Development of Specific Thinopyrum Cytogenetic Markers for Wheat-Wheatgrass Hybrids Using Sequencing and qPCR Data
Abstract
1. Introduction
2. Results
2.1. Bioinformatic Analysis of the Thinopyrum Ponticum Genome. The Search of the TRs and Primer Design
2.2. qPCR Analysis of the TANDEM REPEATs
2.3. FISH/GISH Experiments
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Sequencing and Bioinformatics Analysis of Thinopyrum Ponticum 1158A/19
4.3. Real-Time qPCR
4.4. Fluorescence In Situ Hybridization (FISH) and Genome In Situ Hybridization (GISH)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
WWGH | wheat–wheatgrass hybrid |
qPCR | quantitative polymerase chain reaction |
BAC | bacterial artificial chromosome |
FISH | fluorescence in situ hybridization |
GISH | genomic in situ hybridization |
mcGISH | multicolor genomic in situ hybridization |
References
- Lopes, M.; El-Basyoni, I.; Baenziger, P.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Liu, J.; Rasheed, A.; He, Z.; Imtiaz, M.; Arif, A.; Mahmood, T.; Ghafoor, A.; Siddiqui, S.; Ilyas, M.; Wen, W.; et al. Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor. Appl. Genet. 2019, 132, 2509–2523. [Google Scholar] [CrossRef] [PubMed]
- Dobrotvorskaya, T.; Martynov, S.; Pukhalskyi, V. Trends in genetic diversity change of spring bread wheat cultivars released in Russia in 1929–2003. Russ. J. Genet. 2004, 40, 1245–1257. [Google Scholar] [CrossRef]
- Petrovic, S.; Dimitrijevic, M. Genetic erosion of diversity in cereals. Genetika 2012, 44, 217–226. [Google Scholar] [CrossRef]
- Balfourier, F.; Bouchet, S.; Robert, S.; De Oliveira, R.; Rimbert, H.; Kitt, J.; Choulet, F.; Paux, E. Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. 2019, 5, eaav0536. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Bubeck, D.; Nelson, B.; Stanek, J.; Gerke, J. Genetic diversity and modern plant breeding. In Genetic Diversity and Erosion in Plants; Springer: Cham, Switzerland, 2015; pp. 55–88. [Google Scholar]
- Frankin, S.; Kunta, S.; Abbo, S.; Sela, H.; Goldberg, B.; Bonfil, D.; Levy, A.; Avivi-Ragolsky, N.; Nashef, K.; Roychowdhury, R.; et al. The Israeli–Palestinian wheat landraces collection: Restoration and characterization of lost genetic diversity. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef]
- Wulff, B.; Moscou, M. Strategies for transferring resistance into wheat: From wide crosses to GM cassettes. Front. Plant Sci. 2014, 5, 692. [Google Scholar] [CrossRef]
- Motsnyj, I.; Nargan, T.; Jeryniak, M.; Lyfenko, S. Application of derivatives of incomplete wheat-wild-rye amphiploid (WWRA) Elytricum fertile in selection of winter soft wheat. Visnyk Agrar. Nauk. 2017, 95, 45–50. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Gill, B.; Dyck, P. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 1993, 86, 141–149. [Google Scholar] [CrossRef]
- Dyck, P.; Friebe, B. Evaluation of leaf rust resistance from wheat chromosomal translocation lines. Crop Sci. 1993, 33, 687–690. [Google Scholar] [CrossRef]
- Friebe, B.; Qi, L.; Wilson, D.; Chang, Z.; Seifers, D.; Martin, T.; Fritz, A.; Gill, B. Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci. 2009, 49, 1221–1226. [Google Scholar] [CrossRef]
- Li, H.; Wang, X. Thinopyrum ponticum and Th. intermedium: The promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genom. 2009, 36, 557–565. [Google Scholar] [CrossRef]
- Nie, L.; Yang, Y.; Zhang, J.; Fu, T. Disomic chromosome addition from Thinopyrum intermedium to bread wheat appears to confer stripe rust resistance. Euphytica 2019, 215, 56. [Google Scholar] [CrossRef]
- Salina, E.; Adonina, I.; Badaeva, E.; Kroupin, P.; Stasyuk, A.; Leonova, I.; Shishkina, A.; Divashuk, M.; Starikova, E.; Khuat, T.; et al. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica 2015, 204, 91–101. [Google Scholar] [CrossRef]
- Kroupin, P.; Divashuk, M.; Karlov, G. Gene resources of perennial wild cereals involved in breeding o improve wheat crop. Sel’skokhozyaistvennaya Biol. 2019, 54, 409–425. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, Z.; Chen, L.; Xu, S.; Guo, J.; et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, eaba5435. [Google Scholar] [CrossRef]
- Tang, S.; Li, Z.; Jia, X.; Larkin, P. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor. Appl. Genet. 2000, 100, 344–352. [Google Scholar] [CrossRef]
- Fedak, G.; Han, F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet. Genome Res. 2005, 109, 360–367. [Google Scholar] [CrossRef]
- Zhang, P.; Dundas, I.; Xu, S.; Friebe, B.; McIntosh, R.; Raupp, W. Chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. Methods Mol. Biol. 2017, 1659, 163–172. [Google Scholar]
- Li, J.; Chen, Q.; Zhang, P.; Lang, T.; Hoxha, S.; Li, G.; Yang, Z. Comparative FISH and molecular identification of new stripe rust resistant wheat-Thinopyrum intermedium ssp. trichophorum introgression lines. Crop J. 2019, 7, 819–829. [Google Scholar] [CrossRef]
- Singh, A.; Zhang, P.; Dong, C.; Li, J.; Singh, S.; Trethowan, R.; Sharp, P. Development and molecular cytogenetic characterization of Thinopyrum bessarabicum introgression lines in hexaploid and tetraploid wheats. Theor. Appl. Genet. 2020, 133, 2117–2130. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Wang, Y.; Wang, Y.; Chen, C.; Ji, W. Molecular cytogenetic identification of two wheat–Thinopyrum ponticum substitution lines conferring stripe rust resistance. Mol. Breed. 2019, 39, 143. [Google Scholar] [CrossRef]
- Turner, M.; DeHaan, L.; Jin, Y.; Anderson, J. Wheatgrass-wheat partial amphiploids as a novel source of stem rust and fusarium head blight resistance. Crop Sci. 2013, 53, 1994–2005. [Google Scholar] [CrossRef]
- Krupin, P.; Divashuk, M.; Belov, V.; Zhemchuzhina, A.; Kovalenko, E.; Upelniek, V.; Karlov, G. Investigation of intermediary wheat-Agropyron hybrids on resistance to leaf rust. Sel’skokhozyaistvennaya Biol. 2013, 1, 68–73. [Google Scholar] [CrossRef]
- Kocheshkova, A.; Kroupin, P.; Bazhenov, M.; Karlov, G.; Pochtovyy, A.; Upelniek, V.; Belov, V.; Divashuk, M. Pre-harvest sprouting resistance and haplotype variation of THVP-1 gene in the collection of wheat-wheatgrass hybrids. PLoS ONE 2017, 12, e0188049. [Google Scholar] [CrossRef]
- Cui, L.; Ren, Y.; Murray, T.; Yan, W.; Guo, Q.; Niu, Y.; Sun, Y.; Li, H. Development of perennial wheat through hybridization between wheat and wheatgrasses: A Review. Engineering 2018, 4, 507–513. [Google Scholar] [CrossRef]
- Kroupin, P.; Divashuk, M.; Belov, V.; Glukhova, L.; Aleksandrov, O.; Karlov, G. Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Russ. J. Genet. 2011, 47, 432–437. [Google Scholar] [CrossRef]
- Trifonova, A.; Boris, K.; Dedova, L.; Melnik, V.; Ivanova, L.; Kuzmina, N.; Zavgorodniy, S.; Upelniek, V. genome polymorphism of the synthetic species X Trititrigia cziczinii Tsvel. inferred from AFLP analysis. Vavilov J. Genet. Breed. 2018, 22, 648–653. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Qi, J.; Wang, H.; Wang, R.; Bao, Y.; Li, X. Identification of chromosomes in Thinopyrum intermedium and wheat-Th.intermedium amphiploids based on multiplex oligonucleotide probes. Genome 2018, 61, 515–521. [Google Scholar] [CrossRef]
- Chen, Q.; Conner, R.L.; Laroche, A.; Ahmad, F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theor. Appl. Genet. 2001, 102, 847–852. [Google Scholar] [CrossRef]
- Brasileiro-Vidal, A.; Cuadrado, A.; Brammer, S.; Benko-Iseppon, A.; Guerra, M. Molecular cytogenetic characterization of parental genomes in the partial amphidiploid Triticum aestivum x Thinopyrum ponticum. Genet. Mol. Biol. 2005, 28, 308–313. [Google Scholar] [CrossRef]
- Piaskowski, J.; Murphy, K.; Kisha, T.; Jones, S. Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing. Euphytica 2017, 213, 171. [Google Scholar] [CrossRef]
- Curwen-McAdams, C.; Arterburn, M.; Murphy, K.; Cai, X.; Jones, S. Toward a taxonomic definition of perennial wheat: A new species ×Tritipyrum aaseae described. Genet. Resour. Crop Evol. 2016, 64, 1651–1659. [Google Scholar] [CrossRef]
- He, F.; Xing, P.; Bao, Y.; Ren, M.; Liu, S.; Wang, Y.; Li, X.; Wang, H. Chromosome pairing in hybrid progeny between Triticum aestivum and Elytrigia elongata. Front. Plant Sci. 2017, 8, 2161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hao, W.; Tang, C.; Yao, H.; Li, B.; Zheng, Q.; Li, Z.; Zhang, X. Plasticity in Triticeae centromere DNA sequences: A wheat × tall wheatgrass (decaploid) model. Plant J. 2019, 100, 314–327. [Google Scholar] [CrossRef]
- Georgieva, M.; Sepsi, A.; Tyankova, N.; Molnár-Láng, M. Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J. Appl. Genet. 2011, 52, 269–277. [Google Scholar] [CrossRef]
- Kruppa, K.; Türkösi, E.; Mayer, M.; Tóth, V.; Vida, G.; Szakács, É.; Molnár-Láng, M. Mcgish identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J. Appl. Genet. 2016, 57, 427–437. [Google Scholar] [CrossRef]
- Georgieva, M.; Kruppa, K.; Tyankova, N.; MOLNÁR-LÁNG, M. Molecular cytogenetic identification of a novel hexaploid wheat–Thinopyrum intermedium partial amphiploid with high protein content. Turk. J. Biol. 2016, 40, 554–560. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Q.; Teng, W.; Li, B.; Li, H.; Li, Y.; Li, Z.; Zheng, Q. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta 2018, 247, 1099–1108. [Google Scholar] [CrossRef]
- Cseh, A.; Yang, C.; Hubbart-Edwards, S.; Scholefield, D.; Ashling, S.S.; Burridge, A.J.; Wilkinson, P.A.; King, I.P.; King, J.; Grewal, S. Development and validation of an exome-based SNP marker set for identification of the St, J r and J vs. genomes of Thinopyrym intermedium in a wheat background. Theor. Appl. Genet. 2019, 132, 1555–1570. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Xu, Y.; Li, Y.; Lang, T.; Yang, Z.; Li, G. Characterization of chromosomal rearrangement in new wheat—Thinopyrum intermedium addition lines carrying Thinopyrum—Specific grain hardness genes. Agronomy 2019, 9, 18. [Google Scholar] [CrossRef]
- Kroupin, P.; Kuznetsova, V.; Romanov, D.; Kocheshkova, A.; Karlov, G.; Dang, T.; Khuat, T.; Kirov, I.; Alexandrov, O.; Polkhovskiy, A.; et al. Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes 2019, 10, 113. [Google Scholar] [CrossRef]
- Kroupin, P.; Kuznetsova, V.; Nikitina, E.; Martirosyan, Y.; Karlov, G.; Divashuk, M. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu &Amp; R.-C. Wang. Comp. Cytogenet. 2019, 13, 231–243. [Google Scholar]
- Novák, P.; Neumann, P.; Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010, 11, 378. [Google Scholar] [CrossRef]
- Salina, E.; Adonina, I.; Vatolina, T.; Kurata, N. A Comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species. Genetica 2004, 122, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Pollak, Y.; Zelinger, E.; Raskina, O. Repetitive DNA in the architecture, repatterning, and diversification of the genome of Aegilops speltoides Tausch (Poaceae, Triticeae). Front. Plant Sci. 2018, 9, 1779. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; La, S.; Li, B.; Yu, Z.; Chen, Q.; Li, J.; Yang, E.; Li, G.; Yang, Z. Precise identification of wheat—Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 2018, 61, 177–185. [Google Scholar] [CrossRef]
- Xi, W.; Tang, Z.; Tang, S.; Yang, Z.; Luo, J.; Fu, S. New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. Int. J. Mol. Sci. 2019, 20, 2031. [Google Scholar] [CrossRef]
- Baruch, O.; Kashkush, K. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest Class I (TRIM) and Class II (MITE) transposable element families in various rice strains. Plant Cell Rep. 2011, 31, 885–893. [Google Scholar] [CrossRef]
- Said, M.; Hřibová, E.; Danilova, T.; Karafiátová, M.; Čížková, J.; Friebe, B.; Doležel, J.; Gill, B.; Vrána, J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 2018, 131, 2213–2227. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, H.; Lang, T.; Li, J.; La, S.; Yang, E.; Yang, Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta 2016, 244, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Luo, Q.; Li, H.; Li, B.; Li, Z.; Zheng, Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-Seq technology. Theor. Appl. Genet. 2018, 131, 2359–2370. [Google Scholar] [CrossRef]
- Upelniek, V.; Belov, V.; Ivanova, l.; Dolgova, S.; Demidov, A. Heritage of academician N.V. Tsitsin: State-of-the-art and potential of the collection of intermediate wheat × couch-grass hybrids. Vavilov J. Genet. Breed. Vavilovskij Žurnal Genet. I Sel. 2020, 6, 85–89. (In Russian) [Google Scholar]
- Divashuk, M.; Krupin, P.; Bazhenov, M.; Klimushina, M.; Belov, V.; Semyonova, E.; Karlov, G. Molecular-genetic characterization of seed storage protein composition in partial wheat-wheatgrass hybrids Izv. TSKHA 2012, 5, 29–37. (In Russian) [Google Scholar]
- Krupin, P.; Divashuk, M.; Bazhenov, M.; Gritsenko, L.; Tarakanov, I.; Upelniek, V.; Belov, V.; Post, A.; Starikova, E.; Khuat Thi Mai, L.; et al. Polymorphism of the reaction of wheat-wheatgrass hybrids to salinity. Agric. Biol. 2013, 5, 44–53. [Google Scholar]
- Rogers, S.; Bendich, A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Novák, P.; Ávila Robledillo, L.; Koblížková, A.; Vrbová, I.; Neumann, P.; Macas, J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017, 45, e111. [Google Scholar] [CrossRef]
- Divashuk, M.; Khuat, T.; Kroupin, P.; Kirov, I.; Romanov, D.; Kiseleva, A.; Khrustaleva, L.; Alexeev, D.; Zelenin, A.; Klimushina, M.; et al. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS ONE 2016, 11, e0154241. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Razumova, O.; Karlov, G.; Dang, T.; Kroupin, P.; Divashuk, M. Some peculiarities in application of denaturating and non-denaturating in situ hybridization on chromosomes of cereals. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 75–80. [Google Scholar] [CrossRef]
- Komuro, S.; Endo, R.; Shikata, K.; Kato, A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 2013, 56, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kishii, M.; Wang, R.; Tsujimoto, H. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J. Genet. Plant Breed. 2012, 41, 92–95. [Google Scholar] [CrossRef]
Cluster Name | Proportion, % | Length, bp | Consensus Cluster Sequence | Homology to the Known Repeats |
---|---|---|---|---|
Putative satellites (high confidence) | ||||
19-202 | 0.034 | 380 | GATTTTACATACGTGCACACACAGGATCACATGCGCGGAAAATATCGAGCCCAAAAAGGGCCGTCTGGGCCCTCAAAAATGGCCTGCAGGATTGGAAAAAATGAAAGTTATCGCAATTACAGCTCAAATTTCGATGAGCCGGCACATCCCTTTGGTGTTCAGGTCCTGGGCGCCCCACCCATGTATGGATACAATAGGGTCTTAGGCCAACTCTCGCAAAGAAACGGTGATCAAAGAAAATACAAAAATCAACCTAGAGTCTGAATTGATCGAGACTCTCAAAGCAAGTGAGAACAAGCTCCGATTTCATCGTTTTCATAGGCGTTGGAAAGCTATTGGGGAATTGAGCTGATAGGACTTCTAGTTTTTGTGATTTGGAG | MG323511.1 Agropyron cristatum clone ACRI_TR_CL20 satellite sequence sequence |
KP231286.1 Agropyron cristatum isolate Z559 TRT1 repeat sequence sequence | ||||
17-251 | 0.013 | 376 | GATGAAAAACAAAAGTTTTGGCAGTTAAAGTTTGAGATTCGATGGTGCCGTAGATCCGTTTGGTCATCAGGTGTTACGAGCCACACCCATGGATAGCTAGAATAGTGTGCTAGGCTCAGACTAGAGAAGAAACGGGGAACAAACTGATGAAAGAATTATCATACCGAGGGAATTCACTCAGAACTAACAAGAATGATAACGTGCTCCGACTGGAGCGGTTTAGGAACTGCTGGAAGGCTCTAGGGGAATAAAGATGGAATGACTTCTAATTTTTAGGTCCGTATGATTTGAAATACGTGCACACAAACCCCGAGAAAGCGTTCCTGGAAATCTCGGCCCAAAAAAGGACGTTTAGTAATTCTAAAAGGGACTACAG | AY117401.1 Aegilops speltoides subtelomeric repeat Spelt52.2 sequence |
Putative satellites (low confidence) | ||||
18-158 | 0.097 | 333 | GCCACACCCCGGAGACGCGTGCCGCCTCTTCGCACATGCCACCACACTTCCAGACATGTATGAGGGCCCGGTGCGACGCTCCGGTGGCATTGCTACCCCCCAGGGCCCCCGTCCCGCCTAACCCTGGAACGGTTGACCACGAGATCTAGCCCTTTGACTTTCGCCGGACGGGCTTTGACCAGTGGACCTTTCCACCTGGTTGTGATAGGTCAGCCCATAGGAACACCTCGGAGCAACGTCCGGGCCAAACCCACAGCAAGATTCCCTCCGTGTCGACCCGACGCGTCCGTTTCCCCCCTCCAGGTGCCGGCGGCGGCGCCGTCCGTGAGGGGG | KC290905.1 Triticum aestivum clone pTa-465 FISH-positive repetitive sequence |
17-172 | 0.08 | 662 | ATTGGAAAACCTTCGCATTGTGTCATTATATGTGACCAAGTTACCAGGAAAAATAATAAACTTGTAATACGGCAATTATTTTAAAAAAGTGTTCTCAGAAATGAGCTATCATGTGTGAAGATTCATGGCTTTCAAGCCAAATGATCAATCTTATGGCCACATTCATGGCATAGTTTGTTCAAATGATCTCATATTGTGCACAAGGGTGCATCTTGGAATGGCAAACAATGTTGCCTAAGGAAGTTTTCATTTTCTTTGGACGAAAAATTCATTTTCCATTTTTCGAGTGCCCAAAATGAGTTTTTTTGTGAAGGACCTACCATATATTTGTTGCAAAATTGGACCAAATCAATTTTCTAAAATATTAGGCCATATTTAATGCACAATTGACCAAATGGTTGGGTGTCAAAAGTTTTGATCCACCTCTCGTGAAAAAGACAAATTTCCGCCGATTCAGTAGGAAGCGGGTCAAATTTGAACTGCAGCTGCCTCATAGTTTGCTCTTTATTTTTTCCAAAAATCATTTCTAGGTACATAAGTATCTATTTAATCAGAGAAACACCAAAAGTTTTCCAAGATTCAACCACTAGCTAGGAACGGTCATGCCCGCCGTTTTGACCGCATTTTGAAACGGGCATAAAAAATTCAAAAAAAATCAAAAA | MG323513.1 Agropyron cristatum clone ACRI_TR_CL80 satellite sequence |
17-202 | 0.032 | 553 | TTTGTAATGGAAGGATGGTGCATTGTTCTATATGTTATTGTCCATATATCAGTCCGTAGGTGAGCTCACGGAAGGGTGGTAGAGGGTGGCAGAGTATACTTCAAACATAAAATCATCCGAAACTCAATTTTACAAGCCGGATCTTGCCTCCGAAATGTTGTCGAAGCCGGCGAGTGGGTTACGGACGCATACAACTTTTCGTTGTGATCGTTTTGGCGGGTCATGGAGCTCCAATGGAGTTTTTATGGCCAAATTGTGGCCGTTTTATGGATACAACATCGCGGGACAGACCGTGAATACAACTTTCAGGGTAAGTTGATCGCACCGACGAGCCATCTTGCACCATTCGGAATGACCTATAATTTTTCGTGTGCATAAACAGAATGAGGATGAGCTGTTATGTACTTTATGATCCAAGAATAATGCATCCGCTGGTGAAAACGTGAGGGTGGTAGCGGGATGGGTGATAGACCATGTAAAGCATGAATTCTTGGGTTTCGATGCAACGAAGAGCCTCCTCCTTCTGTCGTGACTGAACCTGTAGTCTTTCTAG | MN161206.1 Triticum aestivum clone CentT550 satellite sequence |
KT724936.1 Secale cereale clone BAC 19H13l pSc250 retrotransposon TREP231, complete sequence; and satellite pSc250 sequence | ||||
Putative LTR elements | ||||
17-62 | 0.48 | 534 | TCTCAAAATTTCGTTTCCCGCCCAAAGTTTCGTCTCCCGCTCGAAATATCGTCTCGCGCCCGTTCATCATATTTTTATCCCTCCCTCCCATTTTTGTATTTATTATTTATTTATTTTCCGGGGAGACGCGGTGGCAATGGTGGACAACAACACACCCTACTTTGGCATGACGGCGAAATTTTCCCGCCCAAAATGACGAAAAAATGACAACGGCCGCGAGTGTCTCAAAGCGCTCCCGGAGGTGTAAAAACGGGTATAGGAACGTATCACGGAGTTTGGTGGCCCCCAATCCCGGGATGGTGTCGAAAATTAGGGGCAATACGGGCATTACTTTTGTACCGGGCAACGTAGGATGGCCTCGGGGATGACAACGCAACCGGGGCAAAGGGGCTCCGACCCGGGCGGCCACGGGCCCGTCGGAGAGGCCTCGTGGAGACGGCGACCCGGGAAGACTACCTTCCGCGTCCCGGGCGCGTCCGCACTACGTGCCCTCTCAAGCAAAACCGCAAACGACCGCATCTCTCTCTCTCTCTC | MG323514.1 Agropyron cristatum clone ACRI_TR_CL85 satellite sequence |
Tandem repeat | Primer sequence |
---|---|
17-62 | F: 5′-TTGCCCCTATTTTTCGACAC-3′ |
R: 5′-GTGGCAATGGTGAACAACAA-3′ | |
17-251 | F: 5′-CAGTTCCTAAACCGCTCCAG-3′ |
R: 5′-AGATCCGTTTGGTCATCAGG-3′ | |
17-202 | F: 5′-TCTATCACCCATCCCGCTAC-3′ |
R: 5′-AATTGTGGCCGTTTTATGGA-3′ | |
19-202_1 | F: 5′-CAGCTCAAATTTCGATGAGC-3′ |
R: 5′-TTCCAACGCCTATGAAAACG-3′ | |
19-202_2 | F: 5′-CATCCCTTTGGTGTTCAGGT-3′ |
R: 5′-CCAACGCCTATGAAAACGAT-3′ | |
17-172 | F:5′-TGCAAAATTGGACCAAATCA-3′ |
R:5′-GAGGCAGCTGCAGTTCAAAT-3′ | |
18-158 | F:5′-GGAAAGGTCCACTGGTCAAA-3′ |
R:5′-ACATGCCACAACACTTCCAC-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitina, E.; Kuznetsova, V.; Kroupin, P.; Karlov, G.I.; Divashuk, M.G. Development of Specific Thinopyrum Cytogenetic Markers for Wheat-Wheatgrass Hybrids Using Sequencing and qPCR Data. Int. J. Mol. Sci. 2020, 21, 4495. https://doi.org/10.3390/ijms21124495
Nikitina E, Kuznetsova V, Kroupin P, Karlov GI, Divashuk MG. Development of Specific Thinopyrum Cytogenetic Markers for Wheat-Wheatgrass Hybrids Using Sequencing and qPCR Data. International Journal of Molecular Sciences. 2020; 21(12):4495. https://doi.org/10.3390/ijms21124495
Chicago/Turabian StyleNikitina, Ekaterina, Victoria Kuznetsova, Pavel Kroupin, Gennady I. Karlov, and Mikhail G. Divashuk. 2020. "Development of Specific Thinopyrum Cytogenetic Markers for Wheat-Wheatgrass Hybrids Using Sequencing and qPCR Data" International Journal of Molecular Sciences 21, no. 12: 4495. https://doi.org/10.3390/ijms21124495
APA StyleNikitina, E., Kuznetsova, V., Kroupin, P., Karlov, G. I., & Divashuk, M. G. (2020). Development of Specific Thinopyrum Cytogenetic Markers for Wheat-Wheatgrass Hybrids Using Sequencing and qPCR Data. International Journal of Molecular Sciences, 21(12), 4495. https://doi.org/10.3390/ijms21124495