Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influences of Na2CO3/PEG Concentration on the PhaseTransition of E-C
2.2. A Unique Two-Step Phase Transition of E-C in Na2CO3/PEG Solution
2.3. PEG2000 had Opposite Effects on the E-C Phase Transition Temperature in the Presence of CO32− and SO42−
3. Materials and Methods
3.1. Plasmid Construction
3.2. Protein Expression and Purification
3.3. Protein Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Urry, D.W.; Trapane, T.L.; Prasad, K.U. Phase-Sructure Transitions of the Elastin Polypentapeptide-Water System within the Framework of Composition-Temperature Studies. Biopolymers 2010, 24, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Mcdaniel, J.R.; Radford, D.C.; Chilkoti, A.A. Unified Model for De Novo Design of Elastin-Like Polypeptides with Tunable Inverse Transition Temperatures. Biomacromolecules 2013, 14, 2866. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Quantification of the Effects of Chain Length and Concentration on the Thermal Behavior of Eastin-Like Polypeptides. Biomacromolecules 2004, 5, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.; Amiram, M.; Dagher, S.; Trabbic-Carlson, K.; Shamji, M.F.; Setton, L.A.; Chilkoti, A. Fusion Order Controls Expression Level and Activity of Elastin-like Polypeptide Fusion Proteins. Protein Sci. 2009, 18, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Banki, M.R.; Feng, L.; Wood, D.W. Simple Bioseparations Using Self-Cleaving Elastin-Like Polypeptide Tags. Nat. Methods 2005, 2, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.W.; Trabbic-Carlson, K.; Mackay, J.A.; Chilkoti, A. Improved Non-Chromatographic Purification of a Recombinant Protein by Cationic Elastin-Like Polypeptides. Biomacromolecules 2007, 8, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Macewan, S.R.; Hassouneh, W.; Chilkoti, A. Non-Chromatographic Purification of Recombinant Elastin-Like Polypeptides and Their Fusions with Peptides and Proteins from Escherichia coli. J. Vis. Exp. 2014, 88. [Google Scholar] [CrossRef] [PubMed]
- Hassouneh, W.; Christensen, T.; Chilkoti, A. Elastin-Like Polypeptides as a Purification Tag for Recombinant Proteins. Curr. Protoc. Protein Sci. 2010, 6. [Google Scholar] [CrossRef]
- Wan, W.; Jashnani, A.; Aluri, S.R.; Gustafson, J.A.; Hsueh, P.Y.; Yarber, F.; McKown, R.L.; Laurie, G.W.; Hamm-Alvarez, S.F.; MacKay, J.A. A Thermo-Responsive Protein Treatment for Dry Eyes. J. Controlled Release 2011, 199, 156–167. [Google Scholar]
- Macewan, S.R.; Chilkoti, A. Applications of Elastin-Like Polypeptides in Drug Delivery. J. Controlled Release 2014, 190, 314–330. [Google Scholar] [CrossRef]
- Zhang, W.B.; Sun, F.; Tirrell, D.A.; Arnold, F.H. Controlling Macromolecular Topology with Genetically Encoded SpyTag-SpyCatcher Chemistry. J. Am. Chem. Soc. 2013, 135, 13988–13997. [Google Scholar] [CrossRef] [PubMed]
- Urry, D.W. Physical Chemistry of Biological Free Energy Transduction as Demonstrated by Elastic Protein-based Polymers. J. Phys. Chem. B 1997, 101, 11007–11028. [Google Scholar] [CrossRef]
- Strzegowski, L.A.; Martinez, M.B.; Gowda, D.C.; Urry, D.W.; Tirrell, D.A. Photomodulation of the Inverse Temperature Transition of a Modified Elastin Poly(Pentapeptide). J. Am. Chem. Soc. 1994, 116, 416–423. [Google Scholar] [CrossRef]
- Urry, D.W.; Haynes, B.; Harris, R.D. Temperature Dependence of Length of Elastin and its Polypentapeptide. Biochem. Biophys. Res. Commun. 1986, 141, 749–755. [Google Scholar] [CrossRef]
- Ferreira, L.A.; Cole, J.T.; Reichardt, C.; Holland, N.B.; Uversky, V.N.; Zaslavsky, B.Y. Solvent Properties of Water in Aqueous Solutions of Elastin-Like Polypeptide. Int. J. Mol. Sci. 2015, 16, 13528–13547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cremer, P.S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 2010, 61, 63–83. [Google Scholar] [CrossRef]
- Izutsu, K.; Aoyagi, N. Effect of Inorganic Salts on Crystallization of Poly(Ethylene Glycol) in Frozen Solutions. Int. J. Phytorem 2005, 288, 101–108. [Google Scholar] [CrossRef]
- Murgia, S.; Monduzzi, M.; Ninham, B.W. Hofmeister Effects in Cationic Microemulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 106–120. [Google Scholar] [CrossRef]
- Cho, Y.; Zhang, Y.; Christensen, T.; Sagle, L.B.; Chilkoti, A.; Cremer, P.S. Effects of Hofmeister Anions on the Phase Transition Temperature of Elastin-like Polypeptides. J. Phys. Chem. B 2008, 112, 13765–13771. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.; Hassouneh, W.; Trabbic-Carlson, K.; Chilkoti, A. Predicting Transition Temperatures of Elastin-Like Polypeptide Fusion Proteins. Biomacromolecules 2013, 14, 1514–1519. [Google Scholar] [CrossRef]
