Next Article in Journal
A Cerato-Platanin Family Protein FocCP1 Is Essential for the Penetration and Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4
Next Article in Special Issue
Effect of Zinc Supplementation on Renal Anemia in 5/6-Nephrectomized Rats and a Comparison with Treatment with Recombinant Human Erythropoietin
Previous Article in Journal
Study of the Mechanism Underlying the Onset of Diabetic Xeroderma Focusing on an Aquaporin-3 in a Streptozotocin-Induced Diabetic Mouse Model
Previous Article in Special Issue
Application of Acyzol in the Context of Zinc Deficiency and Perspectives
Open AccessArticle

Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn2+ Levels with Re-Distribution of Zn2+-Transporters in Aged Rat Cardiomyocytes

Departments of Biophysics, Ankara University Faculty of Medicine, 06100 Ankara, Turkey
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2019, 20(15), 3783; https://doi.org/10.3390/ijms20153783
Received: 21 May 2019 / Revised: 12 June 2019 / Accepted: 17 June 2019 / Published: 2 August 2019
(This article belongs to the Special Issue Zinc Biology 2019)
Aging is an important risk factor for cardiac dysfunction. Heart during aging exhibits a depressed mechanical activity, at least, through mitochondria-originated increases in ROS. Previously, we also have shown a close relationship between increased ROS and cellular intracellular free Zn2+ ([Zn2+]i) in cardiomyocytes under pathological conditions as well as the contribution of some re-expressed levels of Zn2+-transporters for redistribution of [Zn2+]i among suborganelles. Therefore, we first examined the cellular (total) [Zn2+] and then determined the protein expression levels of Zn2+-transporters in freshly isolated ventricular cardiomyocytes from 24-month rat heart compared to those of 6-month rats. The [Zn2+]i in the aged-cardiomyocytes was increased, at most, due to increased ZIP7 and ZnT8 with decreased levels of ZIP8 and ZnT7. To examine redistribution of the cellular [Zn2+]i among suborganelles, such as Sarco/endoplasmic reticulum, S(E)R, and mitochondria ([Zn2+]SER and [Zn2+]Mit), a cell model (with galactose) to mimic the aged-cell in rat ventricular cell line H9c2 was used and demonstrated that there were significant increases in [Zn2+]Mit with decreases in [Zn2+]SER. In addition, the re-distribution of these Zn2+-transporters were markedly changed in mitochondria (increases in ZnT7 and ZnT8 with no changes in ZIP7 and ZIP8) and S(E)R (increase in ZIP7 and decrease in ZnT7 with no changes in both ZIP8 and ZnT8) both of them isolated from freshly isolated ventricular cardiomyocytes from aged-rats. Furthermore, we demonstrated that cellular levels of ROS, both total and mitochondrial lysine acetylation (K-Acetylation), and protein-thiol oxidation were significantly high in aged-cardiomyocytes from 24-month old rats. Using a mitochondrial-targeting antioxidant, MitoTEMPO (1 µM, 5-h incubation), we provided an important data associated with the role of mitochondrial-ROS production in the [Zn2+]i-dyshomeostasis of the ventricular cardiomyocytes from 24-month old rats. Overall, our present data, for the first time, demonstrated that a direct mitochondria-targeting antioxidant treatment can be a new therapeutic strategy during aging in the heart through a well-controlled [Zn2+] distribution among cytosol and suborganelles with altered expression levels of the Zn2+-transporters. View Full-Text
Keywords: aging-heart; intracellular free zinc; zinc-transporters; cardiovascular function; oxidative stress; insulin resistance; mitochondria aging-heart; intracellular free zinc; zinc-transporters; cardiovascular function; oxidative stress; insulin resistance; mitochondria
Show Figures

Graphical abstract

MDPI and ACS Style

Olgar, Y.; Tuncay, E.; Turan, B. Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn2+ Levels with Re-Distribution of Zn2+-Transporters in Aged Rat Cardiomyocytes. Int. J. Mol. Sci. 2019, 20, 3783.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop