Role of miRNAs in Alzheimer’s Disease and Possible Fields of Application
Abstract
:1. Introduction
2. miRNA
3. miRNA and Experimental Models of Alzheimer’s Disease
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Aβ | Amyloid-beta |
NFTs | Neurofibrillary tangles |
FAD | Familial Alzheimer’s disease |
SAD | Sporadic Alzheimer’s disease |
APP | Amyloid precursor protein |
BACE1 | β-site amyloid precursor protein cleaving enzyme |
PSEN1 | Presenilin 1 |
PSEN2 | Presenilin 2 |
APOE | Apolipoprotein E |
LRP1 | Protein 1 associated with the LDL receptor |
UTR | Untranslated region |
mRNAs | Messenger RNAs |
Pri-miRNAs | Primary miRNAs |
Pre-miRNAs | Precursor miRNAs |
RISC | RNA-induced silencing complex |
SH-SY5Y | Human neuroblastoma |
PMNCs | Primary murine neuronal cells |
qRT-PCR | Quantitative reverse transcription PCR |
HEK293 | Human embryonic kidney 293 |
SIRT1 | Silent information regulator transcript-1 |
Ca2+ | Calcium |
VAV1 | Guanine nucleotide exchange factor 1 |
MAPK | Mitogen-activated protein kinase |
3xTg-AD | Triple transgenic mice model of AD |
GRM7 | Metabotropic glutamate receptor 7 |
miRNA-34a KO/APP/PS1 | miRNA-34a knockouts APP/PSEN1 mice |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
NMDA | N-methyl-d-aspartate |
STZ | Streptozotocin |
VPA | Valproate |
EGCG | Epigallocatechin gallate |
SAMP8 | Senescence-accelerated mouse prone 8 |
SAMR1 | Senescence-accelerated mouse-resistant 1 |
CB2 | Cannabinoid receptor type 2 |
ITPKB | Inositol 1,4,5-trisphosphate 3-kinase B |
Neuro2a | Neuroblastoma 2a |
Neuro2a132 | Neuro2a cells treated with miRNA-132 mimics |
Crmp2 | Collapsin response mediator protein 2 |
BDNF | Brain-derived neurotrophic factor |
ROCK1 | Coiled-coil containing protein kinase 1 |
PTEN | Phosphatase and tensin homolog |
NAV3 | Navigator neuron 3 |
Nrn1 | Neuritin |
PPARγ | Proliferator-activated receptor gamma |
References
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Buono, V.L.; Bonanno, L.; Corallo, F.; Foti, M.; Palmeri, R.; Angela, M.; Di Lorenzo, G.; Todaro, A.; Bramanti, P.; Bramanti, A. Qualitative Analysis of Mini Mental State Examination Pentagon in Vascular Dementia and Alzheimer’s disease: A Longitudinal Explorative Study. J. Stroke Cerebrovasc. Dis. 2018, 27, 1666–1672. [Google Scholar] [CrossRef] [PubMed]
- Allone, C.; Lo Buono, V.; Corallo, F.; Bonanno, L.; Palmeri, R.; Di Lorenzo, G.; Marra, A.; Bramanti, P.; Marino, S. Cognitive impairment in Parkinson’s disease, Alzheimer’s dementia, and vascular dementia: The role of the clock-drawing test. Psychogeriatrics 2018, 18, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Marra, A.; Naro, A.; Chillura, A.; Bramanti, A.; Maresca, G.; De Luca, R.; Manuli, A.; Bramanti, P.; Calabrò, R.S. Evaluating Peripersonal Space through the Functional Transcranial Doppler: Are We Paving the Way for Early Detecting Mild Cognitive Impairment to Dementia Conversion? J. Alzheimer’s Dis. 2018, 62, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–186. [Google Scholar] [CrossRef]
- Müller, U.C.; Deller, T.; Korte, M. Not just amyloid: Physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281. [Google Scholar] [CrossRef]
- Gupta, A.; Goyal, R. Amyloid beta plaque: A culprit for neurodegeneration. Acta. Neurol. Belg. 2016, 116, 445–450. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain 2011, 4, 3. [Google Scholar] [CrossRef]
- Doran, E.; Keator, D.; Head, E.; Phelan, M.J.; Kim, R.; Totoiu, M.; Barrio, J.R.; Small, G.W.; Potkin, S.G.; Lott, I.T. Down syndrome, partial trisomy 21, and absence of Alzheimer’s disease: The role of APP. J. Alzheimer’s Dis. 2017, 56, 459–470. [Google Scholar] [CrossRef]
- Parsons, R.; Austen, B. Protein–protein interactions in the assembly and subcellular trafficking of the BACE (β-site amyloid precursor protein-cleaving enzyme) complex of Alzheimer’s disease. Biochem. Soc. Trans. 2007, 35, 974–979. [Google Scholar] [CrossRef]
- Querfurth, H.W.; LaFerla, F.M. Mechanisms of disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Q.; Zhang, Y.w.; Xu, H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem. Rev. 2012, 120, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Näslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 2000, 283, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Mammana, S.; Fagone, P.; Cavalli, E.; Basile, M.; Petralia, M.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The role of macrophages in neuroinflammatory and neurodegenerative pathways of alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: Pathogenetic cellular effectors and potential therapeutic targets. Int. J. Mol. Sci. 2018, 19, 831. [Google Scholar] [CrossRef] [PubMed]