- Zakeri, B.; Howarth, M. Spontaneous Intermolecular Amide Bond Formation between Side Chains for Irreversible Peptide Targeting. J. Am. Chem. Soc. 2010, 132, 4526–4527. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, B.; Fierer, J.O.; Celik, E.; Chittock, E.C.; Schwarz-Linek, U.; Moy, V.T.; Howarth, M. Peptide Tag Forming a Rapid Covalent Bond to a Protein, Through Engineering a Bacterial Adhesin. Proc. Natl. Acad. Sci. USA 2012, 109, 690–697. [Google Scholar] [CrossRef]
- Zhang, D.D.; Cai, Z.W.; Wang, J.D.; Wang, X.; Wu, S.; Zhang, G. The Phase Transition of Elastin-Like Polypeptides with Different Topological Structures. Chin. Sci. Chem. 2016, 46, 881. [Google Scholar]
- Roberts, S.; Dzuricky, M.; Chilkoti, A. Elastin-Like Polypeptides as Models of Intrinsically Disordered Proteins. FEBS Lett. 2015, 589, 2477–2486. [Google Scholar] [CrossRef]
- Hasek, J. Poly (Ethylene Glycol) Interactions with Proteins. Z. Kristallogr. Suppl. 2006, 23, 613–618. [Google Scholar] [CrossRef]
- Rawat, S.; Raman, S.C.; Sahoo, D.K. Molecular Mechanism of Polyethylene Glycol Mediated Stabilization of Protein. Biochem. Biophys. Res. Commun. 2010, 392, 561–566. [Google Scholar] [CrossRef]
- Fujita, Y.; Mie, M.; Kobatake, E. Construction of Nanoscale Protein Particle Using Temperature-Sensitive Elastin-Like Peptide and Polyaspartic Acid Chain. Biomaterials 2009, 30, 3450–3457. [Google Scholar] [CrossRef]
- Pinedo-Martín, G.; Santos, M.; Testera, A.M.; Alonso, M.; Rodríguez-Cabello, J.C. The Effect of NaCl on the Self-assembly of Elastin-Like Block Co-recombinamers: Tuning the Size of Micelles and Vesicles. Polymer 2014, 55, 5314–5321. [Google Scholar] [CrossRef]
- Osborne, J.L.; Farmer, R.; Woodhouse, K.A. Self-assembled Elastin-Like Polypeptide Particles. Acta Biomater. 2008, 4, 49–57. [Google Scholar] [CrossRef]
- Shulgin, I.L.; Ruckenstein, E. Preferential Hydration and Solubility of Proteins in Aqueous Solutions of Polyethylene Glycol. Biophys. Chem. 2006, 120, 188–198. [Google Scholar] [CrossRef]
- Du, F.; Zhou, Z.; Mo, Z.Y.; Shi, J.Z.; Chen, J.; Liang, Y. Mixed Macromolecular Crowding Accelerates the Refolding of Rabbit Muscle Creatine Kinase: Implications for Protein Folding in Physiological Environments. J. Mol. Biol. 2006, 364, 469–482. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, C.; Lin, W.; Hu, R.; Wang, Q.; Chen, H.; Li, L.; Chen, S.; Zheng, J. Binding Characteristics between Polyethylene Glycol (PEG) and Proteins in Aqueous Solution. J. Mater. Chem. B 2014, 2, 2983–2992. [Google Scholar] [CrossRef]
- Fumess, E.; Ross, A.; Davis, T.; King, G. A Hydrophobic Interaction Site for Fysozyme Binding to Polyethylene Glycol and Model Contact Lens Polymers. Biomaterials 1998, 19, 1361–1369. [Google Scholar]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific Ion Effects on the Water Solubility of Macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Sagle, L.B.; Cho, Y.; Bergbreiter, D.E.; Cremer, P.S. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight. J. Phys. Chem. C Nanomater. Interfaces 2007, 111, 8916–8924. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zaro, J.L.; Shen, W.C. Fusion Protein Linkers: Property, Design and Functionality. Adv. Drug Deliv. Rev. 2013, 65, 1357–1369. [Google Scholar] [CrossRef]
- Gill, S.C.; Hippel, P.H.V. Calculation of Protein Extinction Coefficients from Amino Acid Sequence Data. Anal. Biochem. 1989, 182, 319–326. [Google Scholar] [CrossRef]
- Li, C.C.; Zhang, G. The Fusions of Elastin-Like Polypeptides and Xylanase Self-Assembled into Insoluble Active Xylanase Particles. J. Biotechnol. 2014, 177, 60–66. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z.; Xiong, Z.; Zhang, D.; Li, X.; Zhang, G. Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol. Int. J. Mol. Sci. 2019, 20, 3560. https://doi.org/10.3390/ijms20143560
Ge Z, Xiong Z, Zhang D, Li X, Zhang G. Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol. International Journal of Molecular Sciences. 2019; 20(14):3560. https://doi.org/10.3390/ijms20143560
Chicago/Turabian StyleGe, Zhongqi, Ziyang Xiong, Dandan Zhang, Xialan Li, and Guangya Zhang. 2019. "Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol" International Journal of Molecular Sciences 20, no. 14: 3560. https://doi.org/10.3390/ijms20143560
APA StyleGe, Z., Xiong, Z., Zhang, D., Li, X., & Zhang, G. (2019). Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol. International Journal of Molecular Sciences, 20(14), 3560. https://doi.org/10.3390/ijms20143560