahlfors, R.; Vainonen, J.P.; Reddy, R.A.; Immink, R.; Angenent, G.; Turck, F.; et al. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J. 2009, 60, 268–279. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, J.; Yang, Y.; Chen, C.; Liu, Y.; Jin, X.; Chen, L.; Li, X.; Deng, X.W.; Schumaker, K.S.; et al. Ubiquitin-specific protease16 modulates salt tolerance in Arabidopsis by regulating Na(+)/H(+) antiport activity and serine hydroxymethyltransferase stability. Plant Cell. 2012, 24, 5106. [Google Scholar] [CrossRef]
- Singh, V.K.; Khan, A.W.; Jaganathan, D.; Thudi, M.; Roorkiwal, M.; Takagi, H.; Garg, V.; Kumar, V.; Chitikineni, A.; Gaur, P.M.; et al. QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol. J. 2016, 14, 2110–2119. [Google Scholar] [CrossRef]
- Jain, A.; Roorkiwal, M.; Kale, S.; Garg, V.; Yadala, R.; Varshney, R.K. InDel markers: An extended marker resource for molecular breeding in chickpea. PLoS ONE 2019, 14, 3. [Google Scholar] [CrossRef]
- Van Ooijen, J.W. JoinMap 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations; Kyazma BV: Wageningen, The Netherlands, 2006. [Google Scholar]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Bajaj, D.; Upadhyaya, H.D.; Khan, Y.; Das, S.; Badoni, S.; Shree, T.; Kumar, V.; Tripathi, S.; Gowda, C.L.; Singh, S.; et al. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci. Rep. 2015, 5, 9264. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.S.; Bajaj, D.; Das, S.; Kujur, A.; Kumar, V.; Singh, M.; Bansal, K.C.; Tyagi, A.K.; Parida, S.K. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res. 2014, 21, 695. [Google Scholar] [CrossRef] [PubMed]
S. No. | RILs | ICCV 10 | DCP 92-3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Traits | Treatment | Minimum | Maximum | Range | Mean | SD * | CV ** | |||
Karnal 2015–16 | ||||||||||
1 | PH (cm) | Control | 29 | 41 | 12 | 37.1 | 6.2 | 0.2 | 46.3 | 51.0 |
2 | Saline | 27.5 | 29.5 | 2 | 27.3 | 4.5 | 0.2 | 31.0 | 22.0 | |
3 | NB | Control | 8 | 9 | 1 | 9.2 | 2.7 | 0.3 | 8.6 | 6.5 |
4 | Saline | 4 | 5.5 | 1.5 | 4.1 | 1.3 | 0.3 | 5.0 | 3.0 | |
5 | PPP | Control | 61 | 87 | 26 | 65.1 | 21.9 | 0.3 | 84.0 | 32.0 |
6 | Saline | 12 | 35 | 23 | 22.7 | 12.3 | 0.5 | 39.0 | 10.0 | |
7 | 100SW (g) | Control | 12 | 12.8 | 0.8 | 13.7 | 1.7 | 0.1 | 11.4 | 12.9 |
8 | Saline | 6.3 | 10 | 3.7 | 8.7 | 2.2 | 0.3 | 12.2 | 10.2 | |
9 | YPP (g) | Control | 2.0 | 27.2 | 25.2 | 11.1 | 4.8 | 0.4 | 17.2 | 18.8 |
10 | Saline | 0.29 | 11.8 | 11.5 | 2.8 | 2.2 | 0.8 | 7.2 | 1.0 | |
11 | SSI_YP | NA | 1 | 1 | 0 | 1.0 | 0.1 | 0.1 | 1.0 | 1.0 |
12 | STI_YP | NA | 0 | 0.1 | 0.1 | 0.1 | 0.1 | 1.1 | 0.2 | 0.0 |
13 | SSI_100SW | NA | 0.3 | 1 | 0.7 | 0.7 | 0.3 | 0.4 | −0.1 | 0.4 |
14 | STI_100SW | NA | 0.4 | 0.6 | 0.2 | 0.6 | 0.2 | 0.3 | 0.7 | 0.7 |
Karnal 2016–17 | ||||||||||
1 | PH (cm) | Control | 48.3 | 54.7 | 6.4 | 46.5 | 8.7 | 0.2 | 58.67 | 53.33 |
