Shoot Tip Cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara Using Different Approaches and Evaluation of Stability on the Molecular, Biochemical, and Plant Architecture Levels
Abstract
:1. Introduction
2. Results
2.1. Recovery and Morphogenetic Potential of Shoot Tips Cryopreserved by Vitrification, Droplet-Vitrification, and Encapsulation-Vitrification Techniques
2.2. Biochemical Evaluation of Recovered Shoots
2.3. Molecular Evaluation of LN-Recovered Shoots
3. Discussion
3.1. Survival and Recovery of Shoot Tips Cryopreserved by Vitrification, Droplet-Vitrification, and Encapsulation-Vitrification
3.2. Morphogenetic Response of Explants
3.3. Stability of Plant Material after Various (Cryo)Treatments
4. Materials and Methods
4.1. Plant Material and Its Multiplication
4.2. Preculture
4.3. Cryopreservation
4.3.1. Vitrification
4.3.2. Droplet-Vitrification
4.3.3. Encapsulation-Vitrification
4.4. Rewarming and Recovery
4.5. Survival and Morphometric Analyses
4.6. Biochemical Array
4.7. Genetic Stability Evaluation
4.8. Statistical Analysis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHC | Agglomerative Hierarchical Clustering |
AMOVA | Analysis of molecular variance |
ANOVA | Analysis of variance |
BA | 6-benzyladenine |
bp | Base pair |
C | Control |
DNA | Deoxyribonucleic acid |
DV | Droplet-vitrification |
EV | Encapsulation-vitrification |
FW | Fresh weight |
GA3 | Gibberellic acid |
ISSR | Inter-simple sequence repeats |
LN | Liquid nitrogen |
LS | Loading solution |
Me2SO | Dimethyl sulfoxide |
MS | Murashige and Skoog (1962) |
PCR | Polymerase chain reaction |
PLBs | Protocorm-like bodies |
PPFD | Photosynthetic photon flux density |
PVS | Plant vitrification solution |
RAPD | Randomly amplified polymorphic DNA |
SCoT | Start codon target polymorphism |
SE | Standard error |
TEM | Transmission |
UPGMA | Unweighted Pair-Group Average Method |
V | Vitrification |
wm | Weight marker |
WS | Washing solution |
References
- Hodges, L. Bleeding heart: A review for growers. Hort. Technol. 2012, 22, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Hammer, K.; Khoshbakht, K. Towards a ’red list’ for crop plant species. Genet. Resour. Crop. Evol. 2005, 52, 249–265. [Google Scholar] [CrossRef]
- Lee, D.-H.; Lee, B.-C.; Yoon, E.-J.; Leem, K.-E.; Park, S.-M.; Pyo, H.-B.; Choe, T.-B. Development of effects of plant extracts on the activity and expression of UVA-induced MMPs (matrix metalloproteases). Int. J. Cosmet. Sci. 2004, 26, 317–319. [Google Scholar] [CrossRef]
