Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis of Fluorescent Probes
2.1.1. Molecular Design and Synthesis Plan
2.1.2. Synthesis of the Trisaccharide Common Acceptor
2.1.3. Synthesis of the Fluorescent SSEA-3 Probe
2.1.4. Synthesis of the Fluorescent SSEA-4 Probe
2.1.5. Synthesis of the Fluorescent Globo-H Probe
2.2. Biophysical and Biochemical Evaluation
2.2.1. Cold-Triton Solubility of the Fluorescent Probes in the PM
2.2.2. Partitioning of the Fluorescent Probes between the Lo/Ld Phases
3. Materials and Methods
3.1. Chemical Section
3.2. Biological Evaluations
3.2.1. Evaluation of Cold-Triton Solubility
3.2.2. Formation and Microscopic Observation of GPMVs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Cer | Ceramide |
Fuc | Fucose |
Gal | Galactose |
Glc | Glucose |
Neu | Neuraminic acid |
PC | Phosphatidylcholine |
References
- Schnaar, R.L.; Kinoshita, T. Glycosphingolipids. In Essentials of Glycobiology, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, R., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Springer Harbor: New York, NY, USA, 2015–2017; Chapter 11.
- Lingwood, C.A. Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 2011, 3, a004788. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Gerl, M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Hakomori, S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomains. Glycoconj. J. 2000, 17, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Komura, N.; Suzuki, K.G.N.; Ando, H.; Konishi, M.; Imamura, A.; Ishida, H.; Kusumi, A.; Kiso, M. Syntheses of fluorescent gangliosides for the studies of raft domains. Methods Enzymol. 2017, 597, 239–263. [Google Scholar] [PubMed]
- Koikeda, M.; Komura, N.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Kiso, M.; Ando, H. Synthesis of ganglioside analogs containing fluorescently labeled GalNAc for single-molecule imaging. J. Carbohydr. Chem. 2019, 38, 509–527. [Google Scholar] [CrossRef]
- Komura, N.; Suzuki, K.G.N.; Ando, H.; Konishi, M.; Koikeda, M.; Imamura, A.; Chadda, R.; Fujuwara, T.K.; Tsuboi, H.; Sheng, R.; et al. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 2016, 12, 402–410. [Google Scholar] [CrossRef]
- Suzuki, K.G.N.; Ando, H.; Komura, N.; Fujiwara, T.K.; Kiso, M.; Kusumi, A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim. Biophys. Acta 2017, 1861, 2494–2506. [Google Scholar] [CrossRef]
- Suzuki, K.G.N.; Ando, H.; Komura, N.; Fujiwara, T.; Kiso, M.; Kusumi, A. Unraveling of lipid raft organization in cell plasma membranes by single-molecule imaging of ganglioside probes. Adv. Exp. Med. Biol. 2018, 1104, 41–58. [Google Scholar]
- Hakomori, S.; Siddiqui, B.; Li, Y.-T.; Li, S.-C.; Hellerqvist, C.G. Anomeric structures of “globoside” and ceramide trihexoside of human erythrocytes and “BHK” fibroblasts. J. Biol. Chem. 1971, 246, 2271–2277. [Google Scholar]
- Hakomori, S. Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim. Biophys. Acta 2008, 1780, 325–346. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.K.; Draper, J.S.; Baillie, H.S.; Fishel, S.; Thomson, J.A.; Moore, H.; Andrews, P.W. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 2002, 20, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Brimble, S.N.; Sherrer, E.S.; Uhl, E.W.; Wang, E.; Kelly, S.; Merrill, A.H., Jr.; Robins, A.J.; Schulz, T.C. The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 2007, 25, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Slambrouck, S.V.; Steelant, F.A. Clustering of monosialyl-Gb5 initiates downstream signaling events leading to invasion of MCF-7 breast cancer cells. Biochem. J. 2007, 401, 689–699. [Google Scholar] [CrossRef]
- Saito, S.; Orikasa, S.; Satoh, M.; Ohyama, C.; Ito, A.; Takahashi, T. Expression of globo-series gangliosides in human renal cell carcinoma. Jpn. J. Cancer Res. 1997, 88, 652–659. [Google Scholar] [CrossRef]
- Charafe-Jauffret, E.; Ginestier, C.; Iovino, F.; Wicinski, J.; Cervera, N.; Finetti, P.; Hur, M.H.; Diebel, M.E.; Monville, F.; Dutcher, J.; et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69, 1302–1313. [Google Scholar] [CrossRef]
- Hung, T.-C.; Lin, C.-W.; Hsu, T.-L.; Wu, C.-Y.; Wong, C.-W. Investigation of SSEA-4 binding protein in breast cancer cells. J. Am. Chem. Soc. 2013, 135, 5934–5937. [Google Scholar] [CrossRef]
- Bremer, E.G.; Levery, S.B.; Sonnino, S.; Ghidoni, R.; Canevari, S.; Kannagi, R.; Hakomori, S. Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. J. Biol. Chem. 1984, 259, 14773–14777. [Google Scholar]
- Sato, B.; Katagiri, Y.U.; Miyado, K.; Akutsu, H.; Miyagawa, Y.; Horiuchi, Y.; Nakajima, H.; Okita, H.; Umezawa, A.; Hata, J.; et al. Preferential localization of SSEA-4 in interfaces between blastomeres of mouse preimplantation embryos. Biochem. Biophys. Res. Commun. 2007, 364, 838–843. [Google Scholar] [CrossRef]
- Steelant, W.F.; Kawakami, Y.; Ito, A.; Hanada, K.; Bruyneel, E.A.; Mareel, M.; Hakomori, S. Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett. 2002, 531, 93–98. [Google Scholar] [CrossRef]
- Nunomura, S.; Ogawa, T. A total synthesis of a stage specific embryonic antigen-3 (SSEA-3), globopentaosyl ceramide, IV3GalGb4Cer. Use of 2,4,6-trimethylbenzoyl group as a stereocontrolling auxiliary. Tetrahedron Lett. 1988, 29, 5681–5684. [Google Scholar] [CrossRef]
- Park, T.K.; Kim, I.J.; Danishefsky, S.J. A total synthesis of a stage specific pentasaccharide embryogenesis marker. Tetrahedron Lett. 1995, 36, 9089–9092. [Google Scholar] [CrossRef]
- Ishida, H.; Miyawaki, R.; Kiso, M.; Hasegawa, A. Synthetic studies on sialoglycoconjugates 82: First total synthesis of sialyl globopentaosyl ceramide (V3Neu5AcGb5Cer) and its positional isomer (V6Neu5AcGb5Cer). J. Carbohydr. Chem. 1996, 15, 163–182. [Google Scholar] [CrossRef]
- Lassaletta, J.M.; Schmidt, R.R. Versatile approach to the synthesis of globoside glycosphingolipids synthesis of sialyl-galactosyl-globoside. Tetrahedron Lett. 1995, 36, 4209–4212. [Google Scholar] [CrossRef]
- Bilodeau, M.T.; Park, T.K.; Hu, S.; Randolph, J.T.; Danishefsky, S.J.; Livingston, P.O.; Zhang, S. Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc. 1995, 117, 7840–7841. [Google Scholar] [CrossRef]
- Imamura, A.; Ando, H.; Ishida, H.; Kiso, M. Ganglioside GQ1b: Efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J. Org. Chem. 2009, 74, 3009–3023. [Google Scholar] [CrossRef]
- Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 2003, 44, 6725–6728. [Google Scholar] [CrossRef]
- Imamura, A.; Matsuzawa, N.; Sakai, S.; Udagawa, T.; Nakashima, S.; Ando, H.; Ishida, H.; Kiso, M. The origin of high stereoselectivity in di-tert-butylsilylene-directed α-galactosylation. J. Org. Chem. 2016, 81, 9086–9104. [Google Scholar] [CrossRef]
- Asano, S.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Ando, H. p-tert-Butyl groups improve the utility of aromatic protective groups in carbohydrate synthesis. Org. Lett. 2019, 21, 4197–4200. [Google Scholar] [CrossRef]
- Furusawa, K. Removal of cyclic di-t-butylsilanediyl protecting groups using tributylamine hydrofluoride (TBAHF) reagent. Chem. Lett. 1989, 18, 509–510. [Google Scholar] [CrossRef]
- Yu, B.; Tao, H. Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42, 2405–2407. [Google Scholar] [CrossRef]
- Komura, N.; Kato, K.; Udagawa, T.; Asano, S.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Kiso, M.; Ando, H. Constrained sialic acid donors enable selective synthesis of α-glycosides. Science 2019, 364, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Ando, H.; Ishihara, H.; Koketsu, M. Sialylation reactions with 5-N,7-O-carbonyl-protected sialyl donors: Unusual stereoselectivity with nitrile solvent assistance. Carbohydr. Res. 2008, 343, 1585–1593. [Google Scholar] [CrossRef]
- Sugimura, T.; Hagiya, K. Di-2-methoxyethyl azodicarboxylate (DMEAD): An inexpensive and separation-friendly alternative reagent for the Mitsunobu reaction. Chem. Lett. 2007, 36, 566–567. [Google Scholar] [CrossRef]
- Hagiya, K.; Muramoto, N.; Misaki, T.; Sugimura, T. DMEAD: A new dialkyl azodicarboxylate for the Mitsunobu reaction. Tetrahedron 2009, 65, 6109–6114. [Google Scholar] [CrossRef]
- Tamai, H.; Ando, H.; Tanaka, H.-N.; Hosoda-Yabe, R.; Yabe, T.; Ishida, H.; Kiso, M. The total synthesis of the neurogenic ganglioside LLG-3 isolated from the Starfish Linckia laevigata. Angew. Chem. Int. Ed. 2011, 50, 2330–2333. [Google Scholar] [CrossRef]
- Ishiwata, A.; Munemura, Y.; Ito, Y. Synergistic solvent effect in 1,2-cis-glycoside formation. Tetrahedron 2008, 64, 92–102. [Google Scholar] [CrossRef]
- Mandal, S.S.; Liao, G.; Guo, Z. Chemical synthesis of the tumor-associated Globo-H antigen. RSC Adv. 2015, 5, 23311–23319. [Google Scholar] [CrossRef]
- Kenworthy, A.K.; Nichols, B.J.; Remmert, C.L.; Hendirix, G.M.; Kumar, M.; Zimmerberg, J.; Lippincott-Schwartz, J. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 2004, 165, 735–746. [Google Scholar] [CrossRef]
- Lingwood, D.; Ries, J.; Schwille, P.; Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA 2008, 105, 10005–10010. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, T.; Hammond, A.T.; Sengupta, P.; Hess, S.T.; Holowka, D.A.; Baird, B.A.; Webb, W.W. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 2007, 104, 3165–3170. [Google Scholar] [CrossRef] [PubMed]
- Levental, I.; Grzybek, M.; Simons, K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 2011, 108, 11411–11416. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asano, S.; Pal, R.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Suzuki, K.G.N.; Ando, H. Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. Int. J. Mol. Sci. 2019, 20, 6187. https://doi.org/10.3390/ijms20246187
Asano S, Pal R, Tanaka H-N, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. International Journal of Molecular Sciences. 2019; 20(24):6187. https://doi.org/10.3390/ijms20246187
Chicago/Turabian StyleAsano, Sachi, Rita Pal, Hide-Nori Tanaka, Akihiro Imamura, Hideharu Ishida, Kenichi G. N. Suzuki, and Hiromune Ando. 2019. "Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane" International Journal of Molecular Sciences 20, no. 24: 6187. https://doi.org/10.3390/ijms20246187
APA StyleAsano, S., Pal, R., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K. G. N., & Ando, H. (2019). Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. International Journal of Molecular Sciences, 20(24), 6187. https://doi.org/10.3390/ijms20246187