2 | Saline | 27.5 | 39.3 | 11.8 | 31.6 | 10.7 | 0.3 | 29.00 | 22.00 | |
3 | NB | Control | 8.1 | 9 | 0.9 | 9.8 | 3.3 | 0.3 | 7.33 | 7.00 |
4 | Saline | 2.3 | 4.3 | 2 | 2.6 | 7.3 | 2.9 | 2.33 | 2.00 | |
5 | PPP | Control | 14 | 164 | 150 | 50.9 | 21.8 | 0.4 | 56.00 | 45.00 |
6 | Saline | 19.7 | 30 | 10.3 | 20.9 | 11.1 | 0.5 | 18.33 | 27.33 | |
7 | 100SW (g) | Control | 11.6 | 13.7 | 2.1 | 13.7 | 1.7 | 0.1 | 11.35 | 12.95 |
8 | Saline | 4.4 | 8.8 | 4.4 | 5.9 | 7.7 | 1.3 | 13.10 | 7.15 | |
9 | YPP (g) | Control | 2.6 | 26.6 | 24 | 11.6 | 4.9 | 0.4 | 10.20 | 11.47 |
10 | Saline | 0.18 | 7.8 | 7.6 | 1.3 | 0.9 | 9.1 | 1.09 | 1.19 | |
11 | SSI_YP | NA | 0.998 | 1.011 | 0.013 | 1.0 | 0.0 | 0.0 | 1.65 | 1.57 |
12 | STI_YP | NA | 0.013 | 0.028 | 0.015 | 0.0 | 0.0 | 0.7 | 0.20 | 0.18 |
13 | SSI_100SW | NA | 0.7 | 1.2 | 0.5 | 1.0 | 0.3 | 0.3 | 0.21 | 0.61 |
14 | STI_100SW | NA | 0.3 | 0.7 | 0.4 | 0.5 | 0.3 | 0.2 | 1.05 | 1.05 |
PH_C | NB_C | PPP_C | 100SW_C | YPP_C | PH_S | NB_S | PPP_S | 100SW_S | YPP_S | SSI_YP | STI_YP | SSI_100SW | STI_100SW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–16 | ||||||||||||||
PH_C | 1 | |||||||||||||
NB_C | 0.11 ns | 1 | ||||||||||||
PPP_C | 0.07 ns | −0.05 ns | 1 | |||||||||||
100SW_C | −0.12 ns | −0.04 ns | −0.10 ns | 1 | ||||||||||
YPP_C | 0.27 *** | −0.23 ** | −0.03 ns | −0.03 ns | 1 | |||||||||
PH_S | −0.01 ns | 0.00 ns | −0.05 ns | −0.10 ns | −0.07 ns | 1 | ||||||||
NB_S | 0.01 ns | −0.07 ns | 0.03 ns | −0.09 ns | −0.07 ns | 0.24 ** | 1 | |||||||
PPP_S | 0.00 ns | −0.17 * | 0.13 ns | −0.07 ns | 0.08 ns | 0.31 *** | 0.37 *** | 1 | ||||||
100SW_S | 0.18 * | −0.20 * | −0.04 ns | 0.22 ** | 0.06 ns | −0.02 ns | 0.03 ns | 0.17 * | 1 | |||||
YPP_S | 0.01 ns | −0.09 ns | 0.04 ns | −0.02 ns | −0.14 ns | 0.44 *** | 0.15 ns | 0.43 *** | 0.33 *** | 1 | ||||
SSI_YP | 0.20 ** | −0.13 ns | 0.00 ns | −0.07 ns | 0.52 *** | −0.20 * | −0.02 ns | −0.14 ns | −0.19 * | −0.55 *** | 1 | |||
STI_YP | 0.16 * | −0.24 ** | 0.06 ns | −0.02 ns | 0.42 *** | 0.32 *** | 0.11 ns | 0.43 *** | 0.33 *** | 0.68 *** | 0.02 ns | 1 | ||
SSI_100SW | −0.22 ** | 0.19 * | 0.00 ns | 0.25 ** | −0.08 ns | −0.03 ns | −0.08 ns | −0.19 * | −0.88 *** | −0.34 *** | 0.15 * | −0.32 *** | 1 | |
STI_100SW | 0.12 ns | −0.17 * | −0.08 ns | 0.57 *** | 0.07 ns | −0.06 ns | −0.02 ns | 0.10 ns | 0.91 *** | 0.24 ** | −0.15 * | 0.27 *** | −0.62 *** | 1 |
2016–17 | ||||||||||||||
PH_C | 1 | |||||||||||||
NB_C | −0.10 ns | 1 | ||||||||||||
PPP_C | 0.67 *** | −0.19 ** | 1 | |||||||||||
100SW_C | −0.10 ns | −0.03 ns | −0.06 ns | 1 | ||||||||||
YPP_C | 0.67 *** | −0.19 ** | 0.67 *** | −0.06 ns | 1 | |||||||||
PH_S | 0.07 ns | 0.10 ns | 0.01 ns | −0.03 ns | 0.09 ns | 1 | ||||||||
NB_S | 0.05 ns | −0.18 * | 0.07 ns | 0.19 ** | 0.18 * | 0.33 *** | 1 | |||||||