- McNulty, J.; Poloczek, J.; Larichev, V.; Werstiuk, N.H.; Griffin, C.; Pandey, S. Discovery of the apoptosis-inducing activity and high accumulation of the butenolides, menisdaurilide and aquilegiolide in Dicentra spectabilis. Planta Med. 2007, 73, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kaproń, B.; Misiurek, D.; Szultka-Młyńska, M.; Buszewski, B.; Waksmundzka-Hajnos, M. Determination of selected isoquinoline alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata extracts by HPLC-DAD and comparison of their cytotoxic activity. Toxins 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.-G.; Fukuski, Y.; Tahara, S.; Osawa, T. Fungitoxic alkaloids from Hokkaido Papaveraceae. Fitoterapia 2000, 71, 527–534. [Google Scholar] [CrossRef]
- Lee, K.P.; Lee, D.W. Somatic embryogenesis and plant regeneration from seeds of wild Dicentra spectabilis (L.) Lem. Plant Cell Rep. 2003, 22, 105–109. [Google Scholar] [CrossRef]
- Lee, K.-S.; Sim, O.-K.; Shin, J.-S.; Choi, Y.-E.; Kim, E.-Y. Mass propagation of Dicentra spectabilis L. Lemaire through in vitro suspension culture. J. Plant Biotechnol. 2004, 31, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Kulus, D. Influence of growth regulators on the development, quality, and physiological state of in vitro-propagated Lamprocapnos spectabilis (L.) Fukuhara. In Vitro Cell. Develop. Biol.-Plant 2020. [Google Scholar] [CrossRef]
- Kulus, D. Managing plant genetic resources using low and ultra-low temperature storage: A case study of tomato. Biodivers. Conserv. 2019, 28, 1003–1027. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Aronen, T.S.; Krajnakova, J.; Haggman, H.; Ryynänen, L. Genetic fidelity of cryopreserved embryonic cultures of open-pollinated Abies cephalonica. Plant Sci. 1999, 142, 163–172. [Google Scholar] [CrossRef]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Zamecnikova, J.; Fernandez, E.; Viehmannova, I.; Zamecnik, J.; Faltus, M. Preparation of shoot tips by sucrose and dehydration pre-treatment of Ullucus tuberosus Cal. for cryopreservation. Acta Hortic. 2011, 908, 331–338. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sakai, A.; Takahashi, C.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLett. 1995, 16, 189–196. [Google Scholar]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Kulus, D.; Zalewska, M. Cryopreservation as a tool used in long-term storage of ornamental species—A review. Sci. Hortic. 2014, 168, 88–107. [Google Scholar] [CrossRef]
- Ciringer, T.; Martín, C.; Šajna, N.; Kaligarič, M.; Ambrožič-Dolinšek, J. Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification. In Vitro Cell. Dev. Biol. Plant 2018, 54, 565–575. [Google Scholar] [CrossRef]