- Libro, R.; Bramanti, P.; Mazzon, E. Endogenous glucocorticoids: Role in the etiopathogenesis of Alzheimer’s disease. Neuroendocrinol. Lett. 2017, 38, 1–12. [Google Scholar] [PubMed]
- Lindwall, G.; Cole, R.D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 1984, 259, 5301–5305. [Google Scholar] [PubMed]
- Iqbal, K.; Alonso, A.d.C.; Chen, S.; Chohan, M.O.; El-Akkad, E.; Gong, C.-X.; Khatoon, S.; Li, B.; Liu, F.; Rahman, A. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2005, 1739, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Ballard, C.G.; Waite, J.; Birks, J. Atypical antipsychotics for aggression and psychosis in Alzheimer’s disease. Cochrane Database Syst. Rev. 2006, 1, CD003476. [Google Scholar] [CrossRef]
- Giri, M.; Zhang, M.; Lü, Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin. Interv. Aging 2016, 11, 665. [Google Scholar] [CrossRef]
- Piaceri, I.; Nacmias, B.; Sorbi, S. Genetics of familial and sporadic Alzheimer’s disease. Front. Biosci. 2013, 5, 167–177. [Google Scholar] [CrossRef]
- Campion, D.; Dumanchin, C.; Hannequin, D.; Dubois, B.; Belliard, S.; Puel, M.; Thomas-Anterion, C.; Michon, A.; Martin, C.; Charbonnier, F. Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999, 65, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Lifestyle modulators of neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast. 2017, 2017, 3589271. [Google Scholar] [CrossRef] [PubMed]
- Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of vitamin E in the treatment of Alzheimer’s disease: Evidence from animal models. Int. J. Mol. Sci. 2017, 18, 2504. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, S.; Soundara Rajan, T.; Bramanti, P.; Mazzon, E. Natural phytochemicals in the treatment and prevention of dementia: An overview. Molecules 2016, 21, 518. [Google Scholar]
- Provost, P. Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging 2010, 2, 166. [Google Scholar] [CrossRef] [PubMed]
- Lukiw, W.J. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007, 18, 297–300. [Google Scholar] [CrossRef]
- Guedes, J.R.; Santana, I.; Cunha, C.; Duro, D.; Almeida, M.R.; Cardoso, A.M.; de Lima, M.C.; Cardoso, A.L. MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer’s disease. Alzheimer’s Dement 2016, 3, 7. [Google Scholar] [CrossRef]
- Angelucci, F. Micro RNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents? Front. Pharmacol. 2019, 10, 665. [Google Scholar] [CrossRef]
- DeVos, S.L.; Miller, T.M. Direct intraventricular delivery of drugs to the rodent central nervous system. JoVE (J. Vis. Exp.) 2013, 75, e50326. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Vishnoi, A.; Rani, S. MiRNA biogenesis and regulation of diseases: An overview. In MicroRNA Profiling; Springer Humana Press: New York, NY, USA, 2017; pp. 1–10. [Google Scholar]
- Lee, Y.; Jeon, K.; Lee, J.T.; Kim, S.; Kim, V.N. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 2002, 21, 4663–4670. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science 2004, 303, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Diederichs, S.; Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007, 131, 1097–1108. [Google Scholar] [CrossRef]
- Valencia-Sanchez, M.A.; Liu, J.; Hannon, G.J.; Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006, 20, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Tonk, S.; Kumar, S.; Vijayan, M.; Kandimalla, R.; Kuruva, C.S.; Reddy, A.P. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2017, 483, 1156–1165. [Google Scholar] [CrossRef]
- Schratt, G. microRNAs at the synapse. Nat. Rev. Neurosci. 2009, 10, 842. [Google Scholar] [CrossRef]
- Lin, Y.; Liang, X.; Yao, Y.; Xiao, H.; Shi, Y.; Yang, J. Osthole attenuates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sci. 2019, 225, 117–131. [Google Scholar] [CrossRef]
- Campos-Esparza, M.R.; Sanchez-Gomez, M.V.; Matute, C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009, 45, 358–368. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, D.; Zhang, L.; Li, W.; Meng, X. Osthole improves synaptic plasticity in the hippocampus and cognitive function of Alzheimer’s disease rats via regulating glutamate. Neural Regen. Res. 2012, 7, 2325. [Google Scholar] [PubMed]
- Higaki, S.; Muramatsu, M.; Matsuda, A.; Matsumoto, K.; Satoh, J.-i.; Michikawa, M.; Niida, S. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS ONE 2018, 13, e0196929. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-g.; Wang, J.-l.; Li, L.; Xue, L.-x.; Zhang, Y.-q.; Wang, P.-c. MicroRNA-135a and-200b, potential Biomarkers for Alzheimer’s disease, regulate β secretase and amyloid precursor protein. Brain Res. 2014, 1583, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-S.; Liu, W.; Lu, G.-X. miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J. Biosci. 2017, 42, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Marwarha, G.; Raza, S.; Meiers, C.; Ghribi, O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Mol. Med. 2013, 5, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc. Natl. Acad. Sci. USA 2008, 105, 6415–6420. [Google Scholar] [CrossRef]
- Yang, G.; Song, Y.; Zhou, X.; Deng, Y.; Liu, T.; Weng, G.; Yu, D.; Pan, S. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol. Med. Rep. 2015, 12, 3081–3088. [Google Scholar] [CrossRef]
- Zong, Y.; Yu, P.; Cheng, H.; Wang, H.; Wang, X.; Liang, C.; Zhu, H.; Qin, Y.; Qin, C. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Res. 2015, 1624, 95–102. [Google Scholar] [CrossRef]
- Hekimi, S.; Kershaw, D. Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell-extrinsic determinants of neuronal morphology. J. Neurosci. 1993, 13, 4254–4271. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, B.; Chen, J.; Sui, Y.; Ren, L.; Li, J.; Zhang, H.; Guo, L.; Sun, X. Micro-RNA-137 Inhibits Tau Hyperphosphorylation in Alzheimer’s disease and Targets the CACNA1C Gene in Transgenic Mice and Human Neuroblastoma SH-SY5Y Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 5635–5644. [Google Scholar] [CrossRef] [PubMed]
- Geekiyanage, H.; Chan, C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J. Neurosci. 2011, 31, 14820–14830. [Google Scholar] [CrossRef] [PubMed]
- Geekiyanage, H.; Chan, C. SPT, miR-137 and miR-181c: Therapeutic targets and noninvasive biomarkers. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2012, 8, 470–471. [Google Scholar] [CrossRef]
- Jakobsson, J.; Pålsson, E.; Sellgren, C.; Rydberg, F.; Ekman, A.; Zetterberg, H.; Blennow, K.; Landen, M. CACNA1C polymorphism and altered phosphorylation of tau in bipolar disorder. Br. J. Psychiatry 2016, 208, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Davare, M.A.; Hell, J.W. Increased phosphorylation of the neuronal L-type Ca2+ channel Cav1. 2 during aging. Proc. Natl. Acad. Sci. USA 2003, 100, 16018–16023. [Google Scholar] [CrossRef] [PubMed]
- Sierksma, A.; Lu, A.; Salta, E.; Eynden, E.V.; Callaerts-Vegh, Z.; D’hooge, R.; Blum, D.; Buée, L.; Fiers, M.; De Strooper, B. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener. 2018, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Z.F.; Li, W.; Hong, H.; Chen, J.; Tian, Y.; Liu, Z.Y. Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J. Cell. Biochem. 2018, 119, 5437–5448. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fdez, S.; Bustelo, X.R. The Vav GEF Family: An Evolutionary and Functional Perspective. Cells 2019, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Woo, J.H.; Jou, I.; Joe, E.-h. PINK1 deficiency decreases expression levels of mir-326, mir-330, and mir-3099 during brain development and neural stem cell differentiation. Exp. Neurobiol. 2016, 25, 14–23. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2010, 1802, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Ma, K.; Chen, X.; Shi, L.; Bu, G.; Hu, X.; Han, H.; Liu, Y.; Qian, Y. Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells. Neuroscience 2014, 278, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Jian, C.; Lu, M.; Zhang, Z.; Liu, L.; Li, X.; Huang, F.; Xu, N.; Qin, L.; Zhang, Q.; Zou, D. miR-34a knockout attenuates cognitive deficits in APP/PS1 mice through inhibition of the amyloidogenic processing of APP. Life Sci. 2017, 182, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, P.; Wang, X.; Yao, J.; Zhuang, S. miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neurosci. Lett. 2018, 670, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Rumpel, S.; LeDoux, J.; Zador, A.; Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 2005, 308, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Krugers, H.J.; Hoogenraad, C.C.; Groc, L. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nat. Rev. Neurosci. 2010, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013, 14, 383. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, R.; Luo, X.; Xu, H.; Chang, R.; Zou, L.; Liu, J.; Yang, X. Anxiety-like behavior and dysregulation of miR-34a in triple transgenic mice of Alzheimer’s disease. Eur Rev. Med. Pharm. Sci. 2016, 20, 2853–2862. [Google Scholar]