PPP_S | 0.12 ns | −0.13 ns | 0.14 * | 0.00 ns | 0.16 * | 0.47 *** | 0.48 *** | 1 | ||||||
100SW_S | −0.06 ns | −0.15 * | 0.05 ns | 0.06 ns | 0.01 ns | 0.11 ns | 0.08 ns | 0.07 ns | 1 | |||||
YPP_S | −0.15 * | −0.13 ns | 0.01 ns | 0.00 ns | −0.06 ns | 0.09 ns | 0.00 ns | 0.10 ns | 0.28 *** | 1 | ||||
SSI_YP | 0.45 *** | 0.00 ns | 0.31 *** | −0.13 ns | 0.52 *** | −0.06 ns | 0.09 ns | 0.02 ns | −0.17 * | −0.78 *** | 1 | |||
STI_YP | 0.25 *** | −0.22 ** | 0.38 *** | −0.02 ns | 0.50 *** | 0.13 ns | 0.11 ns | 0.17 * | 0.29 *** | 0.78 *** | −0.29 *** | 1 | ||
SSI_100SW | 0.01 ns | 0.13 ns | −0.07 ns | 0.31 *** | −0.05 ns | −0.11 ns | −0.03 ns | −0.07 ns | −0.92 *** | −0.26 *** | 0.10 ns | −0.29 *** | 1 | |
STI_100SW | −0.09 ns | −0.15 * | 0.02 ns | 0.45 *** | −0.02 ns | 0.09 ns | 0.13 ns | 0.07 ns | 0.91 *** | 0.25 *** | −0.22 ** | 0.25 *** | −0.69 *** | 1 |
S. No. | LGs | Genetic Distance (cM) | Number of Markers Mapped | Inter Marker Distance (cM) |
---|---|---|---|---|
1 | CaLG1 | 147.69 | 327 | 0.5 |
2 | CaLG2 | 120.4 | 192 | 0.6 |
3 | CaLG3 | 98.9 | 158 | 0.6 |
4 | CaLG4 | 87 | 56 | 1.6 |
5 | CaLG5 | 74 | 86 | 0.9 |
6 | CaLG6 | 270.75 | 476 | 0.6 |
7 | CaLG7 | 262 | 487 | 0.5 |
8 | CaLG8 | 45.6 | 74 | 0.6 |
Total | 1106.34 | 1856 | 0.6 |
Trait Name | QTL Name | Year | Treatment | LG | Position (cM) | Marker Interval | LOD Value | PVE (%) | Additive Effect | Allele-Contributing Parent |
---|---|---|---|---|---|---|---|---|---|---|
Yield and Yield-Related Traits | ||||||||||
SSI_YP | qSSIYP6.1 | 2016–17 | – | CaLG06 | 226.1 | AX-123640392–AX-123640389 | 5.7 | 28.4 | 0.1 | DCP92-3 |
qSSIYP6.1 | 2015–16 | – | CaLG06 | 226.1 | AX-123640392–AX-123640389 | 4.8 | 12.2 | 0.1 | DCP92-3 | |
qSSIYP3.1 | 2016–17 | – | CaLG03 | 50.79 | AX-123659975–AX-123622699 | 5.3 | 10.0 | 0 | DCP92-3 | |
qSSIYP6.2 | 2016–17 | – | CaLG06 | 260.98 | AX-123635094–AX-123635091 | 3.8 | 8.3 | 0 | DCP92-3 | |
SSI_100SW | qSSI100SW3.1 | 2016–17 | – | CaLG03 | 50.79 | AX-123659975–AX-123622699 | 4.6 | 10.1 | 0.1 | DCP92-3 |
qSSI100SW2.1 | 2015–16 | – | CaLG02 | 62.91 | AX-123659415–AX-123620733 | 3.7 | 8.9 | 0.1 | DCP92-3 | |
STI_YP | qSTIYP5.1 | 2016–17 | – | CaLG05 | 20.31 | AX-123653399–AX-123653409 | 4.8 | 8.6 | 0 | DCP92-3 |
qSTIYP6.1 | 2016–17 | – | CaLG06 | 268.65 | AX-123640437–AX-123655585 | 4.3 | 8.1 | 0 | DCP92-3 | |
STI_100SW | qSTI100SW3.1 | 2016–17 | – | CaLG03 | 50.79 | AX-123659975–AX-123622699 | 8.7 | 17.1 | −0.1 | ICCV10 |
100SW | q100SWS3.1 | 2016–17 | Saline | CaLG03 | 50.79 | AX-123659975–AX-123622699 | 6.9 | 13.9 | −0.8 | ICCV10 |
q100SWS3.1 | 2015–16 | CaLG03 | 56.21 | AX-123641496–AX-123622502 | 3.1 | 8.8 | −0.7 | ICCV10 | ||
q100SWS2.1 | 2015–16 | CaLG02 | 39.16 | AX-123620430–AX-123659350 | 3.4 | 7.7 | −0.6 | ICCV10 | ||
q100SWC5.1 | 2015–16 | Control | CaLG05 | 58.7 | AX-123631523–AX-123631537 | 3.2 | 10.1 | −0.9 | ICCV10 | |
q100SWC7.1 | 2015–16 | CaLG07 | 92.67 | AX-123636120–AX-123636108 | 3 | 7.8 | 0.8 | DCP92-3 | ||
YPP | qYPPS6.1 | 2016–17 | Saline | CaLG06 | 270.65 | AX-123635072–AX-123640437 | 3.5 | 7.1 | 0.2 | DCP92-3 |
qYPPC6.1 | 2015–16 | Control | CaLG06 | 236.66 | AX-123655575–AX-123663343 | 6.5 | 13.8 | −0.8 | ICCV10 | |
qYPPC5.1 | 2015–16 | CaLG05 | 20.31 | AX-123653409–AX-123653399 | 4.7 | 10.2 | 7.8 | DCP92-3 | ||
qYPPC5.1 | 2016–17 | CaLG05 | 20.31 | AX-123653399–AX-123653409 | 4.9 | 8.7 | 7.4 | DCP92-3 | ||
qYPPC7.1 | 2015–16 | CaLG02 | 120.16 | AX-123620346–AX-123620222 | 3.2 | 6.5 | 6.7 | DCP92-3 | ||
qYPPC4.1 | 2016–17 | CaLG04 | 87.63 | AX-123630936–AX-123652553 | 3.7 | 6.5 | 6.5 | DCP92-3 | ||
PPP | qPPP8.1 | 2015–16 | Saline | CaLG08 | 36.06 | AX-123638292–AX-123664233 | 3.3 | 8.1 | 3.6 | DCP92-3 |
Agronomic traits | ||||||||||
PH | qPHC5.2 | 2016–17 | Saline | CaLG05 | 60.33 | AX-123653281–AX-123631517 | 4.1 | 10.0 | 3.6 | DCP92-3 |
qPHC5.1 | 2016–17 | Control | CaLG05 | 16.55 | AX-123662454–AX-123631761 | 6.1 | 11.8 | 3.9 | DCP92-3 | |
qPHC7.1 | 2015–16 | CaLG07 | 230.14 | AX-123635844–AX-123655878 | 3.8 | 9.2 | 8.9 | DCP92-3 | ||
qPHC6.1 | 2015–16 | CaLG06 | 44.23 | AX-123654072–AX-123633446 | 3.4 | 8.1 | −4.9 | ICCV10 | ||
NB | qNBC8.1 | 2015–16 | Control | CaLG08 | 44.91 | AX-123638389–AX-123638445 | 5.5 | 12.7 | −1.7 | ICCV10 |
qNBC8.2 | 2015–16 | CaLG08 | 10.22 | AX-123657789–AX-123638459 | 4 | 8.9 | 1.4 | DCP92-3 | ||
qNBC8.3 | 2016–17 | CaLG08 | 44.91 | AX-123638389–AX-123638445 | 3.5 | 6.1 | −1.4 | ICCV10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soren, K.R.; Madugula, P.; Kumar, N.; Barmukh, R.; Sengar, M.S.; Bharadwaj, C.; Sharma, P.C.; Singh, S.; Bhandari, A.; Singh, J.; et al. Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. Int. J. Mol. Sci. 2020, 21, 5058. https://doi.org/10.3390/ijms21145058
Soren KR, Madugula P, Kumar N, Barmukh R, Sengar MS, Bharadwaj C, Sharma PC, Singh S, Bhandari A, Singh J, et al. Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences. 2020; 21(14):5058. https://doi.org/10.3390/ijms21145058
Chicago/Turabian StyleSoren, Khela Ram, Praveen Madugula, Neeraj Kumar, Rutwik Barmukh, Meenu Singh Sengar, Chellapilla Bharadwaj, Parbodh Chander Sharma, Sarvjeet Singh, Aditi Bhandari, Jogendra Singh, and et al. 2020. "Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea" International Journal of Molecular Sciences 21, no. 14: 5058. https://doi.org/10.3390/ijms21145058
APA StyleSoren, K. R., Madugula, P., Kumar, N., Barmukh, R., Sengar, M. S., Bharadwaj, C., Sharma, P. C., Singh, S., Bhandari, A., Singh, J., Sanwal, S. K., Pal, M., P.R., S. P., Mann, A., Sagurthi, S. R., PS, S., Siddique, K. H. M., Singh, N. P., Roorkiwal, M., & Varshney, R. K. (2020). Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 21(14), 5058. https://doi.org/10.3390/ijms21145058