- Martín, C.; Cervera, M.T.; González-Benito, M.E. Genetic stability analysis of chrysanthemum (Chrysanthemum × morifolium Ramat) after different stages of an encapsulation-dehydration cryopreservation protocol. J. Plant Physiol. 2011, 168, 158–166. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B. Efficient cryopreservation by droplet vitrification of pentaploid roses and the phenotype of regenerated plants. Acta Soc. Bot. Pol. 2015, 84, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Hitmi, A.; Sallanon, H.; Barthomeuf, C. Cryopreservation of Chrysanthemum cinerariaefolium Vis. cells and its impact factor on their pyrethrin biosynthesis ability. Plant Cell. Rep. 1997, 17, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Singh, R.; Pandey, R.; Kaushik, N. Genetic and biochemical stability assessment of plants regenerated from cryopreserved shoot tips of a commercially valuable medicinal herb Bacopa monnieri (L.) Wettst. In Vitro Cell. Dev. Biol.-Plant 2017, 53, 346–351. [Google Scholar] [CrossRef]
- Zevallos, B.; Cejas, I.; Rodríguez, R.C.; Yabor, L.; Aragón, C.; González, J.; Engelmann, F.; Martinez, M.E.; Lorenzo, J.C. Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters 2013, 37, 413–421. [Google Scholar]
- Matsumoto, T. Cryopreservation of plant genetic resources: Conventional and new methods. Rev. Agric. Sci. 2017, 5, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Halmagyi, A.; Coste, A.; Tripon, S.; Crăciun, C. Low temperature induced ultrastructural alterations in tomato (Lycopersicon esculentum Mill.) shoot apex cells. Sci. Hortic. 2017, 222, 22–31. [Google Scholar] [CrossRef]
- Halmagyi, A.; Fischer-Klüver, G.; Mix-Wagner, G.; Schumacher, H.M. Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep. 2004, 22, 371–375. [Google Scholar] [CrossRef]
- Jeon, M.S.; Arun, M.; Lee, S.-Y.; Kim, C.K. Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Sci. Hortic. 2015, 194, 91–99. [Google Scholar] [CrossRef]
- Kulus, D.; Abratowska, A. Cryoconservation of Ajania pacifica (Nakai) Bremer et Humphries via encapsulation-dehydration technique. CryoLetters 2017, 38, 387–398. [Google Scholar]
- Jitsupakul, N.; Thammasiri, K.; Ishikawa, K. Cryopreservation of Vanda coerulea protocorm-like bodies by droplet-vitrification. Acta Hort. 2011, 908, 207–214. [Google Scholar] [CrossRef]
- Kulus, D.; Abratowska, A.; Mikuła, A. Morphogenetic response of shoot tips to cryopreservation by encapsulation-dehydration in a solid mutant and periclinal chimeras of Chrysanthemum × grandiflorum/Ramat./Kitam. Acta Physiol. Plant. 2018, 40, 18. [Google Scholar] [CrossRef] [Green Version]
- Kulus, D.; Zalewska, M. In vitro plant recovery from alginate encapsulated Chrysanthemum × grandiflorum /Ramat./Kitam. shoot tips. Prop. Ornam. Plants 2014, 14, 3–12. [Google Scholar]
- Grzegorczyk, I.; Wysokińska, H. A protocol for synthetic seeds from Salvia officinalis L. shoot tips. Acta Biol. Cracov. Ser. Bot. 2011, 53, 80–85. [Google Scholar] [CrossRef]