- O’Connor, R.M.; Thakker, D.R.; Schmutz, M.; van der Putten, H.; Hoyer, D.; Flor, P.J.; Cryan, J.F. Adult siRNA-induced knockdown of mGlu7 receptors reduces anxiety in the mouse. Neuropharmacology 2013, 72, 66–73. [Google Scholar] [CrossRef]
- Leonardo, T.R.; Schultheisz, H.L.; Loring, J.F.; Laurent, L.C. The functions of microRNAs in pluripotency and reprogramming. Nat. Cell Biol. 2012, 14, 1114. [Google Scholar] [CrossRef]
- Ghasemi-Kasman, M.; Shojaei, A.; Gol, M.; Moghadamnia, A.A.; Baharvand, H.; Javan, M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer’s disease. Mol. Cell. Neurosci. 2018, 86, 50–57. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, X.; Dou, Y. The miR-302/367 cluster: A comprehensive update on its evolution and functions. Open Biol. 2015, 5, 150138. [Google Scholar] [CrossRef] [PubMed]
- Sorial, M.E.; El Sayed, N.S.E.D. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer’s disease mouse model: Possible involvement of the cholinergic system. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Li, Y.; Su, B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J. Alzheimer’s Dis. 2017, 59, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yu, J.T.; Liu, Q.Y.; Tan, M.S.; Zhang, W.; Hu, N.; Wang, Y.L.; Sun, L.; Jiang, T.; Tan, L. Circulating miR-125b as a biomarker of Alzheimer’s disease. J. Neurol. Sci. 2014, 336, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Takabayashi, F.; Yoshida, H.; Choba, D.; Fukutomi, R.; Kikunaga, N.; Kishido, T.; Oku, N.; Hoshino, M. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 2007, 8, 89–95. [Google Scholar] [CrossRef]
- Schaffer, S.; Asseburg, H.; Kuntz, S.; Muller, W.E.; Eckert, G.P. Effects of polyphenols on brain ageing and Alzheimer’s disease: Focus on mitochondria. Mol. Neurobiol. 2012, 46, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Bao, J.; Su, J.; Huang, W. MicroRNA-139 modulates Alzheimer’s-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
- Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar] [CrossRef]
- Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol. Aging 2013, 34, 791–804. [Google Scholar] [CrossRef]
- Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of cannabinoid receptor 2 (CB 2) suppresses microglial activation. J. Neuroinflamm. 2005, 2, 29. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; An, K.; Kwon, O.-B.; Park, S.; Cha, J.H.; Kim, M.-H.; Lee, Y.; Kim, J.-H.; Cho, K. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer’s Disease. Sci. Rep. 2016, 6, 34433. [Google Scholar] [CrossRef] [PubMed]
- Lau, P.; Bossers, K.; Salta, E.; Frigerio, C.S.; Barbash, S.; Rothman, R.; Sierksma, A.S.; Thathiah, A.; Greenberg, D.; Papadopoulou, A.S. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol. Med. 2013, 5, 1613–1634. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.-K.A.; Veremeyko, T.; Patel, N.; Lemere, C.A.; Walsh, D.M.; Esau, C.; Vanderburg, C.; Krichevsky, A.M. De-repression of FOXO3a death axis by microRNA-132 and-212 causes neuronal apoptosis in Alzheimer’s disease. Hum. Mol. Genet. 2013, 22, 3077–3092. [Google Scholar] [CrossRef] [PubMed]
- Salta, E.; Sierksma, A.; Eynden, E.V.; De Strooper, B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol. Med. 2016, 8, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.G.; Pletcher, M.T.; Warashina, M.; Choe, S.H.; Ziaee, N.; Wiltshire, T.; Sauer, K.; Cooke, M.P. Inositol (1, 4, 5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity. Proc. Natl. Acad. Sci. USA 2004, 101, 5604–5609. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, Y.; Pesesse, X.; Jia, Y.; Pouillon, V.; Pérez-Morga, D.; Daniel, J.; Izui, S.; Cullen, P.J.; Leo, O.; Luo, H.R. Inositol 1, 3, 4, 5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells. Proc. Natl. Acad. Sci. USA 2007, 104, 13978–13983. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.Y.; Hernandez-Rapp, J.; Jolivette, F.; Lecours, C.; Bisht, K.; Goupil, C.; Dorval, V.; Parsi, S.; Morin, F.; Planel, E. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum. Mol. Genet. 2015, 24, 6721–6735. [Google Scholar] [CrossRef]
- Hernandez-Rapp, J.; Smith, P.Y.; Filali, M.; Goupil, C.; Planel, E.; Magill, S.T.; Goodman, R.H.; Hébert, S.S. Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav. Brain Res. 2015, 287, 15–26. [Google Scholar] [CrossRef]
- Ambegaokar, S.S.; Jackson, G.R. The downward spiral of tau and autolysosomes: A new hypothesis in neurodegeneration. Autophagy 2012, 8, 1144–1145. [Google Scholar] [CrossRef]
- Hernandez-Rapp, J.; Rainone, S.; Goupil, C.; Dorval, V.; Smith, P.Y.; Saint-Pierre, M.; Vallée, M.; Planel, E.; Droit, A.; Calon, F. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci. Rep. 2016, 6, 30953. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Y.; Wang, L.-L.; Zhang, Y.-F.; Xu, J.; Zhou, Y.; Lourenco, G.F.; Zhang, B.; Wang, Y.; Ren, R.-J. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci. Rep. 2016, 6, 26697. [Google Scholar] [CrossRef] [PubMed]
- Vemula, S.; Shi, J.; Hanneman, P.; Wei, L.; Kapur, R. ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood 2010, 115, 1785–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Ortiz, C.J.; Baglietto-Vargas, D.; Martinez-Coria, H.; LaFerla, F.M.; Kitazawa, M. Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J. Alzheimer’s Dis. 2014, 42, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, W.-Y.; Mao, Y.-W.; Gräff, J.; Guan, J.-S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.-H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010, 466, 1105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, R.; Lu, K.; Yu, W.; Xie, B.; Cui, D.; Jiang, L.; Zhang, Q.; Xu, S. Deregulation of miRNA-181c potentially contributes to the pathogenesis of AD by targeting collapsin response mediator protein 2 in mice. J. Neurol. Sci. 2016, 367, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Charrier, E.; Reibel, S.; Rogemond, V.; Aguera, M.; Thomasset, N.; Honnorat, J. Collapsin response mediator proteins (CRMPs). Mol. Neurobiol. 2003, 28, 51–63. [Google Scholar] [CrossRef]
- Cole, A.R.; Noble, W.; Aalten, L.v.; Plattner, F.; Meimaridou, R.; Hogan, D.; Taylor, M.; LaFrancois, J.; Gunn-Moore, F.; Verkhratsky, A. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J. Neurochem. 2007, 103, 1132–1144. [Google Scholar] [CrossRef]
- Tian, N.; Cao, Z.; Zhang, Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci. Bull. 2014, 30, 191–197. [Google Scholar] [CrossRef]
- Tapia-Arancibia, L.; Aliaga, E.; Silhol, M.; Arancibia, S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res. Rev. 2008, 59, 201–220. [Google Scholar] [CrossRef]
- Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 2003, 4, 299. [Google Scholar] [CrossRef]
- Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009, 15, 331. [Google Scholar] [CrossRef]
- Arancibia, S.; Silhol, M.; Mouliere, F.; Meffre, J.; Höllinger, I.; Maurice, T.; Tapia-Arancibia, L. Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol. Dis. 2008, 31, 316–326. [Google Scholar] [CrossRef]
- Larsen, K.E.; Sulzer, D. Autophagy in neurons a review. Histol. Histopathol. 2002, 17, 897–908. [Google Scholar] [PubMed]
- Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 2008, 28, 6926–6937. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Liu, C.; Gao, S.; Ping, H.; Wang, J.; Wang, P. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. NeuroToxicology 2016, 56, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wei, G.; Bai, Y.; Li, Y.; Huang, F.; Lin, J.; Hou, Q.; Deng, R.; Zhou, J.H.; Zhang, S.X. MicroRNA-574 is involved in cognitive impairment in 5-month-old APP/PS1 mice through regulation of neuritin. Brain Res. 2015, 1627, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Fujino, T.; Lee, W.-C.A.; Nedivi, E. Regulation of cpg15 by signaling pathways that mediate synaptic plasticity. Mol. Cell. Neurosci. 2003, 24, 538–554. [Google Scholar] [CrossRef] [Green Version]
- Fujino, T.; Leslie, J.H.; Eavri, R.; Chen, J.L.; Lin, W.C.; Flanders, G.H.; Borok, E.; Horvath, T.L.; Nedivi, E. CPG15 regulates synapse stability in the developing and adult brain. Genes Dev. 2011, 25, 2674–2685. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Y.; Zhu, H.; Ma, C.; Dai, X.; Qin, C. Downregulated microRNA-222 is correlated with increased p27Kip1 expression in a double transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 2015, 12, 7687–7692. [Google Scholar] [CrossRef]
- Toyoshima, H.; Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994, 78, 67–74. [Google Scholar] [CrossRef]
- Delobel, P.; Lavenir, I.; Ghetti, B.; Holzer, M.; Goedert, M. Cell-cycle markers in a transgenic mouse model of human tauopathy: Increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Am. J. Pathol. 2006, 168, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Tiribuzi, R.; Crispoltoni, L.; Porcellati, S.; Di Lullo, M.; Florenzano, F.; Pirro, M.; Bagaglia, F.; Kawarai, T.; Zampolini, M.; Orlacchio, A. miR128 up-regulation correlates with impaired amyloid β (1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol. Aging 2014, 35, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Liu, P.; Bai, H.; Li, X.; Xiao, J.; Yuan, Q.; Geng, S.; Yin, H.; Zhang, H. MicroRNA-128 knockout inhibits the development of Alzheimer’s disease by targeting PPARγ in mouse models. Eur. J. Pharmacol. 2019, 843, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Wu, J.-S.; Tsai, H.-D.; Huang, C.-Y.; Chen, J.-J.; Sun, G.Y.; Lin, T.-N. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol. Neurobiol. 2012, 46, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 2008, 5, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Nicolakakis, N.; Hamel, E. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Front. Aging Neurosci. 2010, 2, 21. [Google Scholar] [CrossRef]
miRNAs | Target mRNA | Models | Experimental Outcomes | Field of Application | Ref. |
---|---|---|---|---|---|
miRNA-101a-3p | APP | APP/ PSEN1 AD mice and SH-SY5Y cells | The overexpression of osthole-induced miRNA inhibits APP mRNA-101a-3p and reduces APP protein levels. | Therapeutic target | [40] |
miRNA-200b/c | APP | Tg2576 mice; PMNCs and SH-SY5Y cells | miRNA-200b/c reduces Aβ secretion and Aβ-induced cognitive impairment. In addition, the transient transfection of neurons with miRNA-200b/c, decreased the secretion of Aβ in the conditioned medium. | Therapeutic targets | [43] |
miRNA-200b; miRNA135a | APP; BACE1 | APP/PSEN1 mice; primary neurons of the hippocampus mice, SH-SY5Y and HEK293 cells | miRNA-200b and miRNA-135a downregulated in hippocampi from APP/PS1 transgenic mice and repressed respectively the expression and activity of APP and BACE1. | Diagnostic markers | [44] |
miRNA200a-3p | SIRT1 | APP/PSEN1 AD mice and PC12 cells | Increased level of the miRNA-200a-3p and decreased level of SIRT1 in the hippocampus of APP/PS1 mice were observed. Downregulation of miRNA-200a-3p protected PC12 cells from Aβ25–35-induced neurotoxicity and inhibited the cell apoptosis. Moreover, SIRT1 was a target gene of miRNA-200a-3p and exerted a neuroprotective effect against Aβ25–35-induced toxicity in PC12 cell. | Therapeutic target | [45] |
miRNA-29c | BACE1 | SAMP8 and SAMR1 mice, primary hippocampal neurons of SAMR1 mice and peripheral blood of patients with AD | A decrease in miRNA-29c expression levels and a significant increase in BACE1 expression in peripheral blood samples from AD patients were recorded. miRNA-29c regulates BACE1 expression at the transcriptional level by directly targeting its 3’UTR. In SAMP8 mice miRNA-29c promoted a decrease in the production of Aβ by targeting BACE1. | Therapeutic target | [49] |
miRNA-29c | NAV3 | APP/PSEN1 AD mice and Neuro2A cells | miRNA-29c was significantly increased in the hippocampus of APP/PS1 mice, while it decreased in the frontal cortex. The differential expression of miRNA-29c in the hippocampus and frontal cortex of the APP/PS1 mouse brain was also accompanied by the inverse expression of the NAV3. In the in vitro study miRNA-29c directly mediated downregulation of NAV3 protein expression. miRNA-29c may influence neurodegenerative processes by targeting NAV3. | Therapeutic target | [50] |
miRNA-137 | CACNA1C | APP/PSEN1 AD mice and SH-SY5Y cells | The level of miRNA-137 decreased, while the level of CACNA1C increased in the hippocampus and cerebral cortex of AD mice. In SH-SY5Y cells inhibition of miRNA-137 also caused an increase in Ab1–42-induced hyperphosphorylation of TAU in SH-SY5Y cells. | Therapeutic target or diagnostic marker | [52] |
miRNA-10a-5p, miRNA-142a-5p, miRNA-146a-5p, miRNA-155-5p, miRNA-211- 5p and miRNA-455-5p | - | APPtg and TAUtg mice | Upregulation between APPtg and TAUtg mice of miRNA-10a-5p, miRNA-142a-5p, miRNA-146a-5p, miRNA-155-5p, miRNA-211-5p, miRNA-455-5p; and upregulation of four of these (miRNA-142a-5p, miRNA-146a-5p, miRNA-155-5p, and miRNA-455-5p) also in AD patients. | Diagnostic markers | [57] |
miRNA-330 | VAV1 | C57BL/6J AD mice and primary neuronal cells | Overexpression of miRNA-330 decreases expression of VAV1 via the MAPK pathway, reducing Aβ production, alleviates oxidative stress and mitochondrial dysfunction. | Therapeutic target | [58] |
miRNA-34a | GRM7 | 3xTg-AD mice | Upregulated expression of miRNA-34a could be attributed to anxiety-like behaviors in 3xTg-Ad mice and linked to the downregulation of anxiety-related target gene GRM7. | Diagnostic markers | [68] |
miRNA-34a | - | APP/PSEN1 and miRNA-34a KO/APP/PS1 mice | The level of miRNA-34a was increased, according to the increase in amyloid β (Aβ) in APP/PS1 mice; instead, in miRNA-34a knockout mice, a significantly reduced behavioral dysfunction was observed, mainly by inhibiting the γ-secretase activity. | Diagnostic markers | [63] |
miRNA-34a | AMPA and NMDA | APP/PSEN1 and miRNA-34a KO/APP/PS1 mice | miRNA-34a deficiency promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. | Diagnostic markers | [64] |
miRNA-302/367 | - | C57BL/6J AD mice | The miRNA-302/367 overexpression allows activated astrocytes to be converted into neurons by restoring some aspects of learning and memory deficits in an animal model of AD. | Therapeutic target | [71] |
miRNA-125b, miRNA-181c, miRNA-9 and miRNA-191-5p | - | APP/PSEN1 AD mice and SH-SY5Y | Serum miRNA-125b, miRNA-191-5p, miRNA-9 were significantly downregulated and miRNA-28-3p was upregulated in APP/PS1 transgenic mice. Instead, the level of serum miRNA-125b, miRNA-9, and miRNA191-5p were upregulated in EGCG-treated APP/PS1. | Diagnostic markers | [74] |
miRNA-139 | CB2 | SAMP8 and SAMR1 mice | miRNA139 expression was significantly higher in SAMP8 mice, compromising hippocampal-dependent learning and memory formation. In contrast, the downregulation of miRNA-139 in mice improved learning and memory in mice. Furthermore, miRNA-139, by inhibiting CB2 expression, decreases responses to pro-inflammatory stimuli and acts as a regulatory factor in the pathogenesis of AD. | Therapeutic target | [78] |
miRNA-188-5p | - | 5xFAD mice AD model, primary hippocampal neuron cells and human AD brains | The expression of miRNA-188-5p was downregulated in brain tissues from patients with AD and 5XFAD mice. Treatment with oligomeric Aβ1–42 decreased miRNA-188-5p expression in primary cultures of hippocampal neurons. On the contrary, miRNA-188-5p overexpression could alleviate the decrease in dendritic spine density in primary hippocampal neurons exposed to Aβ. Therefore, replenishment of mi-R188-5p restores the synaptic and cognitive deficits. | Diagnostic marker and therapeutic target | [82] |
miRNA-132 | ITPKB | APP/PSEN1 AD mice | MiRNA-132 loss aggravates amyloid and TAU pathology in AD brain via ITPKB upregulation in AD mice model. This lead to increased ERK1/2 and BACE1 activity and elevated TAU phosphorylation. Downregulation of miRNA132 and upregulation of ITPKB was confirmed in human AD patients. | Diagnostic marker and therapeutic target | [85] |
miRNA-132/212 | TAU | 3xTG-AD mice and mouse Neuro2a cells | Deletion of miRNA-132/212 caused abnormal TAU metabolism, accentuate TAU hyperphosphorylation and TAU aggregation. TAU is a direct target of miRNA-132. On the contrary, the treatment of 3xTg-AD mice with miRNA-132 mimics improved a long-term memory deficit and was determinate a significant reduction of phosphorylated TAU. | Therapeutic target | [88] |
miRNA-132/212 | SIRT1 | 3xTG-AD mice and mouse Neuro2a cells | Genetic deletion of miRNA-132/212 promotes Aβ production and amyloid plaque formation. SIRT1, MAPK1 / ERK2, and TAU were interesting miRNA-132 targets identified that were found to be upregulated in 3xTg-AD mice compared to controls. In contrast, all these genes were downregulated in Neuro2a132 cells. In addition, the modulation of miRNA-132 or SIRT1 can directly regulate Aβ production in cells. | Therapeutic target | [91] |
miRNA-181 | SIRT1 and c-Fos | 3xTG-AD mice and SH-SY5Y cells | Compared to twelve-month wild type mice in the hippocampus of age-matched 3xTg-AD mice with plaques and tangles was found a significant upregulation of miRNA-181. Analysis of predicted targets of miRNA-181 identified c-Fos and SIRT-1. Both c-Fos and SIRT-1 levels were significantly decreased in the ventral hippocampus of twelve-month old 3xTg-AD mice. In addition, overexpression of miRNA-181 in SH-SY5Y cells significantly decreased c-Fos and SIRT-1. | Diagnostic marker and therapeutic target | [94] |
miRNA-181c | CRMP-2 | SAMP8 and SAMR1 mice; HT-22 and HEK293A cells | A significant decrease in miRNA-181c in the hippocampus of SAMP8 was recorded. miRNA-181c overexpression affects the 3’-UTR region of CRMP2. In HT-22 hippocampal neuronal cells, the overexpression of miRNA-181c downregulates the abundance of CRMP2 proteins at the post-transcriptional level. | Diagnostic marker | [96] |
miRNA-206 | BDNF | APP/PSEN1 mice and primary neuron cells from embryonic APP/PSEN1 mice hippocampus | miRNA-206 was upregulated, this overexpression resulted in a downregulated expression of BDNF that protects against cell death. | Diagnostic marker | [99] |
miRNA-214-3p | ATG12 | SAMR1 and SAMP8 mice; primary neuron cells from embryonic SAMP8 mice hippocampus and SH-SY5Y cells | Downregulated miRNA-214-3p was observed in hippocampal neurons of SAMP8 mice and also in cerebrospinal fluid from patients with SAD. miRNA-214-3p overexpression in primary neurons from SAMP8 mice inhibited autophagy. In contrast, antagomiRNA-214-3p promoted macroautophagy and apoptosis in SAMP8 mice neurons. miRNA-214-3p by directly targeting ATG12 inhibits the macroautophagy. In addition, the injection of miRNA-214-3p into the hippocampal improved the cognitive capacity of SAMP8 mice. | Therapeutic target | [106] |
miRNA-146-a | ROCK1 | 5xFAD mice and SH-SY5Y cells | High levels of miRNANA-146a in neurons negatively regulate the translation of the ROCK1 protein. Reduction of neuronal protein ROCK1 leads to a reduction in the neuronal phosphorylation of PTEN resulting in the impaired dephosphorylation of neuronal TAU. | Diagnostic marker and therapeutic target | [92] |
miRNA-574 | NRN1 | APP/PSEN1 mice; primary hippocampal neuron from the wild type and APP/PS1 transgenic mice and HT22 hippocampal neuronal cells | miRNA-574 was significantly increased in the hippocampus of 5-month APP/PS1 mice, showing synaptic loss and cognitive impairment. Bioinformatic analysis predicted that mRNA-574 targets the mRNA of Nrn1. In fact, in the in vitro study, miRNA-574 overexpression reduced NRN1 expression levels. In contrast, miRNA-574 suppression by the miRNA-574 inhibitor resulted in elevated levels of NRN1 expression. | Diagnostic marker and therapeutic target | [107] |
miRNA-222 | P27KIP1 | APP/PSEN1 mice, SH-SY5Y and HEK-293T | Downregulation expression of miRNA-222 influences cell cycle dysregulation in AD, by targeting P27KIP1 | - | [110] |
miRNA-128 | PPARγ | 3xTG-AD mice and Neuro2A cells | The expression of miRNA-128 was upregulated, on the contrary, the expression of PPARγ was downregulated in the cerebral cortex of AD mice. Furthermore, PPARγ was a target of miRNA-128. In addition, the upregulation of miRNA-128 or the upregulation of PPARγ inhibited type AD performance, the formation of amyloid plaques, the generation of Aβ, the amyloidogenic processing of APP, and the inflammatory responses in AD mice. Instead, the inhibition of PPARγ improves the effects caused by miRNA-128. | Diagnostic marker and therapeutic target | [114] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestro, S.; Bramanti, P.; Mazzon, E. Role of miRNAs in Alzheimer’s Disease and Possible Fields of Application. Int. J. Mol. Sci. 2019, 20, 3979. https://doi.org/10.3390/ijms20163979
Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer’s Disease and Possible Fields of Application. International Journal of Molecular Sciences. 2019; 20(16):3979. https://doi.org/10.3390/ijms20163979
Chicago/Turabian StyleSilvestro, Serena, Placido Bramanti, and Emanuela Mazzon. 2019. "Role of miRNAs in Alzheimer’s Disease and Possible Fields of Application" International Journal of Molecular Sciences 20, no. 16: 3979. https://doi.org/10.3390/ijms20163979