- Zevallos, B.; Cejas, I.; Valle, B.; Yabor, L.; Aragón, C.; Engelmann, F.; Martínez, M.E.; Lorenzo, J.C. Short-term liquid nitrogen storage of wild tomato (Solanum lycopersicum Mill.) seeds modifies the levels of phenolics in 7 day-old seedlings. Sci. Hortic. 2013, 160, 264–267. [Google Scholar] [CrossRef]
- Van Assche, F.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Shibli, R.A.; Smith, M.A.L.; Shatnawi, M.A. Pigment recovery from encapsulated-dehydrated Vaccinium pahalae (ohelo) cryopreserved cells. Plant Cell Tissue Organ Cult. 1998, 55, 119–123. [Google Scholar] [CrossRef]
- Kulus, D.; Rewers, M.; Serocka, M.; Mikuła, A. Cryopreservation by encapsulation-dehydration affects the vegetative growth of chrysanthemum but does not disturb its chimeric structure. Plant Cell Tissue Organ Cult. 2019, 138, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Phytochem. Photobiol 2008, 70, 1–9. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Pavlov, Y.I. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat. Res. 2003, 544, 65–85. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Arnon, D. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harborne, J.B. Comparative Biochemistry of the Flavonoids; Academic Press: London, UK, 1967; pp. 25–27. [Google Scholar]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–227. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dehydration Duration [min] | Plant Material | ||||
---|---|---|---|---|---|
Non-LN-Stored | LN-Stored | ||||
Non-Encapsulated | Encapsulated | Vitrification | Droplet-Vitrification | Encapsulation-Vitrification | |
Recovery [%} | |||||
control | 100 a | 85.0 bc | 0.0 l | 0.0 l | 0.0 l |
0 (20 min LS) | 100 a | 81.7 b–d | 0.0 l | 0.0 l | 0.0 l |
30 | 80.0 b–d | 85.0 bc | 6.4 kl | 52.4 fg | 0.0 l |
60 | 87.5 b | 52.5 fg | 25.8 hi | 44.8 fg | 32.4 h |
90 | 42.3 gh | 57.9 e–g | 14.8 jk | 22.8 hi | 50.0 fg |
120 | 51.8 fg | 70.8 b–e | 8.9 kl | 23.0 hi | 45.8 fg |
150 | 28.8 hi | 68.8 c–f | 11.4 jk | 26.3 hi | 73.1 b-e |
180 | 12.5 jk | 62.5 d–g | 13.3 jk | 26.2 hi | 40.3 gh |
No. of shoots per explant | |||||
control | 2.0 ± 0.4 bc | 2.2 ± 0.2 bc | - | - | - |
0 (20 min LS) | 1.9 ± 0.1 bc | 2.1 ± 0.3 bc | - | - | - |
30 | 2.1 ± 0.5 bc | 1.8 ± 0.1 bc | 1.0 ± 0.0 c | 1.6 ± 0.2 bc | - |
60 | 1.8 ± 0.2 bc | 1.4 ± 0.3 c | 3.1 ± 0.4 bc | 2.3 ± 0.3 bc | 2.5 ± 0.4 bc |
90 | 1.9 ± 0.2 bc | 1.5 ± 0.2 c | 2.0 ± 0.2 bc | 1.3 ± 0.3 bc | 2.1 ± 0.3 bc |
120 | 1.9 ± 0.2 bc | 1.3 ± 0.3 c | 3.0 ± 0.0 bc | 1.3 ± 0.3 bc | 4.9 ± 0.8 a |
150 | 1.6 ± 0.2 bc | 1.4 ± 0.3 c | 1.0 ± 0.0 c | 1.5 ± 0.3 bc | 3.9 ± 1.4 ab |
180 | 1.0 ± 0.0 c | 1.9 ± 0.4 bc | 1.5 ± 0.5 c | 2.0 ± 0.6 bc | 2.2 ± 0.3 bc |
Shoot length [mm] | |||||
control | 17.1 ± 3.8 a–d | 25.0 ± 1.9 ab | - | - | - |
0 (20 min LS) | 16.7 ± 0.7 a–d | 29.3 ± 2.9 a | - | - | - |
30 | 26.2 ± 3.9 ab | 25.3 ± 1.5 ab | 29.5 ± 0.5 a | 9.9 ± 2.3 cd | - |
60 | 12.9 ± 2.8 b–d | 17.4 ± 1.4 a–d | 17.0 ± 3.0 a–d | 11.6 ± 1.4 b–d | 14.0 ± 1.9 b–d |
90 | 15.8 ± 1.5 a–d | 19.5 ± 4.2 a–d | 14.0 ± 1.7 b–d | 6.8 ± 1.6 d | 15.1 ± 2.2 a–d |
120 | 23.6 ± 5.9 a–c | 19.6 ± 3.7 a–d | 11.7 ± 1.0 b–d | 7.3 ± 1.7 d | 17.9 ± 1.9 a–d |
150 | 18.1 ± 4.6 a–d | 18.4 ± 3.0 a–d | 5.8 ± 0.4 d | 7.9 ± 1.2 d | 16.6 ± 0.4 a–d |
180 | 10.0 ± 2.0 cd | 15.0 ± 3.0 a–d | 9.2 ± 0.2 cd | 8.5 ± 1.5 d | 16.4 ± 0.8 a–d |
Shoot weight [mg] | |||||
control | 198.3 ± 88.3 c | 324.1 ± 80.3 c | - | - | - |
0 (20 min LS) | 87.8 ± 9.4 c | 517.4 ± 97.8 bc | - | - | - |
30 | 451.0 ± 103.9 bc | 321.1 ± 56.3 c | 2412.5 ± 387.5 a | 49.9 ± 22.3 c | - |
60 | 73.7 ± 13.2 c | 160.7 ± 70.0 c | 739.3 ± 191.5 bc | 146.4 ± 35.8 c | 172.3 ± 57.2 c |
90 | 194.5 ± 53.5 c | 215.3 ± 110.7 c | 176.6 ± 35.3 c | 100.2 ± 82.0 c | 206.7 ± 19.9 c |
120 | 443.2 ± 203.3 bc | 258.2 ± 126.4 c | 126.6 ± 30.7 c | 60.1 ± 26.0 c | 951.8 ± 335.7 b |
150 | 162.6 ± 61.0 c | 239.6 ± 96.9 c | 114.3 ± 40.8 c | 100.2 ± 36.0 c | 633.0 ± 323.8 bc |
180 | 41.4 ± 5.2 c | 220.0 ± 150.2 c | 121.2 ± 72.2 c | 205.8 ± 70.3 c | 174.0 ± 31.9 c |
Rhizogenesis [%] | |||||
control | 0.0 c | 35.0 a | - | - | - |
0 (20 min LS) | 0.0 c | 33.7 a | - | - | - |
30 | 31.2 ab | 17.5 ac | 0.0 c | 20.8 ac | - |
60 | 20.0 ac | 0.0 c | 10.4 c | 0.0 c | 29.2 ac |
90 | 0.0 c | 0.0 c | 0.0 c | 0.0 c | 12.5 bc |
120 | 8.3 c | 10.0 c | 0.0 c | 0.0 c | 41.2 a |
150 | 0.0 c | 0.0 c | 0.0 c | 0.0 c | 30.2 ac |
180 | 0.0 c | 0.0 c | 0.0 c | 0.0 c | 16.7 ac 1 |
Dehydration Duration [min] | Plant Material | ||||
---|---|---|---|---|---|
Non-LN-Stored | LN-Stored | ||||
Non-Encapsulated | Encapsulated | Vitrification | Droplet-Vitrification | Encapsulation-Vitrification | |
Chlorophyll a [mg·g−1] | |||||
control | 3.24 ± 0.46 a | 1.86 ± 0.37 d | - | - | - |
0 (20 min LS) | 1.67 ± 0.04 de | 0.88 ± 0.07 de | - | - | - |
30 | 2.68 ± 0.47 b | 0.52 ± 0.04 e | 1.12 ± 0.38 de | 0.43 ± 0.19 e | - |
60 | 2.56 ± 0.22 c | 0.43 ± 0.12 e | 0.76 ± 0.07 de | 0.57 ± 0.00 e | 0.72 ± 0.14 e |
90 | 1.41 ± 0.06 de | 0.49 ± 0.18 e | 1.21 ± 0.00 de | 0.54 ± 0.18 e | 0.70 ± 0.16 e |
120 | 1.88 ± 0.23 d | 0.57 ± 0.07 e | 1.12 ± 0.40 de | 0.82 ± 0.38 e | 0.88 ± 0.17 e |
150 | 0.51 ± 0.01 e | 0.44 ± 0.09 e | 0.75 ± 0.23 de | 0.64 ± 0.27 e | 0.84 ± 0.11 e |
180 | 0.37 ± 0.01 e | 0.65 ± 0.10 e | 1.39 ± 0.17 de | 0.72 ± 0.16 e | 0.47 ± 0.04 e |
Chlorophyll b [mg·g−1] | |||||
control | 1.21 ± 0.17 a | 0.66 ± 0.13 bc | - | - | - |
0 (20 min LS) | 0.64 ± 0.03 b–d | 0.20 ± 0.02 c–e | - | - | - |
30 | 1.12 ± 0.13 a | 0.09 ± 0.01 e | 0.32 ± 0.08 de | 0.25 ± 0.10 c–e | - |
60 | 1.00 ± 0.07 a | 0.09 ± 0.07 e | 0.34 ± 0.02 de | 0.31 ± 0.00 de | 0.20 ± 0.04 c–e |
90 | 0.53 ± 0.01 b–d | 0.11 ± 0.06 e | 0.46 ± 0.02 de | 0.28 ± 0.08 de | 0.36 ± 0.10 de |
120 | 0.74 ± 0.07 b | 0.14 ± 0.03 e | 0.45 ± 0.19 de | 0.49 ± 0.01 de | 0.34 ± 0.10 de |
150 | 0.22 ± 0.00 c–e | 0.10 ± 0.04 e | 0.36 ± 0.06 de | 0.37 ± 0.16 de | 0.16 ± 0.02 e |
180 | 0.36 ± 0.04 de | 0.13 ± 0.04 e | 0.51 ± 0.14 de | 0.36 ± 0.06 de | 0.17 ± 0.04 de |
Chlorophyll ct [mg·g−1] | |||||
control | 4.44 ± 0.62 a | 2.52 ± 0.50 bc | - | - | - |
0 (20 min LS) | 2.31 ± 0.06 b–d | 1.08 ± 0.09 b–e | - | - | - |
30 | 3.79 ± 0.56 a | 0.62 ± 0.05 de | 1.45 ± 0.45 b–e | 0.68 ± 0.29 de | - |
60 | 3.57 ± 0.28 a | 0.52 ± 0.19 e | 1.10 ± 0.08 b–e | 0.88 ± 0.00 de | 0.93 ± 0.17 c–e |
90 | 1.94 ± 0.08 b–e | 0.60 ± 0.24 de | 1.67 ± 0.02 b–e | 0.82 ± 0.26 de | 1.07 ± 0.24 b–e |
120 | 2.61 ± 0.30 b | 0.70 ± 0.11 de | 1.57 ± 0.58 b–e | 1.31 ± 0.03 b–e | 1.22 ± 0.27 b–e |
150 | 0.73 ± 0.01 de | 0.54 ± 0.05 e | 1.11 ± 0.29 b–e | 1.02 ± 0.43 b–e | 1.00 ± 0.11 b–e |
180 | 0.73 ± 0.05 de | 0.78 ± 0.13 de | 1.90 ± 0.30 b–e | 1.07 ± 0.22 b–e | 0.63 ± 0.05 de |
Anthocyanins [mg·g−1] | |||||
control | 5.38 ± 0.87 c–g | 6.76 ± 1.73 b–e | - | - | - |
0 (20 min LS) | 4.28 ± 0.67 c–i | 4.54 ± 0.46 c–i | - | - | - |
30 | 6.16 ± 1.57 b–f | 4.00 ± 0.19 d–i | 9.01 ± 1.49 ab | 10.73 ± 0.05 a | - |
60 | 8.86 ± 1.33 ac | 3.59 ± 0.61 d–i | 5.71 ± 0.64 b–g | 2.89 ± 0.25 e–i | 4.57 ± 0.44 c–i |
90 | 2.54 ± 1.08 f–i | 5.43 ± 0.07 b–g | 3.50 ± 0.71 e–i | 3.83 ± 0.13 d–i | 6.98 ± 0.36 b–e |
120 | 4.92 ± 0.63 c–h | 4.24 ± 0.36 c–i | 3.50 ± 0.25 e–i | 1.88 ± 0.03 g–i | 7.66 ± 0.35 a–d |
150 | 1.88 ± 0.02 g–i | 4.57 ± 0.37 c–i | 0.51 ± 0.03 i | 2.04 ± 0.52 g–i | 8.15 ± 0.75 a–c |
180 | n.a. | 6.55 ± 1.43 b–f | 0.99 ± 0.08 hi | 1.65 ± 0.16 h–i | 1.10 ± 0.15 hi |
Chlorophyll ct to anthocyanins ratio | |||||
control | 0.82 ± 0.15 b | 0.37 ± 0.03 b | - | - | - |
0 (20 min LS) | 0.54 ± 0.07 b | 0.24 ± 0.04 b | - | - | - |
30 | 0.61 ± 0.25 b | 0.16 ± 0.01 b | 0.16 ± 0.00 b | 0.06 ± 0.02 b | - |
60 | 0.40 ± 0.03 b | 0.15 ± 0.06 b | 0.21 ± 0.02 b | 0.30 ± 0.00 b | 0.20 ± 0.03 b |
90 | 0.76 ± 0.36 b | 0.11 ± 0.04 b | 0.48 ± 0.09 b | 0.21 ± 0.08 b | 0.15 ± 0.20 b |
120 | 0.53 ± 0.04 b | 0.17 ± 0.01 b | 0.45 ± 0.15 b | 0.70 ± 0.04 b | 0.16 ± 0.04 b |
150 | 0.39 ± 0.00 b | 0.12 ± 0.01 b | 2.18 ± 0.78 a | 0.50 ± 0.23 b | 0.12 ± 0.02 b |
180 | n.a. | 0.12 ± 0.04 b | 1.92 ± 0.02 a | 0.64 ± 0.03 b | 0.57 ± 0.17 b 1 |
Primer Symbol | Primer Sequence 5′→3′ | Marker Size [bp] | No. of Markers Per Sample | Total Poly. Markers [%] | No. and (%) of Plants with Polymorphism | ||||
---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Total | Mono. | Poly. | Spec. | ||||
RAPD | |||||||||
R-A | GAC CGC TTG T | 655 | 2954 | 5 | 5 | 0 | 0 | 0.0 | 0 (0.0) |
R-B | GGA CTG GAG T | 308 | 1505 | 6 | 6 | 0 | 0 | 0.0 | 0 (0.0) |
R-C | GCT GCC TCA GG | 500 | 1840 | 8 | 8 | 0 | 0 | 0.0 | 0 (0.0) |
R-D | CAA TCG CCG T | 36 | 1069 | 6 | 6 | 0 | 0 | 0.0 | 0 (0.0) |
R-E | GGT GAC GCA G | 151 | 1004 | 9 | 9 | 0 | 0 | 0.0 | 0 (0.0) |
R-F | CCC AGT CAC T | 96 | 1005 | 9 | 7 | 1 | 1 | 22.2 | 1 (1.2) |
∑ | 43 (7.2) | 41 (6.8) | 1 (0.2) | 1 (0.2) | (3.7) | 1 (1.2) | |||
(mean from a single primer) | |||||||||
ISSR | |||||||||
I-A | GAG GGT (GGA)2 TCT | 200 | 2063 | 8 | 3 | 5 | 0 | 62.5 | 2 (2.5) |
I-B | C (GAGA)4 | 723 | 1426 | 5 | 4 | 0 | 1 | 20.0 | 1 (1.2) |
I-C | C (AGAG)4 | - | - | - | - | - | - | - | - |
I-D | (GACA)4 | 333 | 1366 | 7 | 5 | 2 | 0 | 28.6 | 2 (2.5) |
I-E | (GA)9 T | - | - | - | - | - | - | - | - |
I-F | GT (GAGA)4 | - | - | - | - | - | - | - | - |
∑ | 20 (6.7) | 12 (4.0) | 7 (2.3) | 1 (0.3) | (37.0) | 3 (3.8) | |||
(mean from a single primer) | |||||||||
SCoT 1 | |||||||||
S-A | CAA CAA TGG CTA CCA CCG | 420 | 850 | 5 | 5 | 0 | 0 | 0.0 | 0 (0.0) |
S-B | CAA CAA TGG CTA CCA CCT | 310 | 3158 | 15 | 15 | 0 | 0 | 0.0 | 0 (0.0) |
S-C | ACC ATG GCT ACC ACC GTC | 325 | 880 | 8 | 8 | 0 | 0 | 0.0 | 0 (0.0) |
S-D | ACC ATG GCT ACC ACC GTG | 393 | 2290 | 8 | 8 | 0 | 0 | 0.0 | 0 (0.0) |
S-E | CCA TGG CTA CCA CCG CCA | 375 | 1182 | 7 | 7 | 0 | 0 | 0.0 | 0 (0.0) |
S-F | CCA TGG CTA CCA CCG CAG | 214 | 2320 | 8 | 8 | 0 | 0 | 0.0 | 0 (0.0) |
∑ | 51 (8.5) | 51 (8.5) | 0 (0.0) | 0 (0.0) | (0.0) | 0 (0.0) | |||
(mean from a single primer) |
C | DV 30 | DV 60 | DV 90 | DV 120 | DV 150 | DV 180 | EV 60 | EV 90 | EV 120 | EV 150 | EV 180 | V 30 | V 60 | V 90 | V 120 | V 150 | V 180 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 3 | 7 | 3 | 3 | 5 | 4 | 7 | 5 | 7 | 5 | 5 | 2 | 4 | 3 | 2 | 3 | 2 1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulus, D. Shoot Tip Cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara Using Different Approaches and Evaluation of Stability on the Molecular, Biochemical, and Plant Architecture Levels. Int. J. Mol. Sci. 2020, 21, 3901. https://doi.org/10.3390/ijms21113901
Kulus D. Shoot Tip Cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara Using Different Approaches and Evaluation of Stability on the Molecular, Biochemical, and Plant Architecture Levels. International Journal of Molecular Sciences. 2020; 21(11):3901. https://doi.org/10.3390/ijms21113901
Chicago/Turabian StyleKulus, Dariusz. 2020. "Shoot Tip Cryopreservation of Lamprocapnos spectabilis (L.) Fukuhara Using Different Approaches and Evaluation of Stability on the Molecular, Biochemical, and Plant Architecture Levels" International Journal of Molecular Sciences 21, no. 11: 3901. https://doi.org/10.3390/ijms